Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.825
Filtrar
1.
J Med Entomol ; 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33855440

RESUMEN

Hand sanitizers are developed as alcohol-based liquid gel formulations, generally used to decrease the amount of infectious agents on human hands. Verdegen, LLC proposed to prepare an arthropod repellent gel for public use when the recent outbreaks of Zika infection vectored through Aedes mosquitoes in the American continents prompted multi-faceted emergency measures. Four different gel formulations were developed, comprising two of the most efficacious commercial arthropod repellent active ingredients, N,N-diethyl-3-methyl benzamide (deet) and 2-(2-hydroxyethyl)-1-piperidinecarboxylic acid 1-methylpropyl ester (picaridin), each at different concentrations (20 and 33% deet, or 20 and 33% picaridin). Compliance with the use of topical arthropod repellents remains an issue among military personnel. One of the most common complaints by Soldiers is that they do not like how the repellents applied on their skin leave behind an oily or greasy residue. These new gel formulations offer a user-friendly alternative for commonly used arthropod repellents formulations for the military and civilian personnel. We tested the efficacy and protection time of these new gel formulations in comparison with the commercially available cream formulations of deet and picaridin at similar concentrations. Our data show that gel formulations have better topical attributes, and offer equal or better biting protection for up to 48 h against host-seeking Aedes aegypti (L.) (Diptera: Culicidae) female mosquitoes.

2.
Biomed Microdevices ; 23(2): 24, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33855638

RESUMEN

This article describes the fabrication of a low-cost Polymerase Chain Reaction (PCR) instrument to detect diseases. In order to reduce the instrument price and simplify construction we developed an alternative fabrication process, transforming conventional printed circuit boards (PCB) in heating elements, avoiding the use of aluminum heating/cooling blocks and Peltier devices. To cool down the reaction a simple computer fan was used. The vial holder was fabricated using two double side PCB boards assembled in a sandwich-like configuration. The bottom PCB has a resistance of 0.9 Ω used to heat the reaction mix, while the top layer has a resistance of 1.1 Ω to heat the vial body, preventing vapor condensation. The top board was maintained at ~ 110 ± 1 °C during all cycles. The final device was able to heat and cool down the reaction at rates of ~ 2.0 °C/s, a rate comparable to commercial thermocyclers. An SMD NTC thermistor was used as temperature sensors, and a PID (proportional-integral-derivative) control algorithm was implemented to acquire and precisely control the temperature. We also discuss how the instrument is calibrated. The device was tested successfully for the amplification of T. pallidum (Syphilis) bacterial DNA and Zika virus RNA samples, showing similar performance to a commercial PCR instrument.

3.
Cells ; 10(3)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801464

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) that has resulted in the current pandemic. The lack of highly efficacious antiviral drugs that can manage this ongoing global emergency gives urgency to establishing a comprehensive understanding of the molecular pathogenesis of SARS-CoV-2. We characterized the role of the nucleocapsid protein (N) of SARS-CoV-2 in modulating antiviral immunity. Overexpression of SARS-CoV-2 N resulted in the attenuation of retinoic acid inducible gene-I (RIG-I)-like receptor-mediated interferon (IFN) production and IFN-induced gene expression. Similar to the SARS-CoV-1 N protein, SARS-CoV-2 N suppressed the interaction between tripartate motif protein 25 (TRIM25) and RIG-I. Furthermore, SARS-CoV-2 N inhibited polyinosinic: polycytidylic acid [poly(I:C)]-mediated IFN signaling at the level of Tank-binding kinase 1 (TBK1) and interfered with the association between TBK1 and interferon regulatory factor 3 (IRF3), subsequently preventing the nuclear translocation of IRF3. We further found that both type I and III IFN production induced by either the influenza virus lacking the nonstructural protein 1 or the Zika virus were suppressed by the SARS-CoV-2 N protein. Our findings provide insights into the molecular function of the SARS-CoV-2 N protein with respect to counteracting the host antiviral immune response.

4.
Artículo en Inglés | MEDLINE | ID: mdl-33801616

RESUMEN

The recent spread of invasive mosquito species, such as Aedes albopictus and the seasonal sporadic transmission of autochthonous cases of arboviral diseases (e.g., dengue, chikungunya, Zika) in temperate areas, such as Europe and North America, highlight the importance of effective mosquito-control interventions to reduce not only nuisance, but also major threats for public health. Local, regional, and even national mosquito control programs have been established in many countries and are executed on a seasonal basis by either public or private bodies. In order for these interventions to be worthwhile, funding authorities should ensure that mosquito control is (a) planned by competent scientific institutions addressing the local demands, (b) executed following the plan that is based on recommended and effective methods and strategies, (c) monitored regularly by checking the efficacy of the implemented actions, (d) evaluated against the set of targets, and (e) regularly improved according to the results of the monitoring. Adherence to these conditions can only be assured if a formal quality management system is adopted and enforced that ensures the transparency of effectiveness of the control operation. The current paper aims at defining the two components of this quality management system, quality assurance and quality control for mosquito control programs with special emphasis on Europe, but applicable over temperate areas.

5.
Cells ; 10(3)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807814

RESUMEN

The superfamily of nuclear receptors (NRs), composed of ligand-activated transcription factors, is responsible for gene expression as a reaction to physiological and environmental changes. Transcriptional machinery may require phase separation to fulfil its role. Although NRs have a similar canonical structure, their C-terminal domains (F domains) are considered the least conserved and known regions. This article focuses on the peculiar molecular properties of the intrinsically disordered F domain of the ecdysteroid receptor from the Aedes aegypti mosquito (AaFEcR), the vector of the world's most devastating human diseases such as dengue and Zika. The His-Pro-rich segment of AaFEcR was recently shown to form the unique poly-proline helix II (PPII) in the presence of Cu2+. Here, using widefield microscopy of fluorescently labeled AaFEcR, Zn2+- and Cu2+-induced liquid-liquid phase separation (LLPS) was observed for the first time for the members of NRs. The perspectives of this finding on future research on the F domain are discussed, especially in relation to other NR members.

6.
Viruses ; 13(3)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808725

RESUMEN

The rapid spread of the virus in Latin America and the association of the infection with microcephaly in newborns or Guillain-Barré Syndrome in adults prompted the WHO to declare the Zika virus (ZIKV) epidemic to be an international public health emergency in 2016. As the virus was first discovered in monkeys and is spread not only by mosquitos but also from human to human, we investigated the stability to the human complement of ZIKV derived from mosquito (ZIKVInsect), monkey (ZIKVVero), or human cells (ZIKVA549 and ZIKVFibro), respectively. At a low serum concentration (10%), which refers to complement concentrations found on mucosal surfaces, the virus was relatively stable at 37 °C. At higher complement levels (up to 50% serum concentration), ZIKV titers differed significantly depending on the cell line used for the propagation of the virus. While the viral titer of ZIKVInsect decreased about two orders in magnitude, when incubated with human serum, the virus derived from human cells was more resistant to complement-mediated lysis (CML). By virus-capture assay and Western blots, the complement regulator protein CD55 was identified to be incorporated into the viral envelope. Blocking of CD55 by neutralizing Abs significantly increased the sensitivity to human complement. Taken together, these data indicate that the incorporation of CD55 from human cells contributes to the stability of ZIKV against complement-mediated virolysis.

7.
Viruses ; 13(3)2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810110

RESUMEN

Congenital Zika virus (ZIKV) infection may present with a broad spectrum of clinical manifestations. Some sequelae, particularly neurodevelopmental problems, may have a later onset. We conducted a prospective cohort study of 799 high-risk pregnant women who were followed up until delivery. Eighty-three women and/or newborns were considered ZIKV exposed and/or infected. Laboratory diagnosis was made by polymerase chain reaction in the pregnant mothers and their respective newborns, as well as Dengue virus, Chikungunya virus, and ZIKV serology. Serology for toxoplasmosis, rubella, cytomegalovirus, herpes simplex virus, and syphilis infections were also performed in microcephalic newborns. The newborns included in the study were followed up until their third birthday. Developmental delay was observed in nine patients (13.2%): mild cognitive delay in three patients, speech delay in three patients, autism spectrum disorder in two patients, and severe neurological abnormalities in one microcephalic patient; sensorineural hearing loss, three patients and dysphagia, six patients. Microcephaly due to ZIKV occurred in three patients (3.6%). Clinical manifestations can appear after the first year of life in children infected/exposed to ZIKV, emphasizing the need for long-term follow-up.

8.
Arch Virol ; 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33847814

RESUMEN

Infection with distinct Zika virus (ZIKV) strains in in vitro and in vivo models has demonstrated that the host's response to infection is strain-dependent. There has been no analysis of the impact of infection with different ZIKV strains on miRNA expression in human cells. We investigated miRNA expression in PNT1A cells upon infection with an African ZIKV strain (MR766) and a Brazilian ZIKV strain (ZIKVBR) using PCR array. Sixteen miRNAs were modulated in PNT1A cells: six miRNAs were modulated by both strains, while a set of ten miRNAs were modulated exclusively by ZIKVBR infection. In silico analysis showed that nine significant KEGG pathways and eight significant GO terms were predicted to be enriched upon ZIKVBR infection, and these pathways were related to cancer, environmental information processing, metabolism, and extracellular matrix. Differential modulation of miRNA expression suggests that distinct strains of ZIKV can differentially modulate the host response through the action of miRNAs.

9.
Bull Math Biol ; 83(5): 58, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33847843

RESUMEN

Mosquito-borne diseases, such as dengue fever and Zika, have posed a serious threat to human health around the world. Controlling vector mosquitoes is an effective method to prevent these diseases. Spraying pesticides has been the main approach of reducing mosquito population, but it is not a sustainable solution due to the growing insecticide resistance. One promising complementary method is the release of Wolbachia-infected mosquitoes into wild mosquito populations, which has been proven to be a novel and environment-friendly way for mosquito control. In this paper, we incorporate consideration of releasing infected sterile mosquitoes and spraying pesticides to aim to reduce wild mosquito populations based on the population replacement model. We present the estimations for the number of wild mosquitoes or infection density in a normal environment and then discuss how to offset the effect of the heatwave, which can cause infected mosquitoes to lose Wolbachia infection. Finally, we give the waiting time to suppress wild mosquito population to a given threshold size by numerical simulations.

10.
Libyan J Med ; 16(1): 1909902, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33849406

RESUMEN

Zika virus (ZIKV) is a serious public health concern that may lead to neurological disorders in affected individuals. The virus can be transmitted from an infected mother to her fetus, via mosquitoes, or sexually. ZIKV infections are associated with increased risk for Guillain-Barré syndrome (GBS) and congenital microcephaly in newborns infected prenatally. Dysregulations of intracellular microRNAs (miRNAs) in infected neurons have been linked to different neurological diseases. To determine the potential role of miRNAs in ZIKV infection we developed a chronically infected neuroblastoma cell line and carried out differential expression analyses of miRNAs with reference to an uninfected neuroblastoma cell line. A total of 3192miRNAs were evaluated and 389 were found to be upregulated < 2-fold and 1291 were downregulated < 2-fold. In particular, we determined that hsa-mir-431-5p, hsa-mir-3687, hsa-mir-4655-5p, hsa-mir-6071, hsa-mir-762, hsa-mir-5787, and hsa-mir-6825-3p were significantly downregulated, ranging from -5711 to -660-fold whereas, has-mir-4315, hsa-mir-5681b, hsa-mir-6511a-3p, hsa-mir-1264, hsa-mir-4418, hsa-mir-4497, hsa-mir-4485-3p, hsa-mir-4715-3p, hsa-mir-4433-3p, hsa-mir-4708-3p, hsa-mir-1973 and hsa-mir-564 were upregulated, ranging from 20-0.8-fold. We carried out target gene alignment of these miRNAs with the ZIKV genome to predict the function of the differentially expressed miRNAs and their potential impact on ZIKV pathogenesis. These miRNAs might prove useful as novel diagnostic or therapeutic markers and targets for further research on ZIKV infection and neuronal injury resulting from ZIKV infectivity in developing fetal brain neurons.

11.
BMJ Glob Health ; 6(4)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33849897

RESUMEN

INTRODUCTION: There has been no systematic comparison of how the policy response to past infectious disease outbreaks and epidemics was funded. This study aims to collate and analyse funding for the Ebola epidemic and Zika outbreak between 2014 and 2019 in order to understand the shortcomings in funding reporting and suggest improvements. METHODS: Data were collected via a literature review and analysis of financial reporting databases, including both amounts donated and received. Funding information from three financial databases was analysed: Institute of Health Metrics and Evaluation's Development Assistance for Health database, the Georgetown Infectious Disease Atlas and the United Nations Financial Tracking Service. A systematic literature search strategy was devised and applied to seven databases: MEDLINE, EMBASE, HMIC, Global Health, Scopus, Web of Science and EconLit. Funding information was extracted from articles meeting the eligibility criteria and measures were taken to avoid double counting. Funding was collated, then amounts and purposes were compared within, and between, data sources. RESULTS: Large differences between funding reported by different data sources, and variations in format and methodology, made it difficult to arrive at precise estimates of funding amounts and purpose. Total disbursements reported by the databases ranged from $2.5 to $3.2 billion for Ebola and $150-$180 million for Zika. Total funding reported in the literature is greater than reported in databases, suggesting that databases may either miss funding, or that literature sources overreport. Databases and literature disagreed on the main purpose of funding for socioeconomic recovery versus outbreak response. One of the few consistent findings across data sources and diseases is that the USA was the largest donor. CONCLUSION: Implementation of several recommendations would enable more effective mapping and deployment of outbreak funding for response activities relating to COVID-19 and future epidemics.

12.
Sci Rep ; 11(1): 7301, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790374

RESUMEN

Aedes aegypti is a major vector of Zika, dengue, and other arboviruses. Permethrin adulticidal spraying, which targets the voltage-gated sodium channel (VGSC), is commonly done to reduce local mosquito populations and protect humans from exposure to arbovirus pathogens transmitted by this dangerous pest. Permethrin resistance, however, is a growing problem and understanding its underlying molecular basis may identify avenues to combat it. We identified a single G:C polymorphism in pre-miR-33 that was genetically associated with permethrin resistance; resulting isoforms had structural differences that may affect DICER-1/pre-miRNA processing rates. We then assessed the effects of overexpression of pre-miR-33 isoforms on permethrin toxicological phenotypes, VGSC transcript abundance and protein levels for two genetically related mosquito strains. One strain had its naturally high permethrin resistance levels maintained by periodic treatment, and the other was released from selection. VGSC protein levels were lower in the permethrin resistant strain than in the related permethrin-susceptible strain. Overexpression of the G-pre-miR-33 isoform reduced VGSC expression levels in both strains. To further elucidate changes in gene expression associated with permethrin resistance, exome-capture gDNA deep sequencing, genetic association mapping and subsequent gene set enrichment analysis revealed that transport genes, in particular, were selected in resistant versus susceptible mosquitoes. Collectively, these data indicate that miR-33 regulates VGSC expression as part of a nuanced system of neuronal regulation that contributes to a network of heritable features determining permethrin resistance.

13.
J Nat Prod ; 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33822611

RESUMEN

Brown algae and soft corals represent the main marine sources of dolabellane diterpenes. The antiviral activity of dolabellanes has been studied for those isolated from algae, whereas dolabellanes isolated from soft corals have been barely studied. In this work, a collection of dolabellane diterpenes consisting of five natural and 21 semisynthetic derivatives was constructed, and their antiviral activities against Zika (ZIKV) and Chikungunya (CHIKV) viruses were tested. Dolabellatrienone (1) and (1R,7R,8R,11S)-7,8-epoxy-13-keto-dolabella-3,12(18)-diene (2), isolated from Eunicea genus soft corals, were employed to obtain 21 dolabellane and dolastane diterpenes by reactions such as allylic oxidations, reductions, acid-catalyzed epoxide ring opening, and acetylations. All of the compounds were identified by a combination of one- and two-dimensional NMR, mass spectrometry, and X-ray diffraction experiments. The cytotoxicites against Vero cells and the antiviral activities against ZIKV and CHIKV was tested to calculate the half-maximal effective concentration (EC50) and selectivity indexes (SIs). In general, the addition of oxygen-containing functional groups improved the bioactivity of dolabellane and dolastane diterpenes against ZIKV and CHIKV replication. Compound 9 showed an EC50 = 0.92 ± 0.08 µM and SI = 820 against ZIKV.

14.
J Virol ; 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33789994

RESUMEN

The mosquito-borne Zika virus (ZIKV) spread rapidly into regions where dengue virus (DENV) is endemic, and flavivirus cross-reactive T cell responses have been observed repeatedly in animal models and in humans. Pre-existing cellular immunity to DENV is thought to contribute to protection in subsequent ZIKV infection, but the epitope targets of cross-reactive T cell responses have not been comprehensively identified. Using human blood samples from the DENV-endemic regions of Nicaragua and Sri Lanka that were collected before the global spread of ZIKV in 2016, we employed an in vitro expansion strategy to map ZIKV T cell epitopes in ZIKV-unexposed, DENV-seropositive donors. We identified 93 epitopes across the ZIKV proteome, and we observed patterns of immunodominance that were dependent on antigen size and sequence identity to DENV. We confirmed the immunogenicity of these epitopes through a computational HLA binding analysis, and we showed that cross-reactive T cells specifically recognize ZIKV peptides homologous to DENV sequences. We also found that these CD4 responses were derived from the memory T cell compartment. These data have implications for understanding the dynamics of flavivirus-specific T cell immunity in endemic areas.ImportanceMultiple flaviviruses, including Zika (ZIKV) and the four serotypes of dengue (DENV) viruses, are prevalent in the same large tropical and equatorial areas inhabited by hundreds of millions of people. The interplay of DENV and ZIKV infection is especially relevant, as these two viruses are endemic in largely overlapping regions, have significant sequence similarity, and share the same arthropod vector. Here, we define the targets of pre-existing immunity to ZIKV in unexposed subjects collected in dengue-endemic areas. We demonstrate that pre-existing immunity to DENV could shape ZIKV-specific responses, and DENV-ZIKV cross-reactive T cells can be expanded by stimulation with ZIKV peptides. The issue of potential ZIKV and DENV cross-reactivity is of relevance for understanding patterns of natural immunity, as well as for the development of diagnostic tests and vaccines.

15.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800884

RESUMEN

The nucleotide analog sofosbuvir, licensed for the treatment of hepatitis C, recently revealed activity against the Zika virus (ZIKV) in vitro and in animal models. However, the ZIKV genetic barrier to sofosbuvir has not yet been characterized. In this study, in vitro selection experiments were performed in infected human hepatoma cell lines. Increasing drug pressure significantly delayed viral breakthrough (p = 0.029). A double mutant in the NS5 gene (V360L/V607I) emerged in 3 independent experiments at 40-80 µM sofosbuvir resulting in a 3.9 ± 0.9-fold half- maximal inhibitory concentration (IC50) shift with respect to the wild type (WT) virus. A triple mutant (C269Y/V360L/V607I), detected in one experiment at 80 µM, conferred a 6.8-fold IC50 shift with respect to the WT. Molecular dynamics simulations confirmed that the double mutant V360L/V607I impacts the binding mode of sofosbuvir, supporting its role in sofosbuvir resistance. Due to the distance from the catalytic site and to the lack of reliable structural data, the contribution of C269Y was not investigated in silico. By a combination of sequence analysis, phenotypic susceptibility testing, and molecular modeling, we characterized a double ZIKV NS5 mutant with decreased sofosbuvir susceptibility. These data add important information to the profile of sofosbuvir as a possible lead for anti-ZIKV drug development.

16.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801335

RESUMEN

Mosquito-borne Zika virus (ZIKV) became a real threat to human health due to the lack of vaccine and effective antiviral treatment. The virus has recently been responsible for a global outbreak leading to millions of infected cases. ZIKV complications were highlighted in adults with Guillain-Barré syndrome and in newborns with increasing numbers of congenital disorders ranging from mild developmental delays to fatal conditions. The ability of ZIKV to establish a long-term infection in diverse organs including the kidneys has been recently documented but the consequences of such a viral infection are still debated. Our study aimed to determine whether the efficiency of ZIKV growth in kidney cells relates to glucose concentration. Human kidney HK-2 cells were infected with different ZIKV strains in presence of normal and high glucose concentrations. Virological assays showed a decrease in viral replication without modifying entry steps (viral binding, internalization, fusion) under high glucose conditions. This decrease replication was associated with a lower virus progeny and increased cell viability when compared to ZIKV-infected HK-2 cells in normal glucose concentration. In conclusion, we showed for the first time that an elevated glucose level influences ZIKV replication level with an effect on kidney cell survival.

17.
Viruses ; 13(4)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807442

RESUMEN

Flaviviruses circulate worldwide and cause a number of medically relevant human diseases, such as dengue, Zika, yellow fever, and tick-borne encephalitis (TBE). Serology plays an important role in the diagnosis of flavivirus infections, but can be impeded by antigenic cross-reactivities among flaviviruses. Therefore, serological diagnosis of a recent infection can be insufficiently specific, especially in areas where flaviviruses co-circulate and/or vaccination coverage against certain flaviviruses is high. In this study, we developed a new IgM assay format, which is well suited for the specific diagnosis of TBE, Zika and dengue virus infections. In the case of TBE and Zika, the IgM response proved to be highly specific for the infecting virus. In contrast, primary dengue virus infections induced substantial amounts of cross-reactive IgM antibodies, which is most likely explained by structural peculiarities of dengue virus particles. Despite the presence of cross-reactive IgM, the standardized nature and the quantitative read-out of the assay even allowed the serotype-specific diagnosis of recent dengue virus infections in most instances.

18.
Trop Med Int Health ; 2021 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-33813766

RESUMEN

The sanitary problem of Aedes aegypti mosquito acquires relevance around the world because it is the vector of dengue, zika, chikungunya, and yellow fever. The vector is adapting to southern regions faster and the propagation of these diseases in urban areas is a complex problem for society. We aimed to contribute to the risk prevention of disease transmission in the Metropolitan Area of Buenos Aires, through monitoring Aedes aegypti population-levels and developing education campaigns with government agencies and society participation. Monitoring activities aimed to diagnostic the presence of the vector and its ecology behavior, and to generate education and prevention politics to avoid its propagation. The results show that (1) the mosquito is in the territory and it is spreading, (2) prevention activities of the municipalities are insufficient to generate an effective sanitary response, and (3) it is necessary to improve the education programs to the population about the life cycle of the vector. The integration of university, government, and society improved the work of the team because it combined knowledge about vector ecology, diseases, and territory characteristics.

19.
Vaccine ; 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33814233

RESUMEN

The severe consequences of ZIKV infection and its emergence and re-emergence in several countries have boosted vaccines' development. Yeasts such as Pichia pastoris has been widely employed as antigen carriers for immunization against infectious agents. Components of the yeast cell wall have immunostimulatory properties, and recombinant antigens can be anchored to the cell surface to enhance the presentation to the immune system. Here we aimed at producing and anchoring ZIKV proteins in the P. pastoris surface as a vaccine approach. Expression cassettes were designed with epitopes of the Envelope and NS1 proteins. Immunofluorescence microscopy confirmed the anchoring of recombinant proteins. Yeasts' ability to stimulate immune cells was evaluated in vitro by incubation with lymphocytes and monocytes isolated from mouse spleen. P. pastoris expressing EnvNS1 epitopes promoted increased levels of IL-6, IL-10, and TNF-α cytokines and an increase in the number of CD4+, CD8+, and CD16+ lymphocytes, similarly to ZIKV. This profile is indicative of the activation of immunological cells and suggests an immunogenic potential of the proposed yeast vaccines against ZIKV, reinforcing the possibility of P. pastoris as adjuvant and carrier of antigens.

20.
PLoS One ; 16(4): e0249602, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33793682

RESUMEN

INTRODUCTION: Early and rapid confirmation of dengue infections strengthens disease surveillance program and are critical to the success of vector control measures. Rapid diagnostics tests (RDTs) are increasingly used to confirm recent dengue infections due to their ease of use and short turnaround time for results. Several studies undertaken in dengue-endemic Southeast Asia have reported the performance of RDTs against enzyme-linked immunosorbent assay (ELISA), reverse transcriptase polymerase chain reaction (RT-PCR) and virus isolation methods. However, few studies have compared multiple RDTs for the detection of dengue NS1 antigen and IgM antibody in a single combo cassette. We evaluated six RDTs in Singapore for their utility in routine clinical testing to detect recent dengue infections. METHODS: The evaluation comprised two phases. The first phase sought to determine each RDT's specificity to dengue NS1 and IgM using zika and chikungunya virus supernatant and zika convalescent samples. RDTs that cross-reacted with zika or chikungunya were not further tested in phase 2. The second phase sought to determine the sensitivity and specificity of the remaining RDTs to dengue NS1 and IgM using pre-characterised dengue specimens and non-dengue/chikungunya febrile clinical specimens. RESULTS: None of the RDTs cross-reacted with zika IgM in Phase 1. Truquick and Quickprofile cross reacted with zika and chikungunya viruses and were not evaluated thereafter. Standard Q had the highest dengue NS1 and IgM sensitivity at 87.0% and 84.3% respectively whereas Bioline (68.5%) and Multisure (58.3%) had the lowest dengue NS1 and IgM sensitivity respectively. Combining dengue NS1/IgM detection results greatly improved the RDT ability to detect recent dengue infection; Standard Q had the highest sensitivity at 99.1% while Multisure had the lowest at 92.6%. All the RDTs were highly specific for dengue NS1 and IgM (96.7% to 100%). All the RDTs had high positive predictive values (98.4% to 100%) for NS1, IgM and combined NS1/IgM parameters whereas Standard Q had the highest negative predictive values at 68.2% (NS1), 63.8% (IgM) and 96.8% (NS1/IgM). For the RDTs, detection of NS1 declined from acute to convalescent phase of illness whereas IgM detection rate gradually increased over time. CONCLUSION: In our study, several RDTs were evaluated for their diagnostic accuracy and capability in detecting recent dengue infection. Standard Q demonstrated a high degree of diagnostic accuracy and capability in the detection of NS1 and IgM biomarkers. RDTs can provide rapid and accurate confirmation of recent dengue infections and augment dengue surveillance and control programmes. Further studies are required to assess the usefulness of these RDTs in other epidemiology settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...