Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cad Saude Publica ; 37(4): e00254720, 2021.
Artículo en Portugués | MEDLINE | ID: mdl-33886709

RESUMEN

During a pandemic, economic, technological, and health systems' vulnerability become even more evident. A key challenge in Brazil is to control the trade deficit and difficulty in access to medicines and health products, even their development. Brazil's heavy external dependency on health inputs and products is one of the negative factors in confronting the global health emergency caused by SARS-CoV-2. The article aimed to discuss the vulnerabilities of the domestic chemical and biotechnological subsystem in the face of the current pandemic, with a focus on the pharmaceutical and biotech industry and the linkage between the fields of health and political economics. A qualitative study was performed with a literature review and analysis of secondary data as the methodological procedures. The results revealed low investment in public health, low innovation capacity, the pharmaceutical industry's profile, external dependency, currency exchange policy, patents, and other factors, demonstrating the major vulnerability in innovation and technology in the domestic pharmaceutical and biotech industry and the essential nature of linkage between various fields, especially health and the economy, for the incorporation of a systemic vision that creates the conditions to reduce vulnerabilities in the response to the pandemic and promote a development project for the country.


Em tempos de pandemia, a vulnerabilidade econômica, tecnológica e dos sistemas de saúde fica ainda mais exposta. No Brasil, os maiores desafios são o controle do déficit da balança comercial e a dificuldade de acesso a medicamentos e produtos da saúde ou até mesmo de seu desenvolvimento. A forte dependência externa de insumos e produtos para a saúde é um dos fatores negativos do país no enfrentamento da emergência sanitária mundial ocasionada pelo novo coronavírus SARS-CoV-2. Nesse contexto, o artigo procurou discutir as vulnerabilidades do subsistema de base química e biotecnológica nacional diante da atual pandemia, tendo como foco a indústria de medicamentos e de produtos biotecnológicos e a articulação entre os campos da saúde e da economia política. Realizou-se pesquisa qualitativa, utilizando, como procedimentos metodológicos, revisão bibliográfica e análise de dados secundários. Os resultados encontrados, relacionados a baixo investimento em saúde pública, baixa capacidade de inovação, perfil da indústria farmacêutica, dependência externa, política cambial, patentes, entre outros, demonstram a grande fragilidade inovativa e tecnológica da indústria de medicamentos e produtos biotecnológicos e a essencialidade de articulação entre diversos campos, em especial, da saúde e da economia, para incorporação de uma visão sistêmica, que crie condições para redução das vulnerabilidades, no que tange ao enfrentamento da pandemia, e equacione um projeto de desenvolvimento para o país.


En tiempos de pandemia, la vulnerabilidad económica, tecnológica y de los sistemas de salud queda aún más expuesta. En Brasil, uno de los mayores desafíos es el control del déficit de la balanza comercial, así como la dificultad de acceso a medicamentos y produtos de salud o incluso de su desarrollo. La fuerte dependencia externa de insumos y productos para la salud es uno de los factores negativos del país en el combate a la emergencia sanitaria mundial, ocasionada por el nuevo coronavirus SARS-CoV-2. En este contexto, el artículo procuró discutir las vulnerabilidades del subsistema de base química y biotecnológica nacional ante la actual pandemia, poniendo el foco en la industria de medicamentos y de productos biotecnológicos, así como la coordinación entre los campos de la salud y economía política. Se realizó una investigación cualitativa, utilizando como procedimientos metodológicos la revisión bibliográfica y el análisis de datos secundarios. Los resultados hallados, relacionados con la baja inversión en salud pública, baja capacidad de innovación, perfil de la industria farmacéutica, dependencia externa, política de cambio, patentes, entre otros, demuestra la gran fragilidad innovadora y tecnológica de la industria de medicamentos, así como de productos biotecnológicos, y la necesidad de una coordinación entre diversas áreas, en especial, de la salud y economía, para que se incorpore una visión sistémica, que cree condiciones para la reducción de las vulnerabilidades, en lo que atañe al combate de la pandemia y que cree un proyecto equilibrado de desarrollo para el país.


Asunto(s)
COVID-19 , Preparaciones Farmacéuticas , Biotecnología , Brasil/epidemiología , Humanos , Pandemias , SARS-CoV-2
2.
Cad. Saúde Pública (Online) ; 37(4): e00254720, 2021. graf
Artículo en Portugués | LILACS | ID: biblio-1285824

RESUMEN

Resumo: Em tempos de pandemia, a vulnerabilidade econômica, tecnológica e dos sistemas de saúde fica ainda mais exposta. No Brasil, os maiores desafios são o controle do déficit da balança comercial e a dificuldade de acesso a medicamentos e produtos da saúde ou até mesmo de seu desenvolvimento. A forte dependência externa de insumos e produtos para a saúde é um dos fatores negativos do país no enfrentamento da emergência sanitária mundial ocasionada pelo novo coronavírus SARS-CoV-2. Nesse contexto, o artigo procurou discutir as vulnerabilidades do subsistema de base química e biotecnológica nacional diante da atual pandemia, tendo como foco a indústria de medicamentos e de produtos biotecnológicos e a articulação entre os campos da saúde e da economia política. Realizou-se pesquisa qualitativa, utilizando, como procedimentos metodológicos, revisão bibliográfica e análise de dados secundários. Os resultados encontrados, relacionados a baixo investimento em saúde pública, baixa capacidade de inovação, perfil da indústria farmacêutica, dependência externa, política cambial, patentes, entre outros, demonstram a grande fragilidade inovativa e tecnológica da indústria de medicamentos e produtos biotecnológicos e a essencialidade de articulação entre diversos campos, em especial, da saúde e da economia, para incorporação de uma visão sistêmica, que crie condições para redução das vulnerabilidades, no que tange ao enfrentamento da pandemia, e equacione um projeto de desenvolvimento para o país.


Abstract: During a pandemic, economic, technological, and health systems' vulnerability become even more evident. A key challenge in Brazil is to control the trade deficit and difficulty in access to medicines and health products, even their development. Brazil's heavy external dependency on health inputs and products is one of the negative factors in confronting the global health emergency caused by SARS-CoV-2. The article aimed to discuss the vulnerabilities of the domestic chemical and biotechnological subsystem in the face of the current pandemic, with a focus on the pharmaceutical and biotech industry and the linkage between the fields of health and political economics. A qualitative study was performed with a literature review and analysis of secondary data as the methodological procedures. The results revealed low investment in public health, low innovation capacity, the pharmaceutical industry's profile, external dependency, currency exchange policy, patents, and other factors, demonstrating the major vulnerability in innovation and technology in the domestic pharmaceutical and biotech industry and the essential nature of linkage between various fields, especially health and the economy, for the incorporation of a systemic vision that creates the conditions to reduce vulnerabilities in the response to the pandemic and promote a development project for the country.


Resumen: En tiempos de pandemia, la vulnerabilidad económica, tecnológica y de los sistemas de salud queda aún más expuesta. En Brasil, uno de los mayores desafíos es el control del déficit de la balanza comercial, así como la dificultad de acceso a medicamentos y produtos de salud o incluso de su desarrollo. La fuerte dependencia externa de insumos y productos para la salud es uno de los factores negativos del país en el combate a la emergencia sanitaria mundial, ocasionada por el nuevo coronavirus SARS-CoV-2. En este contexto, el artículo procuró discutir las vulnerabilidades del subsistema de base química y biotecnológica nacional ante la actual pandemia, poniendo el foco en la industria de medicamentos y de productos biotecnológicos, así como la coordinación entre los campos de la salud y economía política. Se realizó una investigación cualitativa, utilizando como procedimientos metodológicos la revisión bibliográfica y el análisis de datos secundarios. Los resultados hallados, relacionados con la baja inversión en salud pública, baja capacidad de innovación, perfil de la industria farmacéutica, dependencia externa, política de cambio, patentes, entre otros, demuestra la gran fragilidad innovadora y tecnológica de la industria de medicamentos, así como de productos biotecnológicos, y la necesidad de una coordinación entre diversas áreas, en especial, de la salud y economía, para que se incorpore una visión sistémica, que cree condiciones para la reducción de las vulnerabilidades, en lo que atañe al combate de la pandemia y que cree un proyecto equilibrado de desarrollo para el país.


Asunto(s)
Humanos , Preparaciones Farmacéuticas , COVID-19 , Biotecnología , Brasil/epidemiología , Pandemias , SARS-CoV-2
3.
Pharmaceut Med ; 34(5): 301-307, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32949352

RESUMEN

Medical affairs has evolved over recent years from a support, to a partner, to a strategic leadership function. In the future, there will be significant changes in healthcare and pharmaceutical industries, and many of these will be due to technological advances and digitalisation. Medical affairs will be largely influenced by these developments in terms of partnerships with key stakeholders, embracing innovation and patient-centric healthcare, and demonstrating value for novel treatment options. In order to secure future success within their roles, medical affairs professionals will have to demonstrate specific capabilities founded on communications and behavioural change, business leadership acumen, knowledge acquisition and self-development, and the ability to generate real-world evidence from insights and expertise within data science and analytics. It will be our responsibility as medical affairs leaders to create this foundation for the leaders of tomorrow.


Asunto(s)
Industria Farmacéutica/organización & administración , Sector de Atención de Salud/organización & administración , Liderazgo , Participación de los Interesados , Conducta Cooperativa , Difusión de Innovaciones , Industria Farmacéutica/historia , Industria Farmacéutica/tendencias , Predicción , Sector de Atención de Salud/historia , Sector de Atención de Salud/tendencias , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Comunicación Interdisciplinaria , Relaciones Interinstitucionales , Formulación de Políticas , Asociación entre el Sector Público-Privado , Participación de los Interesados/historia
5.
Health Res Policy Syst ; 16(1): 73, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30071858

RESUMEN

Major pharmaceutical companies contribute important expertise to health research and development (R&D), particularly in their ability to develop and bring pharmaceuticals to market. The Access to Medicine Index evaluates how 20 of the world's largest pharmaceutical companies are directing R&D efforts towards the needs of people living in low- and middle-income countries. In dissemination of its findings, the Index stimulates pharmaceutical companies to expand R&D activities in this direction. The Index methodology is reviewed every 2 years, most recently for the 2018 Index, to ensure their R&D activity is benchmarked against current health R&D priorities as defined by the global health community. The review is based on consensus-building processes involving global health stakeholders. In the latest review, two main changes to the methodology were made that will further deepen the Index's analysis of (1) how far companies' R&D activity aligns with global health priorities; and (2) whether companies make plans to ensure resulting innovations reach populations in need globally. These changes will be applied in the 2018 Access to Medicine Index. Importantly, the methodology review process highlighted the need for further prioritisation from the global health community, in particular to emphasise to innovators which product innovations are needed most critically to address the burden of non-communicable diseases in low- and middle-income countries. Should such prioritisations be developed, the Index can play an important role in tracking and stimulating company contributions towards them.


Asunto(s)
Investigación Biomédica , Países en Desarrollo , Difusión de Innovaciones , Industria Farmacéutica , Estudios de Evaluación como Asunto , Prioridades en Salud , Accesibilidad a los Servicios de Salud , Salud Global , Necesidades y Demandas de Servicios de Salud , Humanos , Difusión de la Información , Motivación , Enfermedades no Transmisibles , Investigación
6.
Regul Toxicol Pharmacol ; 79 Suppl 1: S3-S10, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27230736

RESUMEN

Cross-contamination in multi-product pharmaceutical manufacturing facilities can impact both product safety and quality. This issue has been recognized by regulators and industry for some time, leading to publication of a number of continually evolving guidelines. This manuscript provides a historical overview of the regulatory framework for managing cross-contamination in multi-product facilities to provide context for current approaches. Early guidelines focused on the types of pharmaceuticals for which dedicated facilities and control systems were needed, and stated the requirements for cleaning validation. More recent guidelines have promoted the idea of using Acceptable Daily Exposures (ADEs) to establish cleaning limits for actives and other potentially hazardous substances. The ADE approach is considered superior to previous methods for setting cleaning limits such as using a predetermined general limit (e.g., 10 ppm or a fraction of the median lethal dose (LD50) or therapeutic dose). The ADEs can be used to drive the cleaning process and as part of the overall assessment of whether dedicated production facilities are required. While great strides have been made in using the ADE approach, work remains to update good manufacturing practices (GMPs) to ensure that the approaches are clear, consistent with the state-of-the-science, and broadly applicable yet flexible enough for adaptation to unique products and situations.


Asunto(s)
Contaminación de Medicamentos/prevención & control , Industria Farmacéutica , Nivel sin Efectos Adversos Observados , Exposición Profesional/prevención & control , Salud Laboral , Preparaciones Farmacéuticas/análisis , Animales , Difusión de Innovaciones , Contaminación de Medicamentos/legislación & jurisprudencia , Industria Farmacéutica/historia , Industria Farmacéutica/legislación & jurisprudencia , Industria Farmacéutica/normas , Industria Farmacéutica/tendencias , Predicción , Guías como Asunto , Política de Salud , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Exposición Profesional/efectos adversos , Exposición Profesional/legislación & jurisprudencia , Exposición Profesional/normas , Salud Laboral/historia , Salud Laboral/legislación & jurisprudencia , Salud Laboral/normas , Salud Laboral/tendencias , Preparaciones Farmacéuticas/clasificación , Preparaciones Farmacéuticas/normas , Formulación de Políticas , Control de Calidad , Medición de Riesgo , Pruebas de Toxicidad
7.
Int J Environ Res Public Health ; 12(8): 9454-74, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26274968

RESUMEN

Dengue is a serious infectious disease and a growing public health problem in many tropical and sub-tropical countries. To control this neglected tropical disease (NTD), vaccines are likely to be the most cost-effective solution. This study analyzed dengue vaccines from both a historical and longitudinal perspective by using patent data, evaluating the geographic and time coverage of innovations, the primary patent holders, the network of cooperation and partnership for vaccine research and development (R & D), the flow of knowledge and the technological domain involved. This study can be seen as an example of the use of patent information to inform policy discussions, strategic research planning, and technology transfer. The results show that 93% of patents were granted since 2000, the majority belonging to the United States and Europe, although the share of patents from developing countries has increased. Unlike another NTDs, there is great participation of private companies in R & D of dengue vaccines and partnerships and collaboration between public and private companies. Finally, in this study, the main holders showed high knowledge absorption and generated capabilities. Therefore, this issue suggests that to overcome the difficulty of translational R & D it is necessary to stimulate the generation of knowledge and relevant scientific research, to enable the productive sector to have the capacity to absorb knowledge, to turn it into innovation, and to articulate partnerships and collaboration.


Asunto(s)
Vacunas contra el Dengue/historia , Dengue/prevención & control , Industria Farmacéutica/historia , Enfermedades Desatendidas/prevención & control , Patentes como Asunto/historia , Países Desarrollados , Países en Desarrollo , Difusión de Innovaciones , Europa (Continente) , Salud Global , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Asociación entre el Sector Público-Privado/historia , Transferencia de Tecnología , Investigación Biomédica Traslacional/historia , Estados Unidos
8.
J Pharm Sci ; 104(3): 850-64, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25630721

RESUMEN

Continuous manufacturing (CM) is a process technology that has been used in the chemical industry for large-scale mass production of chemicals in single-purpose plants with benefit for many years. Recent interest has been raised to expand CM into the low-volume, high-value pharmaceutical business with its unique requirements regarding readiness for human use and the required quality, supply chain, and liability constraints in this business context. Using a fairly abstract set of definitions, this paper derives technical consequences of CM in different scenarios along the development-launch-supply axis in different business models and how they compare to batch processes. Impact of CM on functions in development is discussed and several operational models suitable for originators and other business models are discussed and specific aspects of CM are deduced from CM's technical characteristics. Organizational structures of current operations typically can support CM implementations with just minor refinements if the CM technology is limited to single steps or small sequences (bin-to-bin approach) and if the appropriate technical skill set is available. In such cases, a small, dedicated group focused on CM is recommended. The manufacturing strategy, as centralized versus decentralized in light of CM processes, is discussed and the potential impact of significantly shortened supply lead times on the organization that runs these processes. The ultimate CM implementation may be seen by some as a totally integrated monolithic plant, one that unifies chemistry and pharmaceutical operations into one plant. The organization supporting this approach will have to reflect this change in scope and responsibility. The other extreme, admittedly futuristic at this point, would be a highly decentralized approach with multiple smaller hubs; this would require a new and different organizational structure. This processing approach would open up new opportunities for products that, because of stability constraints or individualization to patients, do not allow centralized manufacturing approaches at all. Again, the entire enterprise needs to be restructured accordingly. The situation of CM in an outsourced operation business model is discussed. Next steps for the industry are recommended. In summary, opportunistic implementation of isolated steps in existing portfolios can be implemented with minimal organizational changes; the availability of the appropriate skills is the determining factor. The implementation of more substantial sequences requires business processes that consider the portfolio, not just single products. Exploration and implementation of complete process chains with consequences for quality decisions do require appropriate organizational support.


Asunto(s)
Industria Farmacéutica/organización & administración , Innovación Organizacional , Preparaciones Farmacéuticas/síntesis química , Tecnología Farmacéutica/organización & administración , Flujo de Trabajo , Disponibilidad Biológica , Cristalización , Preparaciones de Acción Retardada , Difusión de Innovaciones , Industria Farmacéutica/métodos , Industria Farmacéutica/normas , Industria Farmacéutica/tendencias , Estabilidad de Medicamentos , Eficiencia Organizacional , Predicción , Humanos , Cultura Organizacional , Preparaciones Farmacéuticas/normas , Control de Calidad , Solubilidad , Integración de Sistemas , Comprimidos , Tecnología Farmacéutica/métodos , Tecnología Farmacéutica/normas , Tecnología Farmacéutica/tendencias
9.
J Pharm Sci ; 104(3): 792-802, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25501530

RESUMEN

We describe the key issues and possibilities for continuous final dosage formation, otherwise known as downstream processing or drug product manufacturing. A distinction is made between heterogeneous processing and homogeneous processing, the latter of which is expected to add more value to continuous manufacturing. We also give the key motivations for moving to continuous manufacturing, some of the exciting new technologies, and the barriers to implementation of continuous manufacturing. Continuous processing of heterogeneous blends is the natural first step in converting existing batch processes to continuous. In heterogeneous processing, there are discrete particles that can segregate, versus in homogeneous processing, components are blended and homogenized such that they do not segregate. Heterogeneous processing can incorporate technologies that are closer to existing technologies, where homogeneous processing necessitates the development and incorporation of new technologies. Homogeneous processing has the greatest potential for reaping the full rewards of continuous manufacturing, but it takes long-term vision and a more significant change in process development than heterogeneous processing. Heterogeneous processing has the detriment that, as the technologies are adopted rather than developed, there is a strong tendency to incorporate correction steps, what we call below "The Rube Goldberg Problem." Thus, although heterogeneous processing will likely play a major role in the near-term transformation of heterogeneous to continuous processing, it is expected that homogeneous processing is the next step that will follow. Specific action items for industry leaders are: Form precompetitive partnerships, including industry (pharmaceutical companies and equipment manufacturers), government, and universities. These precompetitive partnerships would develop case studies of continuous manufacturing and ideally perform joint-technology development, including development of small-scale equipment and processes. Develop ways to invest internally in continuous manufacturing. How best to do this will depend on the specifics of a given organization, in particular the current development projects. Upper managers will need to energize their process developers to incorporate continuous manufacturing in at least part of their processes to gain experience and demonstrate directly the benefits. Training of continuous manufacturing technologies, organizational approaches, and regulatory approaches is a key area that industrial leaders should pursue together.


Asunto(s)
Industria Farmacéutica/métodos , Preparaciones Farmacéuticas/síntesis química , Tecnología Farmacéutica/métodos , Flujo de Trabajo , Química Farmacéutica , Conducta Cooperativa , Difusión de Innovaciones , Industria Farmacéutica/normas , Industria Farmacéutica/tendencias , Excipientes/química , Humanos , Comunicación Interdisciplinaria , Liderazgo , Cultura Organizacional , Preparaciones Farmacéuticas/normas , Asociación entre el Sector Público-Privado , Control de Calidad , Asignación de Recursos , Tecnología Farmacéutica/normas , Tecnología Farmacéutica/tendencias
10.
J Pharm Sci ; 104(3): 832-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25546650

RESUMEN

This white paper provides a perspective of the challenges, research needs, and future directions for control systems engineering in continuous pharmaceutical processing. The main motivation for writing this paper is to facilitate the development and deployment of control systems technologies so as to ensure quality of the drug product. Although the main focus is on small-molecule pharmaceutical products, most of the same statements apply to biological drug products. An introduction to continuous manufacturing and control systems is followed by a discussion of the current status and technical needs in process monitoring and control, systems integration, and risk analysis. Some key points are that: (1) the desired objective in continuous manufacturing should be the satisfaction of all critical quality attributes (CQAs), not for all variables to operate at steady-state values; (2) the design of start-up and shutdown procedures can significantly affect the economic operation of a continuous manufacturing process; (3) the traceability of material as it moves through the manufacturing facility is an important consideration that can at least in part be addressed using residence time distributions; and (4) the control systems technologies must assure quality in the presence of disturbances, dynamics, uncertainties, nonlinearities, and constraints. Direct measurement, first-principles and empirical model-based predictions, and design space approaches are described for ensuring that CQA specifications are met. Ways are discussed for universities, regulatory bodies, and industry to facilitate working around or through barriers to the development of control systems engineering technologies for continuous drug manufacturing. Industry and regulatory bodies should work with federal agencies to create federal funding mechanisms to attract faculty to this area. Universities should hire faculty interested in developing first-principles models and control systems technologies for drug manufacturing that are easily transportable to industry. Industry can facilitate the move to continuous manufacturing by working with universities on the conception of new continuous pharmaceutical manufacturing process unit operations that have the potential to make major improvements in product quality, controllability, or reduced capital and/or operating costs. Regulatory bodies should ensure that: (1) regulations and regulatory practices promote, and do not derail, the development and implementation of continuous manufacturing and control systems engineering approaches; (2) the individuals who approve specific regulatory filings are sufficiently trained to make good decisions regarding control systems approaches; (3) provide regulatory clarity and eliminate/reduce regulatory risks; (4) financially support the development of high-quality training materials for use of undergraduate students, graduate students, industrial employees, and regulatory staff; (5) enhance the training of their own technical staff by financially supporting joint research projects with universities in the development of continuous pharmaceutical manufacturing processes and the associated control systems engineering theory, numerical algorithms, and software; and (6) strongly encourage the federal agencies that support research to fund these research areas.


Asunto(s)
Ingeniería Biomédica/métodos , Industria Farmacéutica/métodos , Preparaciones Farmacéuticas/síntesis química , Tecnología Farmacéutica/métodos , Flujo de Trabajo , Algoritmos , Ingeniería Biomédica/normas , Ingeniería Biomédica/tendencias , Conducta Cooperativa , Análisis Costo-Beneficio , Difusión de Innovaciones , Costos de los Medicamentos , Industria Farmacéutica/economía , Industria Farmacéutica/normas , Industria Farmacéutica/tendencias , Predicción , Humanos , Comunicación Interdisciplinaria , Simulación de Dinámica Molecular , Análisis Multivariante , Análisis Numérico Asistido por Computador , Preparaciones Farmacéuticas/economía , Preparaciones Farmacéuticas/normas , Asociación entre el Sector Público-Privado , Control de Calidad , Integración de Sistemas , Tecnología Farmacéutica/economía , Tecnología Farmacéutica/normas , Tecnología Farmacéutica/tendencias
11.
Bull World Health Organ ; 92(6): 436-46, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24940018

RESUMEN

Brazil, the Russian Federation, India, China and South Africa--the countries known as BRICS--have made considerable progress in vaccine production, regulation and development over the past 20 years. In 1993, all five countries were producing vaccines but the processes used were outdated and non-standardized, there was little relevant research and there was negligible international recognition of the products. By 2014, all five countries had strong initiatives for the development of vaccine technology and had greatly improved their national regulatory capacity. South Africa was then the only BRICS country that was not completely producing vaccines. South Africa is now in the process of re-establishing its own vaccine production and passing beyond the stage of simply importing, formulating and filling vaccine bulks. Changes in the public sector's price per dose of selected vaccines, the global market share represented by products from specific manufacturers, and the attractiveness, for multinational companies, of partnership and investment opportunities in BRICS companies have all been analysed. The results indicate that the BRICS countries have had a major impact on vaccine price and availability, with much of that impact attributable to the output of Indian vaccine manufacturers. China is expected to have a greater impact soon, given the anticipated development of Chinese vaccine manufacturers in the near future. BRICS' accomplishments in the field of vaccine development are expected to reshape the global vaccine market and accelerate access to vaccines in the developing world. The challenge is to turn these expectations into strategic actions and practical outcomes.


Le Brésil, la Fédération de Russie, l'Inde, la Chine et l'Afrique du Sud ­ les pays connus sous le nom de BRICS ­ ont fait des progrès considérables dans la production, la régulation et le développement des vaccins au cours des 20 dernières années. En 1993, les cinq pays fabriquaient des vaccins, mais les procédés utilisés étaient dépassés et non normalisés. Par ailleurs, peu de recherches pertinentes étaient menées et les produits ne recevaient qu'une reconnaissance internationale négligeable. En 2014, les cinq pays avaient pris des initiatives importantes en matière de développement technologique de vaccins et avaient largement amélioré leur capacité de régulation nationale. L'Afrique du Sud était alors le seul pays du groupe BRICS à ne pas produire complètement des vaccins. L'Afrique du Sud a maintenant amorcé le processus pour relancer sa production de vaccins et pour dépasser l'étape de la simple importation, formulation et conditionnement des vaccins en vrac. On a analysé les variations de prix du secteur public par dose des vaccins sélectionnés, la part du marché mondial représentée par les produits provenant de fabricants spécifiques et l'attractivité des opportunités de partenariat et d'investissement pour les multinationales dans les entreprises du groupe BRICS. Les résultats montrent que les pays du groupe BRICS ont eu un impact majeur sur le prix et la disponibilité des vaccins, et cet impact est attribuable, en grande partie, à la production des fabricants indiens de vaccins. La Chine devrait bientôt avoir un plus grand impact compte tenu du développement attendu des fabricants chinois de vaccins dans un avenir proche. Les réalisations du groupe BRICS dans le domaine du développement de vaccins devraient remodeler le marché mondial des vaccins et accélérer l'accès aux vaccins dans les pays en développement. Le défi est maintenant de transformer ces attentes en actions stratégiques et en résultats concrets.


Brasil, la Federación de Rusia, India, China y Sudáfrica, los países conocidos como BRICS, han hecho progresos considerables en la producción, regulación y desarrollo de vacunas en los últimos 20 años. En 1993, los cinco países ya producían vacunas, pero los procesos empleados para ello estaban anticuados y sin normalizar, había poca investigación relevante y un reconocimiento internacional mínimo de sus productos. En 2014, los cinco países contaban con iniciativas sólidas para el desarrollo de la tecnología relacionada con las vacunas y habían mejorado en gran medida su capacidad normativa nacional. Sudáfrica fue el único de los BRICS que no fabricaba vacunas en su totalidad. En la actualidad, dicho país se encuentra en proceso de restablecer su propia producción de vacunas e ir más allá de la simple importación, formulación y llenado de lotes de vacunas. Se han analizado los cambios en los precios por dosis de vacunas seleccionadas del sector público, la cuota de mercado mundial de productos de fabricantes específicos y el atractivo para las empresas multinacionales de la asociación y las oportunidades de inversión en empresas de los BRICS. Los resultados indican que los países BRICS han tenido un gran impacto en el precio y la disponibilidad de las vacunas, y que una gran parte de ese impacto se puede atribuir a la producción de vacunas de los fabricantes de India. Se confía en que China tenga pronto un impacto mayor, dada la evolución prevista de los fabricantes de vacunas chinos en el futuro cercano. Se espera que los logros de los BRICS en el campo del desarrollo de vacunas remodelen el mercado mundial de las vacunas y aceleren el acceso a las mismas en el mundo en desarrollo. El desafío consiste en convertir estas expectativas en actuaciones estratégicas y resultados prácticos.


Asunto(s)
Industria Farmacéutica , Vacunas , Investigación Biomédica/economía , Brasil , China , Ensayos Clínicos como Asunto , Comercio , Conducta Cooperativa , Industria Farmacéutica/economía , Salud Global , Humanos , Programas de Inmunización/economía , India , Innovación Organizacional , Federación de Rusia , Sudáfrica , Naciones Unidas , Vacunas/economía , Vacunas/provisión & distribución
13.
Br J Pharmacol ; 152(1): 53-61, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17603542

RESUMEN

This article reviews the origin and evolution of high throughput screening (HTS) through the experience of an individual pharmaceutical company, revealing some of the mysteries of the early stages of drug discovery to the wider pharmacology audience. HTS in this company (Pfizer, Groton, USA) had its origin in natural products screening in 1986, by substituting fermentation broths with dimethyl sulphoxide solutions of synthetic compounds, using 96-well plates and reduced assay volumes of 50-100 microl. A nominal 30 mM source compound concentration provided high microM assay concentrations. Starting at 800 compounds each week, the process reached a steady state of 7200 compounds per week by 1989. Screening in the Applied Biotechnology and Screening Group was centralized with screens operating in lock-step to maximize efficiency. Initial screens were full files run in triplicate. Autoradiography and image analysis were introduced for (125)I receptor ligand screens. Reverse transcriptase (RT) coupled with quantitative PCR and multiplexing addressed several targets in a single assay. By 1992 HTS produced 'hits' as starting matter for approximately 40% of the Discovery portfolio. In 1995, the HTS methodology was expanded to include ADMET targets. ADME targets required each compound to be physically detected leading to the development of automated high throughput LC-MS. In 1996, 90 compounds/week were screened in microsomal, protein binding and serum stability assays. Subsequently, the mutagenic Ames assay was adapted to a 96-well plate liquid assay and novel algorithms permitted automated image analysis of the micronucleus assay. By 1999 ADME HTS was fully integrated into the discovery cycle.


Asunto(s)
Diseño de Fármacos , Evaluación Preclínica de Medicamentos/historia , Industria Farmacéutica/historia , Farmacología/historia , Pruebas de Toxicidad/historia , Animales , Línea Celular , Sistema Libre de Células , Bases de Datos como Asunto/historia , Difusión de Innovaciones , Evaluación Preclínica de Medicamentos/tendencias , Industria Farmacéutica/métodos , Industria Farmacéutica/tendencias , Técnicas Genéticas , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Ligandos , Análisis por Micromatrices/historia , Microquímica/historia , Estructura Molecular , Farmacocinética , Farmacología/métodos , Farmacología/tendencias , Conformación Proteica , Reproducibilidad de los Resultados , Relación Estructura-Actividad , Pruebas de Toxicidad/tendencias , Estados Unidos
14.
Biotechnol J ; 1(11): 1253-7, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17068752

RESUMEN

The Chinese biotech industry is going through a period of fast growth, and with its huge population, China is predicted to be the biggest single-country market in the world. However, the Chinese biotech industry has to tackle the critical issue of innovation, which should be the driving force for China's development into an advanced and responsible country. Here, in this article, the authors review the history of the Chinese biotech industry, exemplified by the development of genetically engineered drugs during the last 20 years, and also point out its the future.


Asunto(s)
Biotecnología/métodos , Biotecnología/tendencias , Biotecnología/economía , China , Difusión de Innovaciones , Industria Farmacéutica/tendencias , Emprendimiento/organización & administración , Sector de Atención de Salud/organización & administración , Humanos , Inmunoterapia Activa/tendencias , Internacionalidad , Sector Privado/organización & administración , Política Pública , Sector Público/organización & administración , Apoyo a la Investigación como Asunto , Recursos Humanos
15.
Rev. cuba. farm ; 37(3)sept.-dic. 2003. ilus
Artículo en Español | CUMED | ID: cum-23204

RESUMEN

El Centro de Investigación y Desarrollo de Medicamentos (CIDEM) es una unidad de ciencia y técnica subordinado al Ministerio de Salud Pública, que surge por el desarrollo de su antecesor, los Laboratorios Técnicos de Medicamentos (LTM), con un papel protagónico en la industria farmacéutica cubana durante más de 20 años. A principios de la década de los 90, el Sistema Nacional de Salud de Cuba centró sus esfuerzos en la producción de un grupo de medicamentos seleccionados, capaces de brindar respuesta terapéutica a la mayoría de las enfermedades prevalecientes en el país, por lo que puso en marcha el Programa de Sustitución de Importaciones, rectorado por el CIDEM. La consolidación paulatina del sistema de aseguramiento de la calidad incorporó métodos de análisis más novedosos y estructuró la base documental de la actividad en la industria. El objetivo estratégico del CIDEM es potenciar el Programa de Ciencia e Innovación Tecnológica, mediante la aceleración del tránsito del laboratorio al registro y la introducción de los medicamentos, lo que contribuye al desarrollo del programa de formas terminadas, tecnologías de avanzada, medios diagnósticos y productos naturales a partir de la infraestructura que posee, con el estudio y desarrollo de tecnologías farmacéuticas y cosméticas, que incluye estudios de estabilidad, analíticos y preclínicos, para completar el ciclo desde la investigación hasta la presentación del expediente de registro y posterior introducción industrial. Entre sus líneas de desarrollo se encuentran las siguientes: producción de nuevas formas de presentación de formas farmacéuticas, mejorar la calidad de los productos, sustitución de importaciones, crear la base para potenciar las exportaciones y mejorar los servicios de salud, y así cumplir con su legado histórico de ser un centro científico creado por la Revolución y al servicio de su pueblo, dedicado a dar lo mejor de su empeño en la contribución de un mayor nivel de salud de nuestra población, al incorporar los medicamentos y tecnologías más modernas y efectivas a nuestro alcance(AU)


Asunto(s)
Industria Farmacéutica , Tecnología Farmacéutica , Cuba
16.
Rev. cuba. farm ; 37(3)sept.-dic. 2003. ilus
Artículo en Español | LILACS | ID: lil-386905

RESUMEN

El Centro de Investigación y Desarrollo de Medicamentos (CIDEM) es una unidad de ciencia y técnica subordinado al Ministerio de Salud Pública, que surge por el desarrollo de su antecesor, los Laboratorios Técnicos de Medicamentos (LTM), con un papel protagónico en la industria farmacéutica cubana durante más de 20 años. A principios de la década de los 90, el Sistema Nacional de Salud de Cuba centró sus esfuerzos en la producción de un grupo de medicamentos seleccionados, capaces de brindar respuesta terapéutica a la mayoría de las enfermedades prevalecientes en el país, por lo que puso en marcha el Programa de Sustitución de Importaciones, rectorado por el CIDEM. La consolidación paulatina del sistema de aseguramiento de la calidad incorporó métodos de análisis más novedosos y estructuró la base documental de la actividad en la industria. El objetivo estratégico del CIDEM es potenciar el Programa de Ciencia e Innovación Tecnológica, mediante la aceleración del tránsito del laboratorio al registro y la introducción de los medicamentos, lo que contribuye al desarrollo del programa de formas terminadas, tecnologías de avanzada, medios diagnósticos y productos naturales a partir de la infraestructura que posee, con el estudio y desarrollo de tecnologías farmacéuticas y cosméticas, que incluye estudios de estabilidad, analíticos y preclínicos, para completar el ciclo desde la investigación hasta la presentación del expediente de registro y posterior introducción industrial. Entre sus líneas de desarrollo se encuentran las siguientes: producción de nuevas formas de presentación de formas farmacéuticas, mejorar la calidad de los productos, sustitución de importaciones, crear la base para potenciar las exportaciones y mejorar los servicios de salud, y así cumplir con su legado histórico de ser un centro científico creado por la Revolución y al servicio de su pueblo, dedicado a dar lo mejor de su empeño en la contribución de un mayor nivel de salud de nuestra población, al incorporar los medicamentos y tecnologías más modernas y efectivas a nuestro alcance


Asunto(s)
Industria Farmacéutica , Tecnología Farmacéutica , Cuba
17.
Ann Oncol ; 11(12): 1591-5, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11205468

RESUMEN

PURPOSE: Our prior study found that pharmaceutical-sponsored and non-profit sponsored analyses differed in their published assessments of the economic value of six new oncology drugs. In this study, we expand on our earlier findings and evaluate the association between funding source and 1) characteristics of the published study report and 2) journal type for dissemination of the previously evaluated economic studies. METHODS: We reviewed the published cost-effectiveness literature for hematopoietic colony stimulating factors, 5-HT3 antagonist antiemetics. and taxanes. Two blinded investigators rated specific aspects of study reporting based on the US Public Health Service Panel on Cost-effectiveness in Health and Medicine criteria. Dissemination strategies were evaluated using impact factor scores from the Science Citation Index. RESULTS: The operational aspects of pharmaceutical-sponsored study reporting were better overall than those associated with non-profit sponsored studies. Specifically, pharmaceutical-sponsored studies were more likely to be reported based on data obtained from randomized clinical trials or detailed cost-models (90% vs. 70%), to include descriptions of the source of cost differences (90% vs. 79%), to state whether the study was carried out from a societal, governmental, or insurer perspective (70% vs. 42%), and to clearly indicate the time-period over which costs were evaluated (65% vs. 50%). Nonprofit sponsored studies were more likely than pharmaceutical sponsored studies to report the generalizability of the findings, including being more likely to include information about how the data could be extrapolated to other clinical settings (58% vs. 35%), to include statements on the statistical significance of the findings (38% vs. 20%), and to clearly outline the cost per unit and data sources for the cost analyses (67% vs. 45%). A similar percent of pharmaceutical and non-profit sponsored studies reported background and conclusions with about 80% providing literature comparisons of the results (about 80%) and two thirds to three fourths discussing the limitations of the finding (75% for pharmaceutical-sponsored and 67% for non-profit sponsored studies). Most studies were published in low impact factor peer-reviewed journals, and journal impact factor scores were similar between pharmaceutical and nonprofit sponsored studies. CONCLUSIONS: Upon reviewing the entire pharmacoeconomic literature for six new oncology drugs, we identified differences in study reporting, but not in types of journals where studies were published, between pharmaceutical-sponsored and non-profit sponsored studies. These results, particularly the observed differences in data generalizability, may account in part for our previous finding of lower likelihood of reporting unfavorable conclusions in pharmaceutical-sponsored studies.


Asunto(s)
Antineoplásicos/economía , Antineoplásicos/uso terapéutico , Difusión de Innovaciones , Industria Farmacéutica , Economía Farmacéutica , Apoyo a la Investigación como Asunto , Análisis Costo-Beneficio , Financiación Gubernamental , Humanos , Servicios de Información , Oncología Médica/economía , Neoplasias/tratamiento farmacológico , Edición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...