Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.225
Filtrar
1.
Biomolecules ; 14(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38927110

RESUMO

This work describes a novel route for phospholipid fatty acid remodeling involving the monounsaturated fatty acid palmitoleic acid. When administered to human monocytes, palmitoleic acid rapidly incorporates into membrane phospholipids, notably into phosphatidylcholine (PC). In resting cells, palmitoleic acid remains within the phospholipid pools where it was initially incorporated, showing no further movement. However, stimulation of the human monocytes with either receptor-directed (opsonized zymosan) or soluble (calcium ionophore A23187) agonists results in the rapid transfer of palmitoleic acid moieties from PC to phosphatidylinositol (PI). This is due to the activation of a coenzyme A-dependent remodeling route involving two different phospholipase A2 enzymes that act on different substrates to generate free palmitoleic acid and lysoPI acceptors. The stimulated enrichment of specific PI molecular species with palmitoleic acid unveils a hitherto-unrecognized pathway for lipid turnover in human monocytes which may play a role in regulating lipid signaling during innate immune activation.


Assuntos
Ácidos Graxos Monoinsaturados , Monócitos , Fosfatidilcolinas , Fosfatidilinositóis , Humanos , Monócitos/metabolismo , Monócitos/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Fosfatidilcolinas/metabolismo , Fosfatidilinositóis/metabolismo
2.
BMC Genomics ; 25(1): 605, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886635

RESUMO

BACKGROUND: Acer truncatum Bunge is an economic, ecological, oil, and medicinal tree, and its kernel oil is rich in nervonic acid. It is crucial to explore the transcriptional expression patterns of genes affecting fatty acid synthesis to improve the quality of Acer truncatum oil. RESULTS: This study used the seeds from high fatty acid strain YQC and those from low fatty acid strain Y38 as the test materials. Specifically, we performed a comparative transcriptome analysis of Y38 seeds and YQC to identify differentially expressed genes (DEGs) at two time points (seeds 30 days after the blooming period and 90 days after the blooming period). Compared with YQC_1 (YQC seeds at 30 days after the blooming period), a total of 3,618 DEGs were identified, including 2,333 up-regulated and 1,285 downregulated DEGs in Y38_1 (Y38 seeds at 30 days after blooming period). In the Y38_2 (Y38 seeds at 90 days after the blooming period) versus YQC_2 (YQC seeds at 90 days after the blooming period) comparison group, 9,340 genes were differentially expressed, including 5,422 up-regulated and 3,918 down-regulated genes. The number of DEGs in Y38 compared to YQC was significantly higher in the late stages of seed development. Gene functional enrichment analyses showed that the DEGs were mainly involved in the fatty acid biosynthesis pathway. And two fatty acid synthesis-related genes and seven nervonic acid synthesis-related genes were validated by qRT-PCR. CONCLUSIONS: This study provides a basis for further research on biosynthesizing fatty acids and nervonic acidnervonic acids in A. truncatum seeds.


Assuntos
Acer , Ácidos Graxos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sementes , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Acer/genética , Acer/metabolismo , Acer/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Ácidos Graxos Monoinsaturados
3.
Molecules ; 29(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38893378

RESUMO

Metabolic reprogramming mediates antibiotic efficacy. However, metabolic adaptation of microbes evolving from antibiotic sensitivity to resistance remains undefined. Therefore, untargeted metabolomics was conducted to unveil relevant metabolic reprogramming and potential intervention targets involved in gentamicin resistance. In total, 61 metabolites and 52 metabolic pathways were significantly altered in gentamicin-resistant E. coli. Notably, the metabolic reprogramming was characterized by decreases in most metabolites involved in carbohydrate and amino acid metabolism, and accumulation of building blocks for nucleotide synthesis in gentamicin-resistant E. coli. Meanwhile, fatty acid metabolism and glycerolipid metabolism were also significantly altered in gentamicin-resistant E. coli. Additionally, glycerol, glycerol-3-phosphate, palmitoleate, and oleate were separately defined as the potential biomarkers for identifying gentamicin resistance in E. coli. Moreover, palmitoleate and oleate could attenuate or even abolished killing effects of gentamicin on E. coli, and separately increased the minimum inhibitory concentration of gentamicin against E. coli by 2 and 4 times. Furthermore, palmitoleate and oleate separately decreased intracellular gentamicin contents, and abolished gentamicin-induced accumulation of reactive oxygen species, indicating involvement of gentamicin metabolism and redox homeostasis in palmitoleate/oleate-promoted gentamicin resistance in E. coli. This study identifies the metabolic reprogramming, potential biomarkers and intervention targets related to gentamicin resistance in bacteria.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Escherichia coli , Ácidos Graxos Monoinsaturados , Gentamicinas , Ácido Oleico , Gentamicinas/farmacologia , Gentamicinas/metabolismo , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Antibacterianos/farmacologia , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Testes de Sensibilidade Microbiana , Metabolômica/métodos , Redes e Vias Metabólicas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
4.
Biomolecules ; 14(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38927010

RESUMO

Nuclear hormone receptors exist in dynamic equilibrium between transcriptionally active and inactive complexes dependent on interactions with ligands, proteins, and chromatin. The present studies examined the hypothesis that endogenous ligands activate peroxisome proliferator-activated receptor-ß/δ (PPARß/δ) in keratinocytes. The phorbol ester treatment or HRAS infection of primary keratinocytes increased fatty acids that were associated with enhanced PPARß/δ activity. Fatty acids caused PPARß/δ-dependent increases in chromatin occupancy and the expression of angiopoietin-like protein 4 (Angptl4) mRNA. Analyses demonstrated that stearoyl Co-A desaturase 1 (Scd1) mediates an increase in intracellular monounsaturated fatty acids in keratinocytes that act as PPARß/δ ligands. The activation of PPARß/δ with palmitoleic or oleic acid causes arrest at the G2/M phase of the cell cycle of HRAS-expressing keratinocytes that is not found in similarly treated HRAS-expressing Pparb/d-null keratinocytes. HRAS-expressing Scd1-null mouse keratinocytes exhibit enhanced cell proliferation, an effect that is mitigated by treatment with palmitoleic or oleic acid. Consistent with these findings, the ligand activation of PPARß/δ with GW0742 or oleic acid prevented UVB-induced non-melanoma skin carcinogenesis, an effect that required PPARß/δ. The results from these studies demonstrate that PPARß/δ has endogenous roles in keratinocytes and can be activated by lipids found in diet and cellular components.


Assuntos
Queratinócitos , PPAR delta , PPAR beta , Estearoil-CoA Dessaturase , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , PPAR beta/metabolismo , PPAR beta/genética , Animais , Camundongos , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , PPAR delta/metabolismo , PPAR delta/genética , Ácidos Graxos/metabolismo , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Humanos , Ácido Oleico/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos Monoinsaturados/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
5.
Microb Biotechnol ; 17(6): e14488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38850269

RESUMO

The transition towards a sustainable bioeconomy requires the development of highly efficient bioprocesses that enable the production of bulk materials at a competitive price. This is particularly crucial for driving the commercialization of polyhydroxyalkanoates (PHAs) as biobased and biodegradable plastic substitutes. Among these, the copolymer poly(hydroxybutyrate-co-hydroxyhexanoate) (P(HB-co-HHx)) shows excellent material properties that can be tuned by regulating its monomer composition. In this study, we developed a high-cell-density fed-batch strategy using mixtures of fructose and canola oil to modulate the molar composition of P(HB-co-HHx) produced by Ralstonia eutropha Re2058/pCB113 at 1-L laboratory scale up to 150-L pilot scale. With cell densities >100 g L-1 containing 70-80 wt% of PHA with tunable HHx contents in the range of 9.0-14.6 mol% and productivities of up to 1.5 g L-1 h-1, we demonstrate the tailor-made production of P(HB-co-HHx) at an industrially relevant scale. Ultimately, this strategy enables the production of PHA bioplastics with defined material properties on the kilogram scale, which is often required for testing and adapting manufacturing processes to target diverse applications.


Assuntos
Cupriavidus necator , Frutose , Cupriavidus necator/metabolismo , Cupriavidus necator/genética , Frutose/metabolismo , Engenharia Metabólica/métodos , Caproatos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Óleo de Brassica napus/metabolismo , Óleo de Brassica napus/química , Contagem de Células , Poli-Hidroxibutiratos
6.
Nutrients ; 16(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38931253

RESUMO

Advanced glycation end products (AGEs) accumulate in the plasma of pregnant women with hyperglycemia, potentially inducing oxidative stress and fetal developmental abnormalities. Although intrauterine hyperglycemia has been implicated in excessive fetal growth, the effects of maternal AGEs on fetal development remain unclear. We evaluated the differentiation regulators and cellular signaling in the skeletal muscles of infants born to control mothers (ICM), diabetic mothers (IDM), and diabetic mothers supplemented with either cis-palmitoleic acid (CPA) or trans-palmitoleic acid (TPA). Cell viability, reactive oxygen species levels, and myotube formation were assessed in AGE-exposed C2C12 cells to explore potential mitigation by CPA and TPA. Elevated receptors for AGE expression and decreased Akt and AMPK phosphorylation were evident in rat skeletal muscles in IDM. Maternal palmitoleic acid supplementation alleviated insulin resistance by downregulating RAGE expression and enhancing Akt phosphorylation. The exposure of the C2C12 cells to AGEs reduced cell viability and myotube formation and elevated reactive oxygen species levels, which were attenuated by CPA or TPA supplementation. This suggests that maternal hyperglycemia and plasma AGEs may contribute to skeletal muscle disorders in offspring, which are mitigated by palmitoleic acid supplementation. Hence, the maternal intake of palmitoleic acid during pregnancy may have implications for fetal health.


Assuntos
Ácidos Graxos Monoinsaturados , Produtos Finais de Glicação Avançada , Músculo Esquelético , Espécies Reativas de Oxigênio , Receptor para Produtos Finais de Glicação Avançada , Ácidos Graxos Monoinsaturados/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Feminino , Animais , Gravidez , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Ratos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Suplementos Nutricionais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Resistência à Insulina , Humanos , Fosforilação , Ratos Sprague-Dawley , Gravidez em Diabéticas/metabolismo , Gravidez em Diabéticas/tratamento farmacológico , Masculino , Desenvolvimento Fetal/efeitos dos fármacos
7.
Int J Nanomedicine ; 19: 4779-4801, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828196

RESUMO

Background: Messenger RNA (mRNA)-based immunogene therapy holds significant promise as an emerging tumor therapy approach. However, the delivery efficiency of existing mRNA methods and their effectiveness in stimulating anti-tumor immune responses require further enhancement. Tumor cell lysates containing tumor-specific antigens and biomarkers can trigger a stronger immune response to tumors. In addition, strategies involving multiple gene therapies offer potential optimization paths for tumor gene treatments. Methods: Based on the previously developed ideal mRNA delivery system called DOTAP-mPEG-PCL (DMP), which was formed through the self-assembly of 1.2-dioleoyl-3-trimethylammonium-propane (DOTAP) and methoxypoly (ethylene glycol)-b-poly (ε-caprolactone) (mPEG-PCL), we introduced a fused cell-penetrating peptide (fCPP) into the framework and encapsulated tumor cell lysates to form a novel nanovector, termed CLSV system (CLS: CT26 tumor cell lysate, V: nanovector). This system served a dual purpose of facilitating the delivery of two mRNAs and enhancing tumor immunogene therapy through tumor cell lysates. Results: The synthesized CLSV system had an average size of 241.17 nm and a potential of 39.53 mV. The CLSV system could not only encapsulate tumor cell lysates, but also deliver two mRNAs to tumor cells simultaneously, with a transfection efficiency of up to 60%. The CLSV system effectively activated the immune system such as dendritic cells to mature and activate, leading to an anti-tumor immune response. By loading Bim-encoded mRNA and IL-23A-encoded mRNA, CLSV/Bim and CLSV/IL-23A complexes were formed, respectively, to further induce apoptosis and anti-tumor immunity. The prepared CLSV/dual-mRNA complex showed significant anti-cancer effects in multiple CT26 mouse models. Conclusion: Our results suggest that the prepared CLSV system is an ideal delivery system for dual-mRNA immunogene therapy.


Assuntos
Neoplasias do Colo , Terapia Genética , Imunoterapia , Nanopartículas , RNA Mensageiro , Animais , RNA Mensageiro/genética , RNA Mensageiro/administração & dosagem , Linhagem Celular Tumoral , Neoplasias do Colo/terapia , Neoplasias do Colo/genética , Terapia Genética/métodos , Imunoterapia/métodos , Nanopartículas/química , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos Penetradores de Células/química , Polietilenoglicóis/química , Humanos , Poliésteres/química , Feminino , Compostos de Amônio Quaternário , Ácidos Graxos Monoinsaturados
8.
Drug Deliv Transl Res ; 14(8): 2046-2061, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38811465

RESUMO

The global emergency of coronavirus disease 2019 (COVID-19) has spurred extensive worldwide efforts to develop vaccines for protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our contribution to this global endeavor involved the development of a diverse library of nanocarriers, as alternatives to lipid nanoparticles (LNPs), including nanoemulsions (NEs) and nanocapsules (NCs), with the aim of protecting and delivering messenger ribonucleic acid (mRNA) for nasal vaccination purposes. A wide range of prototypes underwent rigorous screening through a series of in vitro and in vivo experiments, encompassing assessments of cellular transfection, cytotoxicity, and intramuscular administration of a model mRNA for protein translation. As a result, two promising candidates were identified for nasal administration. One of them was a NE incorporating a combination of an ionizable lipid (C12-200) and cationic lipid (DOTAP), both intended to condense mRNA, along with DOPE, which is known to facilitate endosomal escape. This NE exhibited a size of 120 nm and a highly positive surface charge (+ 50 mV). Another candidate was an NC formulation comprising the same components and endowed with a dextran sulfate shell. This formulation showed a size of 130 nm and a moderate negative surface charge (-16 mV). Upon intranasal administration of mRNA encoding for ovalbumin (mOVA) associated with optimized versions of the said NE and NCs, a robust antigen-specific CD8 + T cell response was observed. These findings underscore the potential of NEs and polymeric NCs in advancing mRNA vaccine development for combating infectious diseases.


Assuntos
Administração Intranasal , Vacinas contra COVID-19 , Emulsões , Nanocápsulas , Vacinas de mRNA , Nanocápsulas/química , Animais , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Camundongos , COVID-19/prevenção & controle , Nanopartículas/administração & dosagem , Nanopartículas/química , Humanos , SARS-CoV-2/imunologia , Feminino , Compostos de Amônio Quaternário/química , Camundongos Endogâmicos BALB C , Ácidos Graxos Monoinsaturados/química , RNA Mensageiro/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/administração & dosagem
9.
J Exp Clin Cancer Res ; 43(1): 133, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698462

RESUMO

BACKGROUND: Targeting ferroptosis has been identified as a promising approach for the development of cancer therapies. Monounsaturated fatty acid (MUFA) is a type of lipid that plays a crucial role in inhibiting ferroptosis. Ficolin 3 (FCN3) is a component of the complement system, serving as a recognition molecule against pathogens in the lectin pathway. Recent studies have reported that FCN3 demonstrates inhibitory effects on the progression of certain tumors. However, whether FCN3 can modulate lipid metabolism and ferroptosis remains largely unknown. METHODS: Cell viability, BODIPY-C11 staining, and MDA assay were carried out to detect ferroptosis. Primary hepatocellular carcinoma (HCC) and xenograft models were utilized to investigate the effect of FCN3 on the development of HCC in vivo. A metabonomic analysis was conducted to assess alterations in intracellular and HCC intrahepatic lipid levels. RESULTS: Our study elucidates a substantial decrease in the expression of FCN3, a component of the complement system, leads to MUFA accumulation in human HCC specimens and thereby significantly promotes ferroptosis resistance. Overexpression of FCN3 efficiently sensitizes HCC cells to ferroptosis, resulting in the inhibition of the oncogenesis and progression of both primary HCC and subcutaneous HCC xenograft. Mechanistically, FCN3 directly binds to the insulin receptor ß (IR-ß) and its pro-form (pro-IR), inhibiting pro-IR cleavage and IR-ß phosphorylation, ultimately resulting in IR-ß inactivation. This inactivation of IR-ß suppresses the expression of sterol regulatory element binding protein-1c (SREBP1c), which subsequently suppresses the transcription of genes related to de novo lipogenesis (DNL) and lipid desaturation, and consequently downregulates intracellular MUFA levels. CONCLUSIONS: These findings uncover a novel regulatory mechanism by which FCN3 enhances the sensitivity of HCC cells to ferroptosis, indicating that targeting FCN3-induced ferroptosis is a promising strategy for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Animais , Feminino , Humanos , Masculino , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Anticancer Res ; 44(6): 2511-2515, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821590

RESUMO

BACKGROUND/AIM: Thymic carcinoma is a rare cancer type with limited treatment options. Our previous study demonstrated that statins, which inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase, can prevent thymic carcinoma. However, the mechanisms through which statins affect intracellular events in cancer cells are not well understood. The aim of the study was to determine how thymic carcinoma modulates the intracellular signals in response to statin administration. MATERIALS AND METHODS: We analyzed statin-induced protein phosphorylation in Ty82 human thymic carcinoma cells, which were cultured with fluvastatin, and protein phosphorylation was examined using western blotting. RESULTS: Treating Ty82 with fluvastatin led to ERK5 phosphorylation via protein prenylation attenuation. The antitumor effects of fluvastatin on thymic carcinoma were enhanced when combined with an ERK5 inhibitor. CONCLUSION: Statin therapy in combination with ERK5 inhibition may be a promising therapeutic approach for treating thymic carcinoma.


Assuntos
Ácidos Graxos Monoinsaturados , Fluvastatina , Indóis , Proteína Quinase 7 Ativada por Mitógeno , Neoplasias do Timo , Fluvastatina/farmacologia , Humanos , Neoplasias do Timo/tratamento farmacológico , Neoplasias do Timo/patologia , Neoplasias do Timo/metabolismo , Linhagem Celular Tumoral , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Indóis/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Timoma/tratamento farmacológico , Timoma/patologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Animais
11.
Cell Rep ; 43(5): 114223, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38748879

RESUMO

Quorum sensing (QS) is a cell-to-cell communication mechanism mediated by small diffusible signaling molecules. Previous studies showed that RpfR controls Burkholderia cenocepacia virulence as a cis-2-dodecenoic acid (BDSF) QS signal receptor. Here, we report that the fatty acyl-CoA ligase DsfR (BCAM2136), which efficiently catalyzes in vitro synthesis of lauryl-CoA and oleoyl-CoA from lauric acid and oleic acid, respectively, acts as a global transcriptional regulator to control B. cenocepacia virulence by sensing BDSF. We show that BDSF binds to DsfR with high affinity and enhances the binding of DsfR to the promoter DNA regions of target genes. Furthermore, we demonstrate that the homolog of DsfR in B. lata, RS02960, binds to the target gene promoter, and perception of BDSF enhances the binding activity of RS02960. Together, these results provide insights into the evolved unusual functions of DsfR that control bacterial virulence as a response regulator of QS signal.


Assuntos
Proteínas de Bactérias , Burkholderia cenocepacia , Coenzima A Ligases , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Percepção de Quorum , Percepção de Quorum/genética , Burkholderia cenocepacia/patogenicidade , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Virulência , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Animais , Transdução de Sinais , Ácidos Graxos Monoinsaturados/metabolismo , Camundongos , Ligação Proteica , Ácidos Láuricos/metabolismo
12.
Int J Nanomedicine ; 19: 4235-4251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766661

RESUMO

Purpose: In recent years, microfluidic technologies have become mainstream in producing gene therapy nanomedicines (NMeds) following the Covid-19 vaccine; however, extensive optimizations are needed for each NMed type and genetic material. This article strives to improve LNPs for pDNA loading, protection, and delivery, while minimizing toxicity. Methods: The microfluidic technique was optimized to form cationic or neutral LNPs to load pDNA. Classical "post-formulation" DNA addition vs "pre" addition in the aqueous phase were compared. All formulations were characterized (size, homogeneity, zeta potential, morphology, weight yield, and stability), then tested for loading efficiency, nuclease protection, toxicity, and cell uptake. Results: Optimized LNPs formulated with DPPC: Chol:DOTAP 1:1:0.1 molar ratio and 10 µg of DOPE-Rhod, had a size of 160 nm and good homogeneity. The chemico-physical characteristics of cationic LNPs worsened when adding 15 µg/mL of pDNA with the "post" method, while maintaining their characteristics up to 100 µg/mL of pDNA with the "pre" addition remaining stable for 30 days. Interestingly, neutral LNPs formulated with the same method loaded up to 50% of the DNA. Both particles could protect the DNA from nucleases even after one month of storage, and low cell toxicity was found up to 40 µg/mL LNPs. Cell uptake occurred within 2 hours for both formulations with the DNA intact in the cytoplasm, outside of the lysosomes. Conclusion: In this study, the upcoming microfluidic technique was applied to two strategies to generate pDNA-LNPs. Cationic LNPs could load 10x the amount of DNA as the classical approach, while neutral LNPs, which also loaded and protected DNA, showed lower toxicity and good DNA protection. This is a big step forward at minimizing doses and toxicity of LNP-based gene therapy.


Assuntos
Cátions , DNA , Plasmídeos , Plasmídeos/administração & dosagem , Plasmídeos/química , Humanos , Cátions/química , DNA/química , DNA/administração & dosagem , Terapia Genética/métodos , Microfluídica/métodos , Tamanho da Partícula , Nanomedicina , COVID-19/prevenção & controle , Lipossomos/química , Transfecção/métodos , Nanopartículas/química , SARS-CoV-2 , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/química , Compostos de Amônio Quaternário/química , Ácidos Graxos Monoinsaturados
13.
Food Res Int ; 186: 114377, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729733

RESUMO

To clarify the relationship between microorganisms and physicochemical indicators of Xuanwei ham. Six ham samples for the first, second and third year were selected, respectively. The changes of physicochemical properties, the free fatty acids and microbial communities of Xuanwei ham were investigated by GC-MS and high-throughput sequencing technology. Results showed that scores of colour, overall acceptability, texture, taste and aroma were the highest in the third year sample. With increasing ripening time, moisture content, water activity (Aw), lightness (L*), springiness, and resilience decreased continuously, and yellowness (b*) was the highest in the second year sample. 31 free fatty acids were detected, and unsaturated fatty acids such as palmitoleic acid, oleic acid, and linoleic acid were the major fatty acids. The content of palmitoleic acid, oleic acid and eicosenoic acid increased significantly during processing. At the phylum level, the dominant bacteria were Proteobacteria and Firmicutes, and fungi were Ascomycota. At the genus level, the dominant bacteria were Staphylococcus and Psychrobacter, and fungi were Aspergillus. Correlation analysis showed that water content and Aw were closely related to microorganisms, and most unsaturated fatty acids were significantly correlated with microorganisms. These findings showed that microorganisms played an important role in the quality of Xuanwei ham, and provided a scientific basis for the quality control of Xuanwei ham.


Assuntos
Produtos da Carne , Animais , Produtos da Carne/microbiologia , Produtos da Carne/análise , Microbiologia de Alimentos , Bactérias/classificação , Microbiota , Manipulação de Alimentos/métodos , Suínos , Paladar , Ácidos Graxos Insaturados/análise , Cor , Cromatografia Gasosa-Espectrometria de Massas , Carne de Porco/microbiologia , Carne de Porco/análise , Odorantes/análise , Ácidos Graxos não Esterificados/análise , Ácidos Graxos Monoinsaturados
14.
Chem Senses ; 492024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591752

RESUMO

The scent of musk plays a unique role in the history of perfumery. Musk odorants comprise 6 diverse chemical classes and perception differences in strength and quality among human panelists have long puzzled the field of olfaction research. Three odorant receptors (OR) had recently been described for musk odorants: OR5AN1, OR1N2, and OR5A2. High functional expression of the difficult-to-express human OR5A2 was achieved by a modification of the C-terminal domain and the link between sensory perception and receptor activation for the trilogy of these receptors and their key genetic variants was investigated: All 3 receptors detect only musky smelling compounds among 440 commercial fragrance compounds. OR5A2 is the key receptor for the classes of polycyclic and linear musks and for most macrocylic lactones. A single P172L substitution reduces the sensitivity of OR5A2 by around 50-fold. In parallel, human panelists homozygous for this mutation have around 40-60-fold higher sensory detection threshold for selective OR5A2 ligands. For macrocyclic lactones, OR5A2 could further be proven as the key OR by a strong correlation between in vitro activation and the sensory detection threshold in vivo. OR5AN1 is the dominant receptor for the perception of macrocyclic ketones such as muscone and some nitromusks, as panelists with a mutant OR5A2 are still equally sensitive to these ligands. Finally, OR1N2 appears to be an additional receptor involved in the perception of the natural (E)-ambrettolide. This study for the first time links OR activation to sensory perception and genetic polymorphisms for this unique class of odorants.


Assuntos
Ácidos Graxos Monoinsaturados , Percepção Olfatória , Receptores Odorantes , Olfato , Humanos , Genótipo , Lactonas , Odorantes , Receptores Odorantes/metabolismo , Olfato/genética
15.
J Control Release ; 369: 642-657, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575072

RESUMO

Glioma is recognized as the most infiltrative and lethal form of central nervous system tumors and is known for its limited response to standard therapeutic interventions, high recurrence rate, and unfavorable prognosis. Recent progress in gene and immunotherapy presents a renewed sense of optimism in the treatment of glioblastoma. However, the barriers to overcome include the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB), as well as the suppressive immune microenvironment. Overcoming these barriers remains a significant challenge. Here, we developed a lipid nanoparticle platform incorporating a dual-functional peptide (cholesterol-DP7-ACP-T7-modified DOTAP or DAT-LNP) capable of targeting glioma across the BBB and BBTB for brain tumor immunotherapy. This system was designed to achieve two key functions. First, the system could effectively penetrate the BBB during accumulation within brain tissue following intravenous administration. Second, this system enhances the maturation of dendritic cells, the polarization of M1 macrophages, and the activation of cytotoxic CD8+ T cells. This multifaceted approach effectively mitigates the immunosuppressive tumor microenvironment of glioma and promotes robust antitumor immune responses. Overall, the intravenous administration of the delivery system designed in this study demonstrates significant therapeutic potential for glioma and holds promising applications in the field of cancer immunotherapy.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Glioma , Imunoterapia , Nanopartículas , RNA Interferente Pequeno , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Animais , Glioma/terapia , Glioma/imunologia , Imunoterapia/métodos , RNA Interferente Pequeno/administração & dosagem , Nanopartículas/administração & dosagem , Nanopartículas/química , Linhagem Celular Tumoral , Humanos , Camundongos Endogâmicos C57BL , Microambiente Tumoral , Camundongos , Colesterol/química , Colesterol/administração & dosagem , Lipídeos/química , Compostos de Amônio Quaternário , Ácidos Graxos Monoinsaturados
16.
Chemosphere ; 358: 142110, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657688

RESUMO

Biofouling is inevitable in the membrane process, particularly in membrane bioreactors (MBR) combined with activated sludge processes. Regulating microbial signaling systems with diffusible signal factors such as cis-2-Decenoic acid (CDA) can control biofilm formation without microbial death or growth inhibition. This study assessed the effectiveness of CDA in controlling biofouling in membrane bioreactors (MBRs), essential for wastewater treatment. By modulating microbial signaling, CDA mitigated biofilm formation without hindering microbial growth. Analysis using Confocal Laser Scanning Microscopy (CLSM) revealed structural alterations in the biofilm, reducing biomass and thickness upon CDA application. Moreover, examination of extracellular polymeric substances (EPS) highlighted a decrease in total EPS, particularly effective polysaccharides. In addition, the possibility of shifting from high molecular weight EPS to low molecular weight EPS was revealed through the change in dispersion activity. The 56% extension of MBR operational lifespan resulting from the reduction in EPS is anticipated to offer potential cost savings and improved performance. Despite these results, further investigation is crucial to validate any potential environmental risks associated with CDA and to comprehend its long-term effects at various conditions.


Assuntos
Biofilmes , Incrustação Biológica , Reatores Biológicos , Ácidos Graxos Monoinsaturados , Membranas Artificiais , Águas Residuárias , Incrustação Biológica/prevenção & controle , Biofilmes/efeitos dos fármacos , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Matriz Extracelular de Substâncias Poliméricas , Esgotos/química
17.
Int J Pharm ; 658: 124176, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38688427

RESUMO

The aim of this study was to evaluate the enhanced thermal stability and physicochemical properties of fattigated vaccine antigens. High molecular weight influenza hemagglutinin (Heg) was used as a model antigen because of low heat stability requiring cold chamber. Heg was conjugated with long-chain oleic acid (C18) and short-chain 3-decenoic acid (C10) to prepare fattigated Heg. Circular dichroism analysis revealed no significant changes in the three-dimensional structure post-conjugation. In the liquid state, the fattigated Heg was self-assembled into nanoparticles (NPs) due to its amphiphilic nature, with sizes of 136.27 ± 12.78 nm for oleic acid-conjugated Heg (HOC) and 88.73 ± 3.27 nm for 3-decenoic acid-conjugated Heg (HDC). Accelerated thermal stability studies at 60 °C for 7 days demonstrated that fattigated Heg exhibited higher thermal stability than Heg in various liquid or solid states. The longer-chained HOC showed better thermal stability than HDC in the liquid state, attributed to increased hydrophobic interactions during self-assembly. In bio-mimicking liquid states at 37 °C, HOC exhibited higher thermal stability than Heg. Furthermore, solid-state HOC with cryoprotectants (trehalose, mannitol, and Tween® 80) had significantly increased thermal stability due to reduced exposure of protein surface area via nanonization behavior. The current fattigation platform could be a promising strategy for developing thermostable nano vaccines of heat-labile vaccine antigens.


Assuntos
Estabilidade de Medicamentos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Nanopartículas , Nanopartículas/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/administração & dosagem , Ácido Oleico/química , Vacinas Conjugadas/química , Ácidos Graxos/química , Temperatura Alta , Tamanho da Partícula , Polissorbatos/química , Interações Hidrofóbicas e Hidrofílicas , Ácidos Graxos Monoinsaturados/química , Antígenos/química , Antígenos/imunologia
18.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611818

RESUMO

This study investigated the incorporation of nervonic acid into the chemical structure of phosphatidylcholine via a lipase-catalyzed acidolysis reaction to obtain a functional phospholipid. Lipase immobilization was conducted, and Amberlite XAD7-HP was selected as a carrier to immobilize phospholipase A1 (PLA1) for subsequent experiments. The main acidolysis reaction parameters, including enzyme load, substrate ratio, temperature, and water content, were studied against the reaction time. The optimum reaction conditions obtained were enzyme load, 20%; reaction temperature, 55 °C; water content, 1%; and reaction time, 9 h. The maximum incorporation of nervonic acid into phosphatidylcholine was 48 mol%, with PC recovery at 61.6 mol%. The positional distribution of structured phosphatidylcholine shows that nervonic acid was found in the sn-1 position due to enzyme specificity and in the sn-2 position, possibly due to acyl migration.


Assuntos
Ácidos Graxos Monoinsaturados , Lipase , Fosfatidilcolinas , Água , Catálise
19.
Arq Bras Cardiol ; 121(3): e20230487, 2024.
Artigo em Português, Inglês | MEDLINE | ID: mdl-38597553

RESUMO

BACKGROUND: Adhering to a diet adequate in macronutrients is crucial for the secondary prevention of cardiovascular diseases. OBJECTIVE: To assess the prevalence of adherence to recommendations for the consumption of dietary fatty acids for the prevention and treatment of cardiovascular diseases and to estimate whether the presence of certain cardiovascular risk factors would be associated with adherence. METHODS: Cross-sectional study using baseline data from 2,358 participants included in the "Brazilian Cardioprotective Nutritional Program Trial". Dietary intake and cardiovascular risk factors were assessed. Adequate intake of polyunsaturated fatty acids (PUFA) was considered as ≥10% of total daily energy intake; for monounsaturated fatty acids (MUFA), 20%; and for saturated fatty acids (SFA), <7% according to the Brazilian Society of Cardiology. A significance level of 5% was considered in the statistical analysis. RESULTS: No participant adhered to all recommendations simultaneously, and more than half (1,482 [62.9%]) did not adhere to any recommendation. Adherence exclusively to the SFA recommendation was the most prevalent, fulfilled by 659 (28%) participants, followed by adherence exclusively to the PUFA (178 [7.6%]) and MUFA (5 [0.2%]) recommendations. There was no association between the number of comorbidities and adherence to nutritional recommendations (p = 0.269). Participants from the Brazilian Northeast region showed a higher proportion of adherence to SFA consumption recommendations (38.42%) and lower adherence to PUFA intake (3.52%) (p <0.001) compared to other regions. CONCLUSIONS: Among the evaluated sample, there was low adherence to nutritional recommendations for dietary fatty acid consumption.


FUNDAMENTO: A adesão à uma alimentação adequada em macronutrientes é fundamental para a prevenção secundária de doenças cardiovasculares. OBJETIVO: Avaliar a prevalência de adesão às recomendações de consumo de ácidos graxos para prevenção e tratamento de doenças cardiovasculares, e estimar se a presença de determinados fatores de risco cardiovascular estaria associada à adesão. MÉTODOS: Estudo transversal com os dados de linha de base de 2358 participantes do estudo "Brazilian Cardioprotective Nutritional Program Trial". Dados de consumo alimentar, e fatores de risco cardiovascular foram avaliados. Foi considerada, de acordo com a Sociedade Brasileira de Cardiologia, uma ingestão adequada de ácidos graxos poli-insaturados (AGPI) ≥10% do consumo total de energia diária, para ácidos graxos monoinsaturados (AGM), 20% e para ácidos graxos saturados (AGS), <7%. Na análise estatística foi considerando nível de significância de 5%. RESULTADOS: Nenhum participante aderiu a todas as recomendações de forma simultânea e mais da metade (1482 [62,9%]) não aderiu a nenhuma recomendação. A adesão exclusivamente à recomendação de AGS foi a mais prevalente, sendo cumprida por 659 (28%) dos participantes, seguida da adesão exclusivamente à recomendação de AGP (178 [7,6%]) e de AGM (5 [0,2%]). Não houve associação entre o número de comorbidades e a adesão às recomendações nutricionais (p =0,269). Os participantes da região Nordeste do país apresentaram maior proporção de adesão às recomendações para consumo de AGS (38,42%), e menor para ingestão de AGPI (3,52%) (p <0,001) em comparação às demais. CONCLUSÕES: Na amostra avaliada, evidenciou-se baixa adesão às recomendações nutricionais para consumo de ácidos graxos.


Assuntos
Doenças Cardiovasculares , Ácidos Graxos , Humanos , Gorduras na Dieta , Doenças Cardiovasculares/etiologia , Prevenção Secundária , Estudos Transversais , Ácidos Graxos Insaturados , Ácidos Graxos Monoinsaturados
20.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612605

RESUMO

Central nervous system (CNS) damage leads to severe neurological dysfunction as a result of neuronal cell death and axonal degeneration. As, in the mature CNS, neurons have little ability to regenerate their axons and reconstruct neural loss, demyelination is one of the hallmarks of neurological disorders such as multiple sclerosis (MS). Unfortunately, remyelination, as a regenerative process, is often insufficient to prevent axonal loss and improve neurological deficits after demyelination. Currently, there are still no effective therapeutic tools to restore neurological function, but interestingly, emerging studies prove the beneficial effects of lipid supplementation in a wide variety of pathological processes in the human body. In the future, available lipids with a proven beneficial effect on CNS regeneration could be included in supportive therapy, but this topic still requires further studies. Based on our and others' research, we review the role of exogenous lipids, pointing to substrates that are crucial in the remyelination process but are omitted in available studies, justifying the properly profiled supply of lipids in the human diet as a supportive therapy during CNS regeneration.


Assuntos
Sistema Nervoso Central , Esclerose Múltipla , Humanos , Ácidos Graxos Monoinsaturados , Esclerose Múltipla/tratamento farmacológico , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...