Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.959
Filtrar
1.
BMC Oral Health ; 24(1): 513, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698366

RESUMO

BACKGROUND: This study aims to evaluate the effect of surface treatment and resin cement on the shear bond strength (SBS) and mode of failure of polyetheretherketone (PEEK) to lithium disilicate ceramic (LDC). This is suggested to study alternative veneering of PEEK frameworks with a ceramic material. METHODS: eighty discs were prepared from PEEK blank and from lithium disilicate ceramic. Samples were divided into four groups according to surface treatment: Group (A) air abraded with 110 µm Al2O3, Group (AP) air abrasion and primer application, Group (S) 98% sulfuric acid etching for 60 s, Group (SP) Sulfuric acid and primer. Each group was subdivided into two subgroups based on resin cement type used for bonding LDC:1) subgroup (L) self- adhesive resin cement and 2) subgroup (B) conventional resin cement (n = 10). Thermocycling was done for all samples. The bond strength was assessed using the shear bond strength test (SBS). Failure mode analysis was done at 50X magnification with a stereomicroscope. Samples were chosen from each group for scanning electron microscope (SEM). The three-way nested ANOVA followed by Tukey's post hoc test were used for statistical analysis of results. Comparisons of effects were done utilizing one way ANOVA and (p < 0.05). RESULTS: The highest mean of shear bond strength values was demonstrated in Group of air abrasion with primer application using conventional resin cement (APB) (12.21 ± 2.14 MPa). Sulfuric acid groups showed lower shear bond strength values and the majority failed in thermocycling especially when no primer was applied. The failure mode analysis showed that the predominant failure type was adhesive failure between cement and PEEK, while the remaining was mixed failure between cement and PEEK. CONCLUSION: The air abrasion followed by primer application and conventional resin cement used for bonding Lithium Disilicate to PEEK achieved the best bond strength. Primer application did not have an effect when self-adhesive resin cement was used in air-abraded groups. Priming step is mandatory whenever sulfuric acid etching surface treatment is utilized for PEEK.


Assuntos
Benzofenonas , Colagem Dentária , Porcelana Dentária , Análise do Estresse Dentário , Cetonas , Teste de Materiais , Polietilenoglicóis , Polímeros , Cimentos de Resina , Resistência ao Cisalhamento , Propriedades de Superfície , Colagem Dentária/métodos , Condicionamento Ácido do Dente/métodos , Ácidos Sulfúricos , Cerâmica/química , Abrasão Dental por Ar/métodos , Óxido de Alumínio , Facetas Dentárias , Corrosão Dentária/métodos , Humanos
2.
Geobiology ; 22(3): e12594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38700397

RESUMO

Lehman Caves is an extensively decorated high desert cave that represents one of the main tourist attractions in Great Basin National Park, Nevada. Although traditionally considered a water table cave, recent studies identified abundant speleogenetic features consistent with a hypogenic and, potentially, sulfuric acid origin. Here, we characterized white mineral deposits in the Gypsum Annex (GA) passage to determine whether these secondary deposits represent biogenic minerals formed during sulfuric acid corrosion and explored microbial communities associated with these and other mineral deposits throughout the cave. Powder X-ray diffraction (pXRD), scanning electron microscopy with electron dispersive spectroscopy (SEM-EDS), and electron microprobe analyses (EPMA) showed that, while most white mineral deposits from the GA contain gypsum, they also contain abundant calcite, silica, and other phases. Gypsum and carbonate-associated sulfate isotopic values of these deposits are variable, with δ34SV-CDT between +9.7‰ and +26.1‰, and do not reflect depleted values typically associated with replacement gypsum formed during sulfuric acid speleogenesis. Petrographic observations show that the sulfates likely co-precipitated with carbonate and SiO2 phases. Taken together, these data suggest that the deposits resulted from later-stage meteoric events and not during an initial episode of sulfuric acid speleogenesis. Most sedimentary and mineral deposits in Lehman Caves have very low microbial biomass, with the exception of select areas along the main tour route that have been impacted by tourist traffic. High-throughput 16S rRNA gene amplicon sequencing showed that microbial communities in GA sediments are distinct from those in other parts of the cave. The microbial communities that inhabit these oligotrophic secondary mineral deposits include OTUs related to known ammonia-oxidizing Nitrosococcales and Thaumarchaeota, as well as common soil taxa such as Acidobacteriota and Proteobacteria. This study reveals microbial and mineralogical diversity in a previously understudied cave and expands our understanding of the geomicrobiology of desert hypogene cave systems.


Assuntos
Bactérias , Cavernas , Minerais , Cavernas/microbiologia , Minerais/análise , Bactérias/classificação , Bactérias/metabolismo , Nevada , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Parques Recreativos , RNA Ribossômico 16S/genética , Ácidos Sulfúricos , Filogenia , Microbiota , Sulfato de Cálcio/química , Microscopia Eletrônica de Varredura
3.
PLoS One ; 19(4): e0300021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635818

RESUMO

Trypanosoma cruzi (T. cruzi) is the causative agent of Chagas' disease, a parasitic infection responsible for significant morbidity and mortality in Latin America. The current treatments have many serious drawbacks and new drugs are urgently required. In the UK, T. cruzi is classified by the Advisory Committee on Dangerous Pathogens (ACDP) as a Hazard Group 3 organism and strict safety practices must be adhered to when handling this pathogen in the laboratory. Validated inactivation techniques are required for safe T. cruzi waste disposal and removal from Containment Level 3 (CL3) facilities for storage, transportation and experimental analysis. Here we assess three T. cruzi. inactivation methods. These include three freeze-thaw cycles, chemical inactivation with Virkon disinfectant, and air drying on Whatman FTA cards (A, B, C, Elute) and on a Mitra microsampling device. After each treatment parasite growth was monitored for 4-6 weeks by microscopic examination. Three freeze-thaw cycles were sufficient to inactivate all T. cruzi CLBrener Luc life cycle stages and Silvio x10/7 A1 large epimastigote cell pellets up to two grams wet weight. Virkon treatment for one hour inactivated T. cruzi Silvio x10/7 subclone A1 and CLBrener Luc both in whole blood and cell culture medium when incubated at a final concentration of 2.5% Virkon, or at ≥1% Virkon when in tenfold excess of sample volume. Air drying also inactivated T. cruzi CLBrener Luc spiked blood when dried on FTA A, B or Elute cards for ≥30 minutes and on a Mitra Microsampler for two hours. However, T. cruzi CLBrener Luc were not inactivated on FTA C cards when dried for up to two hours. These experimentally confirmed conditions provide three validated T. cruzi inactivation methods which can be applied to other related ACDP Hazard Group 2-3 kinetoplastid parasites.


Assuntos
Aminopiridinas , Doença de Chagas , Ácidos Sulfúricos , Trypanosoma cruzi , Humanos , Doença de Chagas/parasitologia , Peróxidos
4.
Dent Med Probl ; 61(2): 249-255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38652924

RESUMO

BACKGROUND: As polyether ether ketone (PEEK) is a relatively new material in dentistry, its bonding properties with regard to dental acrylic base materials are not fully known. To ensure the long-term success of removable dentures with a PEEK framework, the base materials must be well bonded to each other. OBJECTIVES: The study aimed to investigate the effects of different kinds of surface roughening treatment on PEEK and acrylic resin bonding. MATERIAL AND METHODS: Eighty PEEK specimens (N = 80) were randomly divided into 5 groups (n = 16 per group) and subjected to various surface roughening treatment (control, grinding, sandblasting, tribochemical silica coating (CoJet), and sulfuric acid etching). Heat-polymerized acrylic resin was applied to the treated surfaces of the PEEK specimens. The shear bond strength (SBS) test, environmental scanning electron microscopy (ESEM) analysis and three-dimensional (3D) surface topography analysis were performed. The statistical analysis of the data was conducted using the analysis of variance (ANOVA) and Tukey's multiple comparison test. RESULTS: The one-way ANOVA showed significant differences in the SBS values between the groups (p = 0.001). Sandblasting, tribochemical silica coating and sulfuric acid etching resulted in high SBS values (p = 0.001). The highest SBS values were observed in the sulfuric acid etching group (8.83 ±3.63 MPa), while the lowest SBS values were observed in the control group (3.33 ±2.50 MPa). CONCLUSIONS: The additional roughening treatment applied to the PEEK surface increases the bond strength with heat-polymerized acrylic resin.


Assuntos
Resinas Acrílicas , Benzofenonas , Colagem Dentária , Cetonas , Polietilenoglicóis , Polímeros , Propriedades de Superfície , Projetos Piloto , Cetonas/química , Polietilenoglicóis/química , Resinas Acrílicas/química , Microscopia Eletrônica de Varredura , Teste de Materiais , Humanos , Resistência ao Cisalhamento , Ácidos Sulfúricos/química , Análise do Estresse Dentário
5.
Carbohydr Res ; 539: 109104, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643706

RESUMO

Cellulose nanocrystals (CNCs) are crystalline domains isolated from cellulosic fibers. They have been utilized in a wide range of applications, such as reinforcing fillers, antibacterial agents and manufacturing of biosensors. Whitin this context, the aim of this work was to obtain and analyze CNCs extracted from bacterial nanocellulose (BNC) using two distinct methods combined with milling pre-treatment: an acidic hydrolysis using 64 % sulfuric acid and an enzymatic hydrolysis using a commercial cellulase enzyme mixture. The CNCs obtained from the enzymatic route (e-CNCs) were observed to be spherical nanoparticles with diameter of 56 ± 11 nm. In contrast, the CNCs from the acid hydrolysis (a-CNCs) appeared as needle-shaped nanoparticles with a high aspect ratio with lengths/widths of 158 ± 64 nm/11 ± 2 nm. The surface zeta potential (ZP) of the a-CNCs was -30,8 mV, whereas the e-CNCs has a potential of +2.70 ± 3.32 mV, indicating that a-CNCs consisted of negatively charged particles with higher stability in solution. Although the acidic route resulted in nanocrystals with a slightly higher crystallinity index compared to the enzymatic route, e-CNCs was found to be more thermally stable than BNC and a-CNCs. Here, we also confirmed the safety of a-CNCs and e-CNCs using L929 cell line. Lastly, this article describes two different CNCs synthesis approaches that leads to the formation of nanoparticles with different dimensions, morphology and unique physicochemical properties. To the best of our knowledge, this is the first study to yield spherical nanoparticles as a result of BNC enzymatic treatment.


Assuntos
Celulose , Nanopartículas , Celulose/química , Nanopartículas/química , Hidrólise , Celulase/química , Celulase/metabolismo , Ácidos Sulfúricos/química , Animais , Camundongos , Tamanho da Partícula
6.
Environ Sci Pollut Res Int ; 31(20): 29513-29524, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578595

RESUMO

Municipal sludge generated from wastewater treatment plants can cause a serious environmental and economic burden. A novel hybrid conditioning strategy was developed to enhance the dewatering performance of sludge, employing 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4mim][CF3SO3]) treatment combined with H2SO4 acidification. Following conditioning, the capillary suction time ( CST normalized ), the specific resistance of filtration (SRF), and moisture content of the treated sludge were decreased to 1.99 ± 0.24 (s·L/g TSS), 1.33 ± 0.05 (1012 m/kg), and 72.01 ± 0.94%, respectively. The results were superior to those achieved with sludge treated solely by H2SO4 acidification or [C4mim][CF3SO3] alone. The biomacromolecules within the sludge flocs were dissolved by [C4mim][CF3SO3], while simultaneously, the microorganisms were inactivated. Consequently, the colloidal-like structures of the sludge flocs were destroyed. Additionally, the ionizable functional groups of the biomacromolecules were instantly protonated by the introduced H+ ions, and their negative charges were neutralized during the H2SO4 acidification process. The presence of H+ ions promoted the weakening of electrostatic repulsion between the sludge flocs. As a result, an enhancement of sludge dewaterability was obtained after treatment with [C4mim][CF3SO3] and H2SO4 acidification. The finding of the intensification mechanism of sludge dewaterability brought by hybrid treatment of acidification and [C4mim][CF3SO3] provides novel insights into the field of sludge disposal.


Assuntos
Líquidos Iônicos , Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Líquidos Iônicos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Ácidos Sulfúricos/química , Filtração
7.
Astrobiology ; 24(4): 386-396, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498680

RESUMO

Scientists have long speculated about the potential habitability of Venus, not at the 700K surface, but in the cloud layers located at 48-60 km altitudes, where temperatures match those found on Earth's surface. However, the prevailing belief has been that Venus' clouds cannot support life due to the cloud chemical composition of concentrated sulfuric acid-a highly aggressive solvent. In this work, we study 20 biogenic amino acids at the range of Venus' cloud sulfuric acid concentrations (81% and 98% w/w, the rest water) and temperatures. We find 19 of the biogenic amino acids we tested are either unreactive (13 in 98% w/w and 12 in 81% w/w) or chemically modified in the side chain only, after 4 weeks. Our major finding, therefore, is that the amino acid backbone remains intact in concentrated sulfuric acid. These findings significantly broaden the range of biologically relevant molecules that could be components of a biochemistry based on a concentrated sulfuric acid solvent.


Assuntos
Vênus , Aminoácidos , Atmosfera/química , Solventes , Ácidos Sulfúricos/química
8.
Waste Manag ; 178: 311-320, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428381

RESUMO

Animal slurry storage is an important ammonia (NH3) emission source. Sulfuric acid (H2SO4)-modified vermiculite coverage is a new promising technology for controlling NH3 emission from slurry storage. However, the underlying mechanisms in controlling the mitigation effect remain unclear. Here, a series of experiments to determine the effect of H2SO4 on the modified vermiculite properties, floating persistence, and NH3 mitigation effect was conducted. Results showed that abundant H2SO4 and sulfate remained on the outer surface and in the extended inner pores of the vermiculite with acidifying H+ concentrations higher than 5 M. An initial strong instantaneous acidification of surface slurry released rich carbon dioxide bubbles, strengthening cover floating performance. An acidification in the vermiculite cover layer and a good coverage inhibition interacted, being the two leading mechanisms for mitigating NH3 during initial 40-50 days of storage. The bacterial-amoA gene dominated the conversion of NH3 to nitrous oxide after 50 days of storage. Vermiculite with 5 M H+ modification reduced the NH3 emissions by 90 % within the first month of slurry storage and achieved a 64 % mitigation efficiency throughout the 84 days period. With the development of the aerial spraying equipment such as agricultural drones, acidifying vermiculite coverage hold promise as an effective method for reducing NH3 emission while absorbing nutrients from liquid slurry storage tank or lagoon. This design should now be tested under field conditions.


Assuntos
Silicatos de Alumínio , Amônia , Ácidos Sulfúricos , Animais , Amônia/análise , Agricultura , Esterco , Óxido Nitroso/análise
9.
Waste Manag ; 179: 110-119, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38471249

RESUMO

Toxic substances, like fluoride salts present in spent cathode carbon (SCC), have been a great risk to the environment and public health. Our approach involves alkali leaching to eliminate soluble fluoride, followed by microwave hydrothermal acid leaching to efficiently remove insoluble CaF2 from SCC. The optimized conditions, including a temperature of 353 K, a solid-liquid ratio of 1:20, and a 60-minute reaction time, resulted in an impressive 95.6 % removal of fluoride from SCC. Various characterization techniques were employed to analyze the composition, micro-morphology, and elemental content of the materials before and after the leaching process. Furthermore, critical process parameters on the leaching separation of insoluble CaF2 during microwave hydrothermal acid leaching were systematically investigated. The study removal mechanism revealed the transformation of insoluble CaF2 in the process of microwave oxidation insertion-hydrothermal acid leaching for SCC. The kinetic characteristics of the two-stage leaching process of CaF2 at different temperatures were analyzed according to the shrinkage kernel model. The results indicate that the two-stage leaching process of CaF2 is affected by mixing control and by diffusion control, severally. The expansion of the graphite flake layer of SCC through oxidative intercalation was identified as a critical process for the thorough removal of CaF2. Microwave hydrothermal acid leaching demonstrated a 17 % improvement over traditional hydrothermal acid leaching within the same reaction time, showcasing a noteworthy enhancement in fluoride removal. Consequently, the microwave oxidizing intercalation-hydrothermal acid leaching treatment of SCC, as explored in this study, offers an effective approach for achieving deep defluoridation of SCC.


Assuntos
Alumínio , Fluoreto de Cálcio , Ácidos Sulfúricos , Carbono , Fluoretos , Micro-Ondas
10.
Sci Rep ; 14(1): 5542, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448468

RESUMO

There are several industrial uses for carbon black (CB), an extremely fine powdered form of elemental carbon that is made up of coalesced particle aggregates and almost spherical colloidal particles. Most carbon black is produced from petroleum-derived feedstock, so there is a need to find an alternative method to produce CB, which relies on renewable resources such as algae and agricultural waste. A process involving hydrolysis, carbonization, and pyrolysis of green algae and sugarcane bagasse was developed, as the optimal hydrolysis conditions (16N sulfuric acid, 70 °C, 1 h, 1:30 g/ml GA or SC to sulfuric acid ratio), a hydrolysis ratio of 62% for SC and 85% for GA were achieved. The acidic solution was carbonized using a water bath, and the solid carbon was then further pyrolyzed at 900 °C. The obtained carbon black has a high carbon content of about 90% which is confirmed by EDX, XRD, and XPS analysis. By comparison carbon black from sugar cane bagasse (CBB) and carbon black from green algae Ulva lactuca (CBG) with commercial carbon black (CCB) it showed the same morphology which was confirmed by SEM analysis. The BET data, showed the high specific surface area of prepared CB, which was 605 (m2/g) for CBB and 424 (m2/g) for CBG compared with commercial carbon black (CBB) was 50 (m2/g), also the mean pore diameter of CBB, CBG and CCB indicated that CBB and CBG were rich in micropores, but CCB was rich in mesoporous according to IUPAC classification. This study might have created a technique that can be used to make carbon black from different kinds of biomass.


Assuntos
Clorófitas , Algas Comestíveis , Nanopartículas , Saccharum , Ácidos Sulfúricos , Ulva , Celulose , Fuligem , Carbono
11.
Int J Biol Macromol ; 263(Pt 1): 130111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346614

RESUMO

Sugarcane bagasse was pretreated with dilute phosphoric acid or sulfuric acid to facilitate cellulose hydrolysis and lignin extraction. With phosphoric acid, only 8 % of the initial cellulose was lost after delignification, whereas pretreatment with sulfuric acid resulted in the solubilization of 38 % of the initial cellulose. After enzymatic hydrolysis, the process using phosphoric acid produced approximately 35 % more glucose than that using sulfuric acid. In general, the lignins showed 95-97 % purity (total lignin, w/w), an average molar mass of 9500-10,200 g mol-1, a glass transition temperature of 140-160 °C, and a calorific value of 25 MJ kg-1. Phosphoric acid lignin (PAL) was slightly more polar than sulfuric acid lignin (SAL). PAL had 13 % more oxidized units and 20 % more OH groups than SAL. Regardless of the acid used, the lignins shared similar properties, but differed slightly in the characteristics of their functional groups and chemical bonds. These findings show that pretreatment catalyzed with either of the two acids resulted in lignin with sufficiently good characteristics for use in industrial processes.


Assuntos
Celulose , Saccharum , Celulose/química , Lignina/química , Saccharum/química , Hidrólise , Ácidos Fosfóricos , Ácidos Sulfúricos
12.
Environ Sci Pollut Res Int ; 31(13): 20651-20664, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383930

RESUMO

Traditional pyrolysis biochar has been widely employed to treat dye wastewater. However, there are some problems in the pyrolysis process, such as the generation of harmful gases and the low content of silico-oxygen functional groups to promote adsorption. Straw biochar (Ac-BCbm) was prepared by sulfuric acid co-ball milling method. The adsorption performance and adsorption mechanism of rhodamine B (RhB) under different preparation conditions and factors were investigated. The results showed that the adsorption rate of Ac-BCbm on RhB was up to 94.9%, which was 60.5% and 55.8% higher than that of ball-milling straw (STbm) and biochar prepared by pyrolysis (STBC600), respectively. The Ac-BCbm had better adaptability under different pH and common interfering ions for remove RhB. Characterization and DFT simulation analysis revealed that the sulfuric acid co-ball milling process promoted the formation of Si-OH and Si-O-CH3 oxygen-containing functional groups of Si component in straw, which enhanced the hydrogen bonding interactions and effectively improved the adsorption efficiency. This study investigated a new strategy for biochar preparation by sulfuric acid co-ball milling, which provides an additional development direction for the efficient resource utilization of straw.


Assuntos
Rodaminas , Ácidos Sulfúricos , Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Oxigênio
13.
Waste Manag ; 177: 135-145, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325014

RESUMO

The surging affluent in society, concomitant with increasing global demand for electrical and electronic devices, has led to a sharp rise in e-waste generation. E-wastes contain significant amounts of precious metals, such as gold, which can be recovered and reused, thus reducing the environmental impact of mining new metals. Selective recovery using sustainable and cost-effective materials and methods is therefore vital. This study undertook a detailed evaluation of low-cost biomass-derived activated carbon (AC) for selective recovery of Au from simulated e-waste streams. Utilizing high-performance synthesized H2SO4-AC, the adsorption mechanisms were explicated through a combination of characterization techniques, i.e., FE-SEM, BET, TGA, XRD, FTIR, XPS, and DFT simulations to conceptualize the atomic and molecular level interactions. Optimization of coordination geometries between model H2SO4-AC and anionic complexes revealed the most stable coordination for AuCl4- (binding energy, Eb = -4064.15 eV). The Au selectivity was further enhanced by reduction of Au(III) to Au(0), as determined by XRD and XPS. The adsorption reaction was relatively fast (∼5h), and maximum Au uptake reached 1679.74 ± 37.66 mg/g (among highest), achieved through adsorption isotherm experiments. Furthermore, a mixture of 0.5 M thiourea/1 M HCl could effectively elute the loaded Au and regenerate the spent AC. This study presents radical attempts to examine in detail, the synergistic effects of H2SO4 activation on biomass-derived ACs for selective recovery of Au from complex mixtures. The paper therefore describes a novel approach for the selective recovery of Au from e-wastes using multifunctional biomass-derived H2SO4-AC.


Assuntos
Carvão Vegetal , Ouro , Biomassa , Ácidos Sulfúricos
14.
BMC Infect Dis ; 24(1): 212, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365598

RESUMO

AIMS: We investigated the antibacterial efficacy of Umonium38 and Virkon® against Burkholderia pseudomallei, Escherichia coli, Pseudomonas aeruginosa and Methicillin-Resistant Staphylococcus aureus (MRSA) up to 14 days following treatment. METHODS AND RESULTS: Umonium38 was diluted to 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3%, tested against the bacterial strains at various contact times (15 min to 24 h), and incubated for up to 14 days. A minimum concentration of 0.5% Umonium38 with a contact time of 15 min effectively killed approximately 108 CFU/ml of all four bacterial species. No growth was observed on agar plates from day 0 until day 14 for all six concentrations. The bacteria were also inactivated by a 30-minute treatment time using Virkon® 1% solution. CONCLUSIONS: Umonium38 effectively inactivates B. pseudomallei, E. coli, P. aeruginosa and MRSA at a concentration of ≥ 0.5% with a contact time of at least 15 min. The antimicrobial effect of Umonium38 remained for 14 days.


Assuntos
Burkholderia pseudomallei , Staphylococcus aureus Resistente à Meticilina , Peróxidos , Ácidos Sulfúricos , Humanos , Escherichia coli , Pseudomonas aeruginosa , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Bactérias
15.
Environ Res ; 248: 118286, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38280524

RESUMO

This study assesses the environmental impact of pine chip-based biorefinery processes, focusing on bioethanol, xylonic acid, and lignin production. A cradle-to-gate Life Cycle Assessment (LCA) is employed, comparing a novel biphasic pretreatment method (p-toluenesulfonic acid (TsOH)/pentanol, Sc-1) with conventional sulfuric acid pretreatment (H2SO4, Sc-2). The analysis spans biomass handling, pretreatment, enzymatic hydrolysis, yeast fermentation, and distillation. Sc-1 yielded an environmental impact of 1.45E+01 kPt, predominantly affecting human health (96.55%), followed by ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed 32.61%, 29.28%, and 38.11% to the total environmental burdens, respectively. Sc-2 resulted in an environmental burden of 1.64E+01 kPt, with a primary impact on human health (96.56%) and smaller roles for ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed differently at 22.59%, 12.5%, and 64.91%, respectively. Electricity generation was predominant in both scenarios, accounting for 99.05% of the environmental impact, primarily driven by its extensive usage in biomass handling and pretreatment processes. Sc-1 demonstrated a 13.05% lower environmental impact than Sc-2 due to decreased electricity consumption and increased bioethanol and xylonic acid outputs. This study highlights the pivotal role of pretreatment methods in wood-based biorefineries and underscores the urgency of sustainable alternatives like TsOH/pentanol. Additionally, adopting greener electricity generation, advanced technologies, and process optimization are crucial for reducing the environmental footprint of waste-based biorefineries while preserving valuable bioproduct production.


Assuntos
Ecossistema , Lignina , Ácidos Sulfúricos , Humanos , Pentanóis , Biotecnologia/métodos , Biomassa , Saccharomyces cerevisiae , Hidrólise , Biocombustíveis
16.
J Reprod Dev ; 70(1): 25-29, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38171908

RESUMO

The aim of the present study was to develop a semi-quantitative urine pregnancy test for mares based on the Cuboni reaction and to verify the reliability of this test. The urine specimens were hydrolyzed by heating in the presence of hydrochloric acid. The resulting free estrogens were extracted from the urine matrix using toluene. Sulfuric acid was added to the toluene extract and the mixture was heated again. The lower layer in the test tube containing sulfuric acid was used for fluorescence measurements with excitation at 355 nm and measurement at 535 nm. The fluorometric Cuboni test revealed that the fluorescence counts in urine samples collected after the second trimester of gestation were significantly higher than those obtained from barren mares. The levels of estrogens, including equilin, estrone and estardiol-17ß exhibited a dose-dependent increase in fluorescence counts, whereas other steroids, such as progesterone, testosterone, and cortisol, did not affect fluorescence. Heat treatment of urine samples with hydrochloric acid significantly increased the fluorescence counts in those collected after the second trimester of gestation compared to non-pregnant samples, implying the presence of large amounts of conjugated estrogens in pregnant mare urine. Fluorescence counts in urine samples obtained during pregnancy showed a positive relationship with estrone concentrations as measured by enzyme immunoassay. The results of the present study showed that the fluorometric Cuboni test facilitates urine fluorescence counts depending on the urinary estrogen content and is capable of discriminating between pregnancy and non-pregnancy states beyond the second trimester of gestation in mares.


Assuntos
Estrona , Prenhez , Ácidos Sulfúricos , Gravidez , Cavalos , Animais , Feminino , Ácido Clorídrico , Reprodutibilidade dos Testes , Estrogênios , Tolueno
17.
Chem Pharm Bull (Tokyo) ; 72(1): 75-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38233134

RESUMO

The oxidative cleavage reaction of pyrrolidine-2-methanols to γ-lactams has been described. In this reaction, [4-iodo-3-(isopropylcarbamoyl)phenoxy]acetic acid and powdered Oxone (2KHSO5·KHSO4·K2SO4) were employed as the catalyst and co-oxidant, respectively. The reaction is efficient and environmentally benign because it produces various lactams from readily available substrates in moderate to excellent yields using organocatalyst and inorganic non-toxic co-oxidant.


Assuntos
Metanol , Ácidos Sulfúricos , Oxirredução , Oxidantes
18.
Int J Biol Macromol ; 259(Pt 2): 129303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216018

RESUMO

Cellulose nanocrystals (CNC) conventionally involve highly concentrated sulphuric acid, which typically resulted in the formation of undesirable by-products. Although less corrosive mineral acids have been explored as alternatives, high concentrations are still required. In this study, CNC was successfully isolated from Leucaena leucocephala wood using mild sulphuric acid with acetic acid as protic solvent, and it was further studied with the addition of Lewis acids in the form of multivalent transition metal salts as co-catalyst. Selected divalent and trivalent transition metal salts including (Cr(NO3)3, Fe(NO3)3, Co(NO3)2, and Ni(NO3)2) were investigated. The morphology, chemical structure, particle size, and physicochemical properties of the CNCs were determined. Controlled depolymerization of cellulose was observed using transmission electron microscopy (TEM). Rod-like morphology for all CNCs was obtained during the hydrolysis process with the smallest CNC particles found at an average length of 278.1 ± 35.1 nm and a diameter of 13.4 ± 3.0 nm. The results showed that higher valence state metal ions resulted in better cellulose hydrolysis efficiency. In addition, the use of transition metal salt as a co-catalyst improved production efficiency and minimised carbonization of CNC while maintaining desired crystallinity and thermal properties.


Assuntos
Celulose , Nanopartículas , Celulose/química , Solventes , Ácido Acético , Sais , Nanopartículas/química , Ácidos Sulfúricos/química
19.
Astrobiology ; 24(4): 371-385, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37306952

RESUMO

Venus is Earth's sister planet, with similar mass and density but an uninhabitably hot surface, an atmosphere with a water activity 50-100 times lower than anywhere on Earths' surface, and clouds believed to be made of concentrated sulfuric acid. These features have been taken to imply that the chances of finding life on Venus are vanishingly small, with several authors describing Venus' clouds as "uninhabitable," and that apparent signs of life there must therefore be abiotic, or artefactual. In this article, we argue that although many features of Venus can rule out the possibility that Earth life could live there, none rule out the possibility of all life based on what we know of the physical principle of life on Earth. Specifically, there is abundant energy, the energy requirements for retaining water and capturing hydrogen atoms to build biomass are not excessive, defenses against sulfuric acid are conceivable and have terrestrial precedent, and the speculative possibility that life uses concentrated sulfuric acid as a solvent instead of water remains. Metals are likely to be available in limited supply, and the radiation environment is benign. The clouds can support a biomass that could readily be detectable by future astrobiology-focused space missions from its impact on the atmosphere. Although we consider the prospects for finding life on Venus to be speculative, they are not absent. The scientific reward from finding life in such an un-Earthlike environment justifies considering how observations and missions should be designed to be capable of detecting life if it is there.


Assuntos
Vênus , Planetas , Ácidos Sulfúricos , Água
20.
Environ Res ; 242: 117811, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043896

RESUMO

Clay minerals such as Halloysite nanotubes (HNTs), abundantly available green nanomaterial, exhibit a significant advantage in biomedical applications such as drug delivery, antibacterial and antimicrobials, tissue engineering or regeneration, etc. Because of the mesoporous structure and high absorbability, HNTs exhibit great potential as a nanocarrier in drug delivery applications. The sulfuric acid treatment enhances the surface area of the HNTs and thereby improves their drug-loading capacity by enlarging their lumen space/inner diameter. In the present investigation, based on the literature that supports the efficacy of drug loading after acid treatment, a dual treatment was performed to functionalize the HNTs surface. First, the HNTs were etched and functionalized using sulfuric acid. The acid-functionalized HNTs underwent another treatment using (3-aminopropyl) triethoxysilane (APTES) to better interact the drug molecules with the HNTs surfaces for efficient drug loading. Augmentin, a potential drug molecule of the penicillin group, was used for HNTs loading, and their antibacterial properties, cytotoxicity, and cumulative drug release (%) were evaluated. Different characterization techniques, such as X-ray diffractometer (XRD) and Fourier Transform Infra-Red (FT-IR), confirm the loading of Augmentin to the APTES@Acid HNTs. TEM images confirm the effective loading of the drug molecule with the HNTs. The drug encapsulation efficiency shows 40.89%, as confirmed by the Thermogravimetric Analysis (TGA). Also, the Augmentin-loaded APTES@Acid HNTs exhibited good antibacterial properties against E. coli and S. aureus and low cytotoxicity, as confirmed by the MTT assay. The drug release studies confirmed the sustainable release of Augmentin from the APTES@Acid HNTs. Hence, the treated HNTs can be considered as a potential nanocarrier for effectively delivering Augmentin and promoting enhanced therapeutic benefits.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio , Nanotubos , Ácidos Sulfúricos , Argila/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Nanotubos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...