Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.042
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38427928

RESUMO

OBJECTIVES: Efforts to control the COVID-19 pandemic have potentially compromised the availability and/or quality of HIV services. We aimed to assess the pandemic's impact on ART initiation and HIV viral load (VL) monitoring in three West African countries. METHODS: We used routinely collected data from five clinics contributing to the IeDEA collaboration in Burkina Faso, Côte d'Ivoire and Nigeria. We included ART-naïve adults living with HIV (ALWH) initiating ART from 01/01/2018. We conducted regression discontinuity analysis to estimate changes in the number of ART initiations and VL measures per week, before and during the pandemic period in each country. RESULTS: In clinics in Burkina Faso and Côte d'Ivoire, ART initiations per week remained constant throughout the studied periods (-0.24 points (p) of ART initiations/week 95%CI -5.5, 5.9, -0.9 p 95%CI -8.5,8.6, respectively), whereas in Nigeria's clinic, they decreased significantly (-6.3 p, 95% CI -10.8, -1.7) after the beginning of the pandemic. The volume of VL tests performed decreased significantly in all three countries (-17.0 p 95%CI -25.3, -8.6 in Burkina Faso, -118.4 p 95%CI -171.1, -65.8 in Côte d'Ivoire and -169.1p 95%CI-282.6, -55.6 in Nigeria). CONCLUSIONS: Access to ART was maintained for newly diagnosed ALWH despite pandemic-related physical/social distancing measures. However, VL monitoring was severely disrupted and did not return to pre-pandemic levels approximately one year after the beginning of the pandemic. While HIV services in West Africa appear rather resilient, the impact of disruptions in VL monitoring on virological and clinical outcomes should continue to be monitored.

2.
Front Public Health ; 12: 1367614, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476493

RESUMO

Objective: This study aimed to investigate the epidemiological characteristics of common pathogens contributing to childhood lower respiratory tract infections (LRTIs) in Xiangtan City, Hunan Province before and during the coronavirus disease 2019 (COVID-19) pandemic. Methods: A total of 11,891 enrolled patients, aged 1 month to 14 years, diagnosed with LRTIs and admitted to Xiangtan Central Hospital from January 2018 to December 2021 were retrospectively reviewed in this study. Specifically, the epidemiological characteristics of these pathogens before and during the COVID-19 pandemic were analyzed. Results: There was a significant decrease in the number of children hospitalized with LRTIs during the COVID-19 pandemic (2020-2021) compared to data from 2018 to 2019 (before the COVID-19 pandemic). Of these cases, 60.01% (7,136/11,891) were male and 39.99% (4,755/11,891) were female. 78.9% (9,381/11,891) cases occurred in children under 4 years of age. The average pathogen detection rate among 11,891 hospitalized LRTIs children was 62.19% (7,395/11,891), with the average pathogen detection rate of 60.33% (4,635/7,682) and 65.57% (2,670/4,209) before and during COVID-19 pandemic, respectively. The detection rates of adenovirus (ADV), bordetella pertussis (BP) and moraxella catarrhalis (M. catarrhalis) decreased dramatically, while the detection rates of influenza viruses (IFV), parainfluenza viruses (PIV), respiratory syncytial virus (RSV), haemophilus influenzae (H. influenzae), streptococcus pneumoniae (S. pneumoniae), and staphylococcus aureus (S. aureus) increased significantly during the COVID-19 pandemic. Overall, RSV, mycoplasma pneumoniae (MP), H. influenzae, and IFV were the major pathogens causing LRTIs in hospitalized children before and during the COVID-19 pandemic. Conclusion: Public health interventions for COVID-19 prevention are beneficial to reduce the incidence of LRTIs in children by limiting the prevalence of ADV, MP, BP, and M. catarrhalis, but which have limited restrictive effects on other common LRTIs-associated pathogens. Collectively, the data in this study comprehensively investigated the effects of COVID-19 pandemic on the epidemiological characteristics of respiratory pathogens, which will be beneficial for improving early preventive measures.


Assuntos
COVID-19 , Infecções Respiratórias , Criança , Humanos , Masculino , Feminino , Pré-Escolar , Criança Hospitalizada , Estudos Retrospectivos , Staphylococcus aureus , Pandemias , COVID-19/epidemiologia , Infecções Respiratórias/epidemiologia , Vírus Sinciciais Respiratórios
3.
Cells ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474333

RESUMO

A large portion of the heterogeneity in coronavirus disease 2019 (COVID-19) susceptibility and severity of illness (SOI) remains poorly understood. Recent evidence suggests that SARS-CoV-2 infection-associated damage to alveolar epithelial type 2 cells (AT2s) in the distal lung may directly contribute to disease severity and poor prognosis in COVID-19 patients. Our in vitro modeling of SARS-CoV-2 infection in induced pluripotent stem cell (iPSC)-derived AT2s from 10 different individuals showed interindividual variability in infection susceptibility and the postinfection cellular viral load. To understand the underlying mechanism of the AT2's capacity to regulate SARS-CoV-2 infection and cellular viral load, a genome-wide differential gene expression analysis between the mock and SARS-CoV-2 infection-challenged AT2s was performed. The 1393 genes, which were significantly (one-way ANOVA FDR-corrected p ≤ 0.05; FC abs ≥ 2.0) differentially expressed (DE), suggest significant upregulation of viral infection-related cellular innate immune response pathways (p-value ≤ 0.05; activation z-score ≥ 3.5), and significant downregulation of the cholesterol- and xenobiotic-related metabolic pathways (p-value ≤ 0.05; activation z-score ≤ -3.5). Whilst the effect of post-SARS-CoV-2 infection response on the infection susceptibility and postinfection viral load in AT2s is not clear, interestingly, pre-infection (mock-challenged) expression of 238 DE genes showed a high correlation with the postinfection SARS-CoV-2 viral load (FDR-corrected p-value ≤ 0.05 and r2-absolute ≥ 0.57). The 85 genes whose expression was negatively correlated with the viral load showed significant enrichment in viral recognition and cytokine-mediated innate immune GO biological processes (p-value range: 4.65 × 10-10 to 2.24 × 10-6). The 153 genes whose expression was positively correlated with the viral load showed significant enrichment in cholesterol homeostasis, extracellular matrix, and MAPK/ERK pathway-related GO biological processes (p-value range: 5.06 × 10-5 to 6.53 × 10-4). Overall, our results strongly suggest that AT2s' pre-infection innate immunity and metabolic state affect their susceptibility to SARS-CoV-2 infection and viral load.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , SARS-CoV-2 , Carga Viral , Imunidade Inata , Colesterol
4.
IMA Fungus ; 15(1): 6, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38481304

RESUMO

Mucorales are basal fungi that opportunistically cause a potentially fatal infection known as mucormycosis (black fungus disease), which poses a significant threat to human health due to its high mortality rate and its recent association with SARS-CoV-2 infections. On the other hand, histone methylation is a regulatory mechanism with pleiotropic effects, including the virulence of several pathogenic fungi. However, the role of epigenetic changes at the histone level never has been studied in Mucorales. Here, we dissected the functional role of Set1, a histone methyltransferase that catalyzes the methylation of H3K4, which is associated with the activation of gene transcription and virulence. A comparative analysis of the Mucor lusitanicus genome (previously known as Mucor circinelloides f. lusitanicus) identified only one homolog of Set1 from Candida albicans and Saccharomyces cerevisiae that contains the typical SET domain. Knockout strains in the gene set1 lacked H3K4 monomethylation, dimethylation, and trimethylation enzymatic activities. These strains also showed a significant reduction in vegetative growth and sporulation. Additionally, set1 null strains were more sensitive to SDS, EMS, and UV light, indicating severe impairment in the repair process of the cell wall and DNA lesions and a correlation between Set1 and these processes. During pathogen-host interactions, strains lacking the set1 gene exhibited shortened polar growth within the phagosome and attenuated virulence both in vitro and in vivo. Our findings suggest that the histone methyltransferase Set1 coordinates several cell processes related to the pathogenesis of M. lusitanicus and may be an important target for future therapeutic strategies against mucormycosis.

5.
Hepatol Forum ; 5(2): 93-96, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487739

RESUMO

Coronavirus disease-2019 (COVID-19) is a novel multisystemic viral disease caused pandemic. The disease impact involves liver and associated systems. Undoubtedly, host genetic background influences the predisposition and prediction of infection. Variants among human populations might increase susceptibility or protect against severe outcomes. In this manner, rs738409 variant of patatin-like phospholipase domain-containing protein 3 gene appears to be protective in some populations in spite of its aggravating effect on non-alcoholic fatty liver diseases (NAFLDs) and steatohepatitis. DRB1*15:01 allele of human leukocyte antigen is associated with protective effect in European and Japanese populations. DRB1*03:01 contrarily increases the susceptibility of severe COVID-19 infection in European populations. rs1260326 in glucokinase regulatory protein gene, rs112875651 in tribbles homolog 1 gene, rs429358 in apolipoprotein 1, and rs58542926 in transmembrane 6 superfamily 2 alleles are found related with NAFLD and obesity; thus, hypercoagulability and severe COVID-19 outcomes. In chronic or acute liver diseases, comorbid syndromes are the key factors to explain increased severity. There might not be a direct association between the variant and severe COVID-19 infection. As it is concluded, there are genes and variants known and unknown yet to be studied to reveal the association with disease severity.

6.
Environ Health Insights ; 18: 11786302241235809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440221

RESUMO

The World Health Organization (WHO) defined Disease X as an upcoming disease with the potential to cause a pandemic. Pathogen X is responsible for Disease X. Marburg virus disease (MVD) is one of the diseases from the priority disease list published by WHO. Marburg virus is a filamentous, negative-sense RNA virus that belongs to the same filovirus family as the lethal Ebola virus. Since the first discovery of this virus in 1967, 17 outbreaks occurred sporadically till 2023. Rousettus aegyptiacus acts as the natural reservoir of the virus. With an average incubation period of 5 to 10 days, its first target is the mononuclear phagocytic system cells. It is highly contagious and can be easily transmitted from animal to human and human to human via direct contact with blood or body fluid, feces, and semen of the infected host. Although Marburg disease has a high case fatality rate of close to 90%, unfortunately, there is no approved vaccines or treatments are available. The most recent outbreak of Marburg virus in Equatorial Guinea and Tanzania in 2023 caused an alert for global health. However, based on the last global pandemic of COVID-19 and the sudden re-emerging of monkeypox around the world, we can assume that the Marburg virus has the potential to cause a global pandemic. Our modern world depends on globalization, which helps the virus transmission among countries. The Marburg virus can easily be transmitted to humans by fruit bats of the Pteropodidae family. This virus causes severe hemorrhagic disease, and there are no specific vaccines and treatments available to combat it. Therefore, community engagement and early supportive care for patients are keys to successfully controlling MVD.

7.
Clin Infect Dis ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445721

RESUMO

BACKGROUND: Immunocompromised patients (ICPs) have an increased risk for a severe and prolonged COVID-19. SARS-CoV-2 monoclonal antibodies (mAbs) were extensively used in these patients, but data from randomized trials that focus on ICPs are lacking. We evaluated the clinical and virological outcome of COVID-19 in ICPs treated with mAbs across SARS-CoV-2 variants. METHODS: In this multicenter prospective cohort study, we enrolled B-cell- and/or T-cell-deficient patients treated with casirivimab/imdevimab, sotrovimab, or tixagevimab/cilgavimab. SARS-CoV-2 RNA was quantified and sequenced weekly, and time to viral clearance, viral genome mutations, hospitalization, and death rates were registered. RESULTS: Two hundred and forty five patients infected with the Delta (50%) or Omicron BA.1, 2, or 5 (50%) variant were enrolled. Sixty-seven percent were vaccinated; 78 treated as outpatients, of whom 2 required hospital admission, but both survived. Of the 159 patients hospitalized at time of treatment, 43 (27%) required mechanical ventilation or died. The median time to viral clearance was 14 days (interquartile range, 7-22); however, it took >30 days in 15%. Resistance-associated spike mutations emerged in 9 patients in whom the median time to viral clearance was 63 days (95% confidence interval, 57-69; P < .001). Spike mutations were observed in 1 of 42 (2.4%) patients after treatment with 2 active mAbs, in 5 of 34 (14.7%) treated with actual monotherapy (sotrovimab), and 3 of 20 (12%) treated with functional monotherapy (ie, tixagevimab/cilgavimab against tixagevimab-resistant variant). CONCLUSIONS: Despite treatment with mAbs, morbidity and mortality of COVID-19 in ICPs remained substantial. Combination antiviral therapy should be further explored and may be preferred in severely ICPs.

8.
Nat Commun ; 15(1): 2053, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448435

RESUMO

SARS-CoV-2, the causative agent of COVID-19, uses the host endolysosomal system for entry, replication, and egress. Previous studies have shown that the SARS-CoV-2 virulence factor ORF3a interacts with the lysosomal tethering factor HOPS complex and blocks HOPS-mediated late endosome and autophagosome fusion with lysosomes. Here, we report that SARS-CoV-2 infection leads to hyperactivation of the late endosomal and lysosomal small GTP-binding protein Rab7, which is dependent on ORF3a expression. We also observed Rab7 hyperactivation in naturally occurring ORF3a variants encoded by distinct SARS-CoV-2 variants. We found that ORF3a, in complex with Vps39, sequesters the Rab7 GAP TBC1D5 and displaces Rab7 from this complex. Thus, ORF3a disrupts the GTP hydrolysis cycle of Rab7, which is beneficial for viral production, whereas the Rab7 GDP-locked mutant strongly reduces viral replication. Hyperactivation of Rab7 in ORF3a-expressing cells impaired CI-M6PR retrieval from late endosomes to the trans-Golgi network, disrupting the biosynthetic transport of newly synthesized hydrolases to lysosomes. Furthermore, the tethering of the Rab7- and Arl8b-positive compartments was strikingly reduced upon ORF3a expression. As SARS-CoV-2 egress requires Arl8b, these findings suggest that ORF3a-mediated hyperactivation of Rab7 serves a multitude of functions, including blocking endolysosome formation, interrupting the transport of lysosomal hydrolases, and promoting viral egress.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Lisossomos , Hidrolases , Fatores de Virulência , Proteínas Ativadoras de GTPase/genética
9.
Clin Chem Lab Med ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38501687

RESUMO

OBJECTIVES: The present study examines the temporal association between the changes in SARS-CoV-2 viral load during infection and whether the CoLab-score can facilitate de-isolation. METHODS: Nasal swabs and blood samples were collected from ICU-admitted SARS-CoV-2 positive patients at Maastricht UMC+ from March 25, 2020 to October 1, 2021. The CoLab-score was calculated based on 10 blood parameters and age and can range from -43 to 6. Three mixed effects analyses compared patient categories based on initial PCR Ct values (low; Ct≤20, mid; 20>Ct≤30, high; Ct>30), serial PCR Ct values to CoLab-scores over time, and the association between within-patient delta Ct values and CoLab-scores. RESULTS: In 324 patients, the median Ct was 33, and the median CoLab-score was -1.78. Mid (n=110) and low (n=41) Ct-categories had higher CoLab-scores over time (+0.60 points, 95 % CI; 0.04-1.17, and +0.28 points, 95 % CI -0.49 to 1.04) compared to the high Ct (n=87) category. Over time, higher serial Ct values were associated with lower serial CoLab-scores, decreasing by -0.07 points (95 % CI; -0.11 to -0.02) per day. Increasing delta Ct values were associated with a decreasing delta CoLab-score of -0.12 (95 % CI; -0.23; -0.01). CONCLUSIONS: The study found an association between lower viral load on admission and reduced CoLab-score. Additionally, a decrease in viral load over time was associated with a decrease in CoLab-score. Therefore, the CoLab-score may make patient de-isolation an option based on the CoLab-score.

10.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496599

RESUMO

By largely unknown mechanism(s), SARS-CoV-2 hijacks the host translation apparatus to promote COVID-19 pathogenesis. We report that the histone methyltransferase G9a noncanonically regulates viral hijacking of the translation machinery to bring about COVID-19 symptoms of hyperinflammation, lymphopenia, and blood coagulation. Chemoproteomic analysis of COVID-19 patient peripheral mononuclear blood cells (PBMC) identified enhanced interactions between SARS-CoV-2-upregulated G9a and distinct translation regulators, particularly the N 6 -methyladenosine (m 6 A) RNA methylase METTL3. These interactions with translation regulators implicated G9a in translational regulation of COVID-19. Inhibition of G9a activity suppressed SARS-CoV-2 replication in human alveolar epithelial cells. Accordingly, multi-omics analysis of the same alveolar cells identified SARS-CoV-2-induced changes at the transcriptional, m 6 A-epitranscriptional, translational, and post-translational (phosphorylation or secretion) levels that were reversed by inhibitor treatment. As suggested by the aforesaid chemoproteomic analysis, these multi-omics-correlated changes revealed a G9a-regulated translational mechanism of COVID-19 pathogenesis in which G9a directs translation of viral and host proteins associated with SARS-CoV-2 replication and with dysregulation of host response. Comparison of proteomic analyses of G9a inhibitor-treated, SARS-CoV-2 infected cells, or ex vivo culture of patient PBMCs, with COVID-19 patient data revealed that G9a inhibition reversed the patient proteomic landscape that correlated with COVID-19 pathology/symptoms. These data also indicated that the G9a-regulated, inhibitor-reversed, translational mechanism outperformed G9a-transcriptional suppression to ultimately determine COVID-19 pathogenesis and to define the inhibitor action, from which biomarkers of serve symptom vulnerability were mechanistically derived. This cell line-to-patient conservation of G9a-translated, COVID-19 proteome suggests that G9a inhibitors can be used to treat patients with COVID-19, particularly patients with long-lasting COVID-19 sequelae.

11.
J Virol Methods ; 326: 114912, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447645

RESUMO

Optimal sampling, preservation, and culturing of SARS-CoV-2 from COVID-19 patients are critical for successful recovery of virus isolates and to accurately estimate contagiousness of the patient. In this study, we investigated the influence of the type of sampling media, storage time, freezing conditions, sterile filtration, and combinations of these to determine the optimal pre-analytic conditions for virus recovery and estimation of infectious viral load in COVID-19 patients. Further, we investigated the viral shedding kinetics and mucosal antibody response in 38 COVID-19 hospitalized patients. We found Universal Transport Medium (Copan) to be the most optimal medium for preservation of SARS-CoV-2 infectivity. Our data showed that the probability of a positive viral culture was strongly correlated to Ct values, however some samples did not follow the general trend. We found a significant correlation between plaque forming units and levels of mucosal antibodies and found that high levels of mucosal antibodies correlated with reduced chance of isolating the virus. Our data reveals essential parameters to consider from specimen collection over storage to culturing technique for optimal chance of isolating SARS-CoV-2 and accurately estimating patient contagiousness.

12.
Cell Rep ; 43(3): 113965, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38492217

RESUMO

G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibits stress granule assembly and interacts with G3BP1/2 via an ITFG motif, including residue F17, in the N protein. Prior studies examining the impact of the G3PB1-N interaction on SARS-CoV-2 replication have produced inconsistent findings, and the role of this interaction in pathogenesis is unknown. Here, we use structural and biochemical analyses to define the residues required for G3BP1-N interaction and structure-guided mutagenesis to selectively disrupt this interaction. We find that N-F17A mutation causes highly specific loss of interaction with G3BP1/2. SARS-CoV-2 N-F17A fails to inhibit stress granule assembly in cells, has decreased viral replication, and causes decreased pathology in vivo. Further mechanistic studies indicate that the N-F17-mediated G3BP1-N interaction promotes infection by limiting sequestration of viral genomic RNA (gRNA) into stress granules.

13.
Res Sq ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496464

RESUMO

Background: Patients with COVID-19 under invasive mechanical ventilation are at higher risk of developing ventilator-associated pneumonia (VAP), associated with increased healthcare costs, and unfavorable prognosis. The underlying mechanisms of this phenomenon have not been thoroughly dissected. Therefore, this study attempted to bridge this gap by performing a lung microbiota analysis and evaluating the host immune responses that could drive the development of VAP. Materials and methods: In this prospective cohort study, mechanically ventilated patients with confirmed SARS-CoV-2 infection were enrolled. Nasal swabs (NS), endotracheal aspirates (ETA), and blood samples were collected initially within 12 hours of intubation and again at 72 hours post-intubation. Plasma samples underwent cytokine and metabolomic analyses, while NS and ETA samples were sequenced for lung microbiome examination. The cohort was categorized based on the development of VAP. Data analysis was conducted using RStudio version 4.3.1. Results: In a study of 36 COVID-19 patients on mechanical ventilation, significant differences were found in the nasal and pulmonary microbiome, notably in Staphylococcus and Enterobacteriaceae, linked to VAP. Patients with VAP showed a higher SARS-CoV-2 viral load, elevated neutralizing antibodies, and reduced inflammatory cytokines, including IFN-δ, IL-1ß, IL-12p70, IL-18, IL-6, TNF-α, and CCL4. Metabolomic analysis revealed changes in 22 metabolites in non-VAP patients and 27 in VAP patients, highlighting D-Maltose-Lactose, Histidinyl-Glycine, and various phosphatidylcholines, indicating a metabolic predisposition to VAP. Conclusions: This study reveals a critical link between respiratory microbiome alterations and ventilator-associated pneumonia in COVID-19 patients, with elevated SARS-CoV-2 levels and metabolic changes, providing novel insights into the underlying mechanisms of VAP with potential management and prevention implications.

14.
Virus Res ; 344: 199357, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38508400

RESUMO

Coronavirus (CoV) cause considerable morbidity and mortality in humans and other mammals, as evidenced by the emergence of Severe Acute Respiratory CoV (SARS-CoV) in 2003, Middle East Respiratory CoV (MERS-CoV) in 2012, and SARS-CoV-2 in 2019. Although poorly characterized, natural genetic variation in human and other mammals modulate virus pathogenesis, as reflected by the spectrum of clinical outcomes ranging from asymptomatic infections to lethal disease. Using multiple human epidemic and zoonotic Sarbecoviruses, coupled with murine Collaborative Cross genetic reference populations, we identify several dozen quantitative trait loci that regulate SARS-like group-2B CoV pathogenesis and replication. Under a Chr4 QTL, we deleted a candidate interferon stimulated gene, Trim14 which resulted in enhanced SARS-CoV titers and clinical disease, suggesting an antiviral role during infection. Importantly, about 60 % of the murine QTL encode susceptibility genes identified as priority candidates from human genome-wide association studies (GWAS) studies after SARS-CoV-2 infection, suggesting that similar selective forces have targeted analogous genes and pathways to regulate Sarbecovirus disease across diverse mammalian hosts. These studies provide an experimental platform in rodents to investigate the molecular-genetic mechanisms by which potential cross mammalian susceptibility loci and genes regulate type-specific and cross-SARS-like group 2B CoV replication, immunity, and pathogenesis in rodent models. Our study also provides a paradigm for identifying susceptibility loci for other highly heterogeneous and virulent viruses that sporadically emerge from zoonotic reservoirs to plague human and animal populations.

15.
Diagn Microbiol Infect Dis ; 109(1): 116210, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452554

RESUMO

This study aimed to improve the heat shock method as a cost-effective and time-efficient for total RNA extraction. We compared the effectiveness of two total RNA extraction methods by using Real-Time PCR for nasopharynx swabs. Include: I; use of a commercial total RNA extraction kit as a standard. II; utilized a modified heat shock method (MHS). Time, centrifuge speed and duration, proteinase K, and RNA carrier were optimized. The optimized parameters included treating the sample with 5 µg/µL at 56°C for 5 minutes, heating at 95°C for 5 minutes followed by thermal shock in ice for 3 minutes, adding 4 µg/µL RNA carrier at room temperature for 3 minutes, and centrifuging at 7000 rpm for 10 minutes. This optimization demonstrated a sensitivity and specificity of 100% (CI: 95%) even in samples with low viral load. Our in-house method presents a rapid, and cost-effective alternative for total RNA extraction.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Teste para COVID-19/métodos , Técnicas de Laboratório Clínico/métodos , Carga Viral , Nasofaringe , RNA Viral/genética , RNA Viral/análise , Sensibilidade e Especificidade , Resposta ao Choque Térmico , Manejo de Espécimes/métodos
16.
J Genet Genomics ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38447818

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection often leads to pulmonary complications. Cardiovascular sequelae, including myocarditis and heart failure, have also been reported. Here, the study presents two fulminant myocarditis cases infected by SARS-CoV-2 exhibiting remarkable elevation of cardiac biomarkers without significant pulmonary injury, as determined by imaging examinations. Immunohistochemical staining reveals viral antigen within cardiomyocytes, indicating that SARS-CoV-2 could directly infect myocardium. The full viral genomes from respiratory, anal, and myocardial specimens are obtained via next-generation sequencing. Phylogenetic analyses of the whole genome and spike gene indicate that viruses in the myocardium/pericardial effusion and anal swabs are closely related and cluster together yet diverge from those in the respiratory samples. In addition, unique mutations are found in the anal/myocardial strains compared to the respiratory strains, suggesting tissue-specific virus mutation and adaptation. These findings indicate genetically distinct SARS-CoV-2 variants have infiltrated and disseminated within myocardial tissues, independent of pulmonary injury, and point to different infection routes between the myocardium and respiratory tract, with myocardial infections potentially arising from intestinal infection. These findings highlight the potential for systemic SARS-CoV-2 infection and the importance of a thorough multi-organ assessment in patients for a comprehensive understanding of the pathogenesis of COVID-19.

17.
World J Gastrointest Oncol ; 16(2): 436-457, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38425388

RESUMO

BACKGROUND: A growing number of clinical examples suggest that coronavirus disease 2019 (COVID-19) appears to have an impact on the treatment of patients with liver cancer compared to the normal population, and the prevalence of COVID-19 is significantly higher in patients with liver cancer. However, this mechanism of action has not been clarified. AIM: To investigate the disease relevance of COVID-19 in liver cancer. METHODS: Gene sets for COVID-19 (GSE180226) and liver cancer (GSE87630) were obtained from the Gene Expression Omnibus database. After identifying the common differentially expressed genes (DEGs) of COVID-19 and liver cancer, functional enrichment analysis, protein-protein interaction network construction and screening and analysis of hub genes were performed. Subsequently, the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed. RESULTS: Of 518 common DEGs were obtained by screening for functional analysis. Fifteen hub genes including aurora kinase B, cyclin B2, cell division cycle 20, cell division cycle associated 8, nucleolar and spindle associated protein 1, etc., were further identified from DEGs using the "cytoHubba" plugin. Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation, cell cycle and other functions, and they may serve as potential molecular markers for COVID-19 and liver cancer. Finally, we selected 10 of the hub genes for in vitro expression validation in liver cancer cells. CONCLUSION: Our study reveals a common pathogenesis of liver cancer and COVID-19. These common pathways and key genes may provide new ideas for further mechanistic studies.

19.
Virol J ; 21(1): 55, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38449001

RESUMO

Over the course of the COVID-19 pandemic, several SARS-CoV-2 variants have emerged that may exhibit different etiological effects such as enhanced transmissibility and infectivity. However, genetic variations that reduce virulence and deteriorate viral fitness have not yet been thoroughly investigated. The present study sought to evaluate the effects of viral genetic makeup on COVID-19 epidemiology in Pakistan, where the infectivity and mortality rate was comparatively lower than other countries during the first pandemic wave. For this purpose, we focused on the comparative analyses of 7096 amino-acid long polyprotein pp1ab. Comparative sequence analysis of 203 SARS-CoV-2 genomes, sampled from Pakistan during the first wave of the pandemic revealed 179 amino acid substitutions in pp1ab. Within this set, 38 substitutions were identified within the Nsp3 region of the pp1ab polyprotein. Structural and biophysical analysis of proteins revealed that amino acid variations within Nsp3's macrodomains induced conformational changes and modified protein-ligand interactions, consequently diminishing the virulence and fitness of SARS-CoV-2. Additionally, the epistatic effects resulting from evolutionary substitutions in SARS-CoV-2 proteins may have unnoticed implications for reducing disease burden. In light of these findings, further characterization of such deleterious SARS-CoV-2 mutations will not only aid in identifying potential therapeutic targets but will also provide a roadmap for maintaining vigilance against the genetic variability of diverse SARS-CoV-2 strains circulating globally. Furthermore, these insights empower us to more effectively manage and respond to potential viral-based pandemic outbreaks of a similar nature in the future.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Paquistão/epidemiologia , Pandemias , Virulência/genética , Aminoácidos , Poliproteínas , Variação Genética
20.
Front Cell Infect Microbiol ; 14: 1332157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500504

RESUMO

Introduction: SARS-CoV-2 is known to infect respiratory tissue cells. However, less is known about infection of ocular tissue and potential infectivity of lacrimal fluid. With this study, we want to compare viral loads in eye and nasopharyngeal swabs and analyze these for infectious virus. Methods: Between May 2020 and April 2021 ocular and nasopharyngeal swabs were collected from 28 SARS-CoV-2 infected patients treated on the corona virus disease 2019 (COVID-19)-ward of the University Hospital of Innsbruck, Austria. Samples with PCR detectable SARS-CoV-2 were analyzed via whole genome sequencing and an attempt was made to isolate infectious virus. Results: At the time point of sample collection, 22 individuals were still PCR positive in nasopharyngeal samples and in 6 of these patients one or both ocular samples were additionally positive. CT-values in eyes were generally higher compared to corresponding nasopharyngeal samples and we observed a tendency for lower CT-values, i.e. increased viral load, in nasopharyngeal swabs of individuals with at least one infected eye, compared to those where ocular samples were PCR negative. Ocular and nasopharyngeal sequences from the same patient were assigned to the same variant, either the D614G or the Alpha variant. Infectious virus was successfully isolated from 9 nasopharyngeal swabs, however only from one of the seven PCR positive ocular samples. Conclusion: We could detect SARS-CoV-2 in eyes of some of the infected patients albeit at lower levels compared to nasopharyngeal swabs. However, our results also indicate that lacrimal fluid might be infectious in patients with high viral load.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Carga Viral , Nasofaringe , Manejo de Espécimes/métodos , RNA Viral/genética , RNA Viral/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...