Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Lancet Infect Dis ; 23(10): 1175-1185, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37390836

RESUMEN

BACKGROUND: Zika virus infection is a threat to at-risk populations, causing major birth defects and serious neurological complications. Development of a safe and efficacious Zika virus vaccine is, therefore, a global health priority. Assessment of heterologous flavivirus vaccination is important given co-circulation of Japanese encephalitis virus and yellow fever virus with Zika virus. We investigated the effect of priming flavivirus naive participants with a licensed flavivirus vaccine on the safety and immunogenicity of a purified inactivated Zika vaccine (ZPIV). METHODS: This phase 1, placebo-controlled, double-blind trial was done at the Walter Reed Army Institute of Research Clinical Trials Center in Silver Spring, MD, USA. Eligible participants were healthy adults aged 18-49 years, with no detectable evidence of previous flavivirus exposure (by infection or vaccination), as measured by a microneutralisation assay. Individuals with serological evidence of HIV, hepatitis B, or hepatitis C infection were excluded, as were pregnant or breastfeeding women. Participants were recruited sequentially into one of three groups (1:1:1) to receive no primer, two doses of intramuscular Japanese encephalitis virus vaccine (IXIARO), or a single dose of subcutaneous yellow fever virus vaccine (YF-VAX). Within each group, participants were randomly assigned (4:1) to receive intramuscular ZPIV or placebo. Priming vaccinations were given 72-96 days before ZPIV. ZPIV was administered either two or three times, at days 0, 28, and 196-234. The primary outcome was occurrence of solicited systemic and local adverse events along with serious adverse events and adverse events of special interest. These data were analysed in all participants receiving at least one dose of ZPIV or placebo. Secondary outcomes included measurement of neutralizing antibody responses following ZPIV vaccination in all volunteers with available post-vaccination data. This trial is registered at ClinicalTrials.gov, NCT02963909. FINDINGS: Between Nov 7, 2016, and Oct 30, 2018, 134 participants were assessed for eligibility. 21 did not meet inclusion criteria, 29 met exclusion criteria, and ten declined to participate. 75 participants were recruited and randomly assigned. 35 (47%) of 75 participants were male and 40 (53%) were female. 25 (33%) of 75 participants identified as Black or African American and 42 (56%) identified as White. These proportions and other baseline characteristics were similar between groups. There were no statistically significant differences in age, gender, race, or BMI between those who did and did not opt into the third dose. All participants received the planned priming IXIARO and YF-VAX vaccinations, but one participant who received YF-VAX dropped out before receipt of the first dose of ZPIV. 50 participants received a third dose of ZPIV or placebo, including 14 flavivirus-naive people, 17 people primed with Japanese encephalitis virus vaccine, and 19 participants primed with yellow fever vaccine. Vaccinations were well tolerated across groups. Pain at the injection site was the only adverse event reported more frequently in participants who received ZPIV than in those who received placebo (39 [65%] of 60 participants, 95% CI 51·6-76·9 who received ZPIV vs three [21·4%] of 14 who received placebo; 4·7-50·8; p=0·006). No patients had an adverse event of special interest or serious adverse event related to study treatment. At day 57, the flavivirus-naive volunteers had an 88% (63·6-98·5, 15 of 17) seroconversion rate (neutralising antibody titre ≥1:10) and geometric mean neutralising antibody titre (GMT) against Zika virus of 100·8 (39·7-255·7). In the Japanese encephalitis vaccine-primed group, the day 57 seroconversion rate was 31·6% (95% CI 12·6-56·6, six of 19) and GMT was 11·8 (6·1-22·8). Participants primed with YF-VAX had a seroconversion rate of 25% (95% CI 8·7-49·1, five of 20) and GMT of 6·6 (5·2-8·4). Humoral immune responses rose substantially following a third dose of ZPIV, with seroconversion rates of 100% (69·2-100; ten of ten), 92·9% (66·1-99·8; 13 of 14), and 60% (32·2-83·7, nine of 15) and GMTs of 511·5 (177·6-1473·6), 174·2 (51·6-587·6), and 79 (19·0-326·8) in the flavivirus naive, Japanese encephalitis vaccine-primed, and yellow fever vaccine-primed groups, respectively. INTERPRETATION: We found ZPIV to be well tolerated in flavivirus naive and primed adults but that immunogenicity varied significantly according to antecedent flavivirus vaccination status. Immune bias towards the flavivirus antigen of initial exposure and the timing of vaccination may have impacted responses. A third ZPIV dose overcame much, but not all, of the discrepancy in immunogenicity. The results of this phase 1 clinical trial have implications for further evaluation of ZPIV's immunisation schedule and use of concomitant vaccinations. FUNDING: Department of Defense, Defense Health Agency; National Institute of Allergy and Infectious Diseases; and Division of Microbiology and Infectious Disease.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Vacunas contra la Encefalitis Japonesa , Vacunas Virales , Vacuna contra la Fiebre Amarilla , Infección por el Virus Zika , Virus Zika , Adulto , Femenino , Humanos , Masculino , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Método Doble Ciego , Inmunogenicidad Vacunal , Vacunas contra la Encefalitis Japonesa/efectos adversos , Vacunas de Productos Inactivados , Vacuna contra la Fiebre Amarilla/efectos adversos , Virus de la Fiebre Amarilla , Infección por el Virus Zika/prevención & control , Fiebre Amarilla/prevención & control
2.
Lancet Infect Dis ; 23(5): 621-633, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36682364

RESUMEN

BACKGROUND: Developing a safe and immunogenic vaccine against Zika virus remains an unmet medical need. We did two phase 1 studies that evaluated the safety and immunogenicity of two mRNA-based Zika virus vaccines (mRNA-1325 and mRNA-1893) in adults. METHODS: Two randomised, placebo-controlled, dose-ranging, multicentre, phase 1 trials, one of mRNA-1325 (mRNA-1325 trial) and one of mRNA-1893 (mRNA-1893 trial), were done. For both studies, eligible participants were healthy adults (aged 18-49 years) who were flavivirus seronegative or flavivirus seropositive at baseline. Participants in the mRNA-1325 trial, which was done at three centres in the USA, were randomly assigned centrally (1:4), using a randomisation table, to the placebo group or one of three mRNA-1325 dose groups (10, 25, or 100 µg). All participants received two doses. The mRNA-1325 vaccine encoded the premembrane and envelope E structural proteins (prME) from a Micronesia 2007 Zika virus isolate. Participants in the mRNA-1893 trial, which was done at three centres in the USA and one centre in Puerto Rico, were randomly assigned (1:4) to the placebo group or one of four mRNA-1893 dose groups (10, 30, 100, or 250 µg) using centralised interactive response technology. All participants in the mRNA-1893 trial received dose one on day 1 and then dose two on day 29. The mRNA-1893 vaccine encoded the prME from the RIO-U1 Zika virus isolate. Safety was the primary outcome of each study, which was evaluated in the respective safety populations (mRNA-1325 trial: participants who received at least one dose and provided safety data; mRNA-1893 trial: participants who received at least one dose) and the solicited safety population (mRNA-1893 trial only: received at least 1 dose and contributed solicited adverse reaction data). Endpoints in both trials included solicited adverse reactions within 7 days after vaccination and unsolicited adverse events within 28 days after vaccination. The secondary outcome of both trials was immunogenicity assessed by Zika virus-specific neutralising antibodies (nAbs) in the per-protocol populations in either trial (participants with no major protocol deviations received full dose[s] of assigned dose level within the acceptable time window, had samples drawn within acceptable time window, and had prevaccination and corresponding post-vaccination serum samples for testing). These were descriptive studies, with no formal hypothesis testing in either trial. Both trials are registered with ClinicalTrials.gov, NCT03014089 (mRNA-1325 trial) and NCT04064905 (mRNA-1893 trial). FINDINGS: The mRNA-1325 trial was done from Dec 14, 2016, to Aug 16, 2018. 90 participants were enrolled: 53 (59%) participants were women and 37 (41%) were men; 84 (93%) were White; and 74 (82%) were not Hispanic or Latino. All three dose levels of mRNA-1325 (10, 25, and 100 µg) were generally well tolerated, but the vaccine elicited poor Zika virus-specific nAb responses. At 28 days after dose two, geometric mean titres (GMTs) were highest for mRNA-1325 10 µg (10·3 [95% CI 5·9-18·2]). The mRNA-1893 trial was done from July 23, 2019, to March 22, 2021. 120 participants (70 [58%] women and 50 [42%] men) were enrolled, most participants were White (89 [74%]), and not Hispanic or Latino (91 [76%]). In the mRNA-1893 trial, solicited adverse reactions in participants who received a vaccine were mostly grade 1 or 2 and occurred more frequently at higher dose levels and after dose two. No participants withdrew due to an unsolicited treatment-emergent adverse event and most of these events were not treatment related. On day 57, all evaluated mRNA-1893 dose levels induced robust Zika virus-specific nAb responses, independent of flavivirus serostatus, that persisted until month 13. At day 57 in participants who were flavivirus seronegative, plaque reduction neutralisation titre test nAb GMTs were highest for mRNA-1893 100 µg (454·2 [330·0-619·6]); in participants who were flavivirus seropositive, GMTs were highest for mRNA-1893 10 µg (224·1 [43·5-1153·5]) and mRNA-1893 100 µg (190·5 [19·2-1887·2]). INTERPRETATION: These findings support the continued development of mRNA-1893 against Zika virus, which was well tolerated at all evaluated dose levels and induced strong Zika virus-specific serum nAb responses after two doses, regardless of baseline flavivirus serostatus. FUNDING: Biomedical Advanced Research and Development Authority and Moderna.


Asunto(s)
Flavivirus , Infección por el Virus Zika , Virus Zika , Masculino , Adulto , Humanos , Femenino , Virus Zika/genética , Método Doble Ciego , Vacunación , Puerto Rico , Inmunogenicidad Vacunal , Infección por el Virus Zika/prevención & control , Anticuerpos Antivirales
3.
Mol Psychiatry ; 27(1): 19-33, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34580416

RESUMEN

Infectious diseases, including COVID-19, are crucial public health issues and may lead to considerable fear among the general public and stigmatization of, and discrimination against, specific populations. This meta-analysis aimed to estimate the pooled prevalence of stigma in infectious disease epidemics. We systematically searched PubMed, PsycINFO, Embase, MEDLINE, Web of Science, and Cochrane databases since inception to June 08, 2021, and reported the prevalence of stigma towards people with infectious diseases including SARS, H1N1, MERS, Zika, Ebola, and COVID-19. A total of 50 eligible articles were included that contributed 51 estimates of prevalence in 92722 participants. The overall pooled prevalence of stigma across all populations was 34% [95% CI: 28-40%], including enacted stigma (36% [95% CI: 28-44%]) and perceived stigma (31% [95% CI: 22-40%]). The prevalence of stigma in patients, community population, and health care workers, was 38% [95% CI: 12- 65%], 36% [95% CI: 28-45%], and 30% [95% CI: 20-40%], respectively. The prevalence of stigma in participants from low- and middle-income countries was 37% [95% CI: 29-45%], which is higher than that from high-income countries (27% [95% CI: 18-36%]) though this difference was not statistically significant. A similar trend of prevalence of stigma was also observed in individuals with lower education (47% [95% CI: 23-71%]) compared to higher education level (33% [95% CI: 23-4%]). These findings indicate that stigma is a significant public health concern, and effective and comprehensive interventions are needed to counteract the damaging effects of the infodemics during infectious disease epidemics, including COVID-19, and reduce infectious disease-related stigma.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Subtipo H1N1 del Virus de la Influenza A , Infección por el Virus Zika , Virus Zika , Humanos , Prevalencia
4.
J Child Neurol ; 36(7): 537-544, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33406966

RESUMEN

BACKGROUND: We aim to describe the long term follow-up of a cohort of children exposed in utero to the Zika virus. METHODS: Descriptive study of a cohort of microcephalic children due to Zika virus. Logistic regression was used to evaluate variables associated with worse prognosis epilepsy. RESULTS: We followed 28 children (15 females), with a median follow-up of 24 months (IQR = 12-28). During the follow-up, 1 infant died. The median head circumference at birth was 29 cm (IQR = 27-31). All presented a global developmental delay. The most frequent central nervous system abnormalities were on cortical development in 22 participants; dysgenesis of corpus callosum in 13; ventriculomegaly in 25; and calcifications in 24. A total of 9 presented ocular abnormalities, 4 auditory impairment. During follow-up, 12 presented with sleep disorders, 10 with irritability, and 23 with epilepsy (2 with generalized tonic-clonic, 3 with generalized tonic-clonic and spasms, 12 with spasms, 3 tonic and spasms, and 3 motor focal and spasms). The median age at the begin of the epilepsy was 4 months (IQR = 2-10), the median number of drugs used to control the epilepsy was 2 (IQR = 2-3). Maternal illicit drug use during pregnancy was associated with worse prognosis epilepsy (Lennox-Gastaut syndrome, West syndrome, or status epilepticus). A total of 19 presented with dysphagia, 10 children required gastrostomy. CONCLUSION: Children with microcephaly due to Zika virus presented with several complications during follow-up, as epilepsy, spastic diplegia, and global developmental delay.


Asunto(s)
Epilepsia/epidemiología , Microcefalia/complicaciones , Microcefalia/virología , Infección por el Virus Zika/complicaciones , Parálisis Cerebral/epidemiología , Preescolar , Discapacidades del Desarrollo/epidemiología , Epilepsia/diagnóstico , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Modelos Logísticos , Masculino , Microcefalia/psicología , Pronóstico , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...