Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.527
Filtrar
1.
Methods Mol Biol ; 2814: 119-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954202

RESUMO

Largely due to its simplicity, while being more like human cells compared to other experimental models, Dictyostelium continues to be of great use to discover basic molecular mechanisms and signaling pathways underlying evolutionarily conserved biological processes. However, the identification of new protein interactions implicated in signaling pathways can be particularly challenging in Dictyostelium due to its extremely fast signaling kinetics coupled with the dynamic nature of signaling protein interactions. Recently, the proximity labeling method using engineered ascorbic acid peroxidase 2 (APEX2) in mammalian cells was shown to allow the detection of weak and/or transient protein interactions and also to obtain spatial and temporal resolution. Here, we describe a protocol for successfully using the APEX2-proximity labeling method in Dictyostelium. Coupled with the identification of the labeled proteins by mass spectrometry, this method expands Dictyostelium's proteomics toolbox and should be widely useful for identifying interacting partners involved in a variety of biological processes in Dictyostelium.


Assuntos
Ascorbato Peroxidases , Dictyostelium , Proteômica , Dictyostelium/metabolismo , Ascorbato Peroxidases/metabolismo , Ascorbato Peroxidases/genética , Proteômica/métodos , Mapeamento de Interação de Proteínas/métodos , Espectrometria de Massas/métodos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Transdução de Sinais , Coloração e Rotulagem/métodos , Endonucleases , Enzimas Multifuncionais
2.
Sci Rep ; 14(1): 15506, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969725

RESUMO

Relatively low levels of antioxidant enzymes coupled with high oxygen metabolism result in the formation of numerous oxidative DNA damages in the tissues of the central nervous system. Recently, kynurenic acid (KYNA), knowns for its neuroprotective properties, has gained increasing attention in this context. Therefore, our hypothesis assumed that increased KYNA levels in the brain would positively influence mRNA expression of selected enzymes of the base excision repair pathway as well as enhance their efficiency in excising damaged nucleobases in specific areas of the sheep brain. The study was conducted on adult anestrous sheep (n = 18), in which two different doses of KYNA (20 and 100 µg/day) were infused into the third brain ventricle for three days. Molecular and biochemical analysis included the hypothalamus (preoptic and mediol-basal areas), hippocampus (CA3 field) and amygdala (central amygdaloid nucleus), dissected from the brain of sheep euthanized immediately after the last infusion. The results revealed a significant increase P < 0.001) in the relative mRNA abundance of N-methylpurine DNA glycosylase (MPG) following administration of both dose of KYNA across all examined tissues. The transcription of thymine-DNA glycosylase (TDG) increased significantly (P < 0.001) in all tissues in response to the lower KYNA dose compared to the control group. Moreover, 8-oxoguanine (8-oxoG) DNA glycosylase (OGG1) mRNA levels were also higher in both animal groups (P < 0.001). In addition, in the hypothalamus, hippocampus and amygdala, AP endonuclease 1 (APE1) mRNA expression increased under both doses of KYNA. Moreover, the both dose of KYNA significantly stimulated the efficiency of 8-oxoG excision in hypothalamus and amygdala (P < 0.05-0.001). The lower and higher doses of KYNA significantly influenced the effectiveness of εA and εC in all structures (P < 0.01-0.001). In conclusion, the favorable effect of KYNA in the brain may include the protection of genetic material in nerve and glial cells by stimulating the expression and efficiency of BER pathway enzymes.


Assuntos
Encéfalo , DNA Glicosilases , Reparo do DNA , Ácido Cinurênico , Animais , Reparo do DNA/efeitos dos fármacos , Ovinos , Ácido Cinurênico/metabolismo , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Dano ao DNA/efeitos dos fármacos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Feminino , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Reparo por Excisão
3.
Aging (Albany NY) ; 16(12): 10435-10445, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38885059

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) represents a highly immunogenic malignancy. Immunologic tolerance facilitated by myeloid-derived suppressor cells (MDSCs) is implicated in primary or secondary resistance mechanisms in NSCLC. The potential role of APE1 in regulating NSCLC metastasis by targeting MDSCs remains uncertain. METHODS: This study utilized a plasmid, Plxpsp-mGM-CSF, to induce elevated granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in A549 cells. Tumor transplantation experiments involved A549, A549+GM-CSF, and A549+GM-CSF-siAPE1 cell lines. Evaluation encompassed MDSCs, Treg cells, IgG, CD3, and CD8 levels. RESULTS: Notably, lung cancer tissues and cells displayed markedly reduced APE1 expression. siAPE1 transfection significantly curtailed tumor growth compared to the A549+GM-CSF group. APE1 knockdown orchestrated immune system modulation in lung tumor mice, characterized by diminished MDSCs but augmented Treg cells, IgG, CD3, and CD8. Additionally, APE1 knockdown led to reduced levels of pro-MDSC cytokines (HGF, CCL5, IL-6, CCL12) and a concurrent upregulation of the anti-MDSC cytokine IL-1ra. Furthermore, APE1 knockdown impeded cell viability in both A549 and H1650 cells. CONCLUSIONS: Transplantation of A549-GM-CSF amplified MDSC levels, fostering accelerated tumor growth, while mitigating MDSC levels through APE1 knockdown hindered tumor progression and alleviated inflammatory infiltration in lung cancer tissues. Strategies targeting the APE1/MDSC axis offer a promising approach for lung cancer prevention and treatment, presenting novel insights for NSCLC management.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Neoplasias Pulmonares , Células Supressoras Mieloides , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/metabolismo , Humanos , Camundongos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Células A549 , Técnicas de Silenciamento de Genes , Metástase Neoplásica , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Masculino , Feminino
4.
Anal Chem ; 96(23): 9570-9575, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38822787

RESUMO

MicroRNA (miRNA) and apurinic/apyrimidinic endonuclease 1 (APE1) have been reported to be closely associated with cancers, making them potential crucial biomarkers and therapeutic targets. However, focusing on the detection of a single target is not conducive to the diagnosis and prognosis assessment of diseases. In this study, an AND logic-gate-based dual-locking hairpin-mediated catalytic hairpin assembly (DL-CHA) was developed for sensitive and specific detection of microRNA and APE1. By addition of a lock to each of the hairpins, with APE1 and microRNA serving as keys, fluorescence signals could only be detected in the presence of simultaneous stimulation by APE1 and miRNA-224. This indicated that the biosensor could operate as an AND logic gate. DL-CHA exhibited advantages such as a low background, rapid response, and high logic capability. Therefore, the biosensor serves as a novel approach to cancer diagnosis with significant potential applications.


Assuntos
Técnicas Biossensoriais , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , MicroRNAs , MicroRNAs/análise , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Técnicas Biossensoriais/métodos , Lógica , Limite de Detecção
5.
Anal Chem ; 96(24): 10084-10091, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38836421

RESUMO

Due to the potential off-tumor signal leakage and limited biomarker content, there is an urgent need for stimulus-responsive and amplification-based tumor molecular imaging strategies. Therefore, two tetrahedral framework DNA (tFNA-Hs), tFNA-H1AP, and tFNA-H2, were rationally engineered to form a polymeric tFNA network, termed an intelligent DNA network, in an AND-gated manner. The intelligent DNA network was designed for tumor-specific molecular imaging by leveraging the elevated expression of apurinic/apyrimidinic endonuclease 1 (APE1) in tumor cytoplasm instead of normal cells and the high expression of miRNA-21 in tumor cytoplasm. The activation of tFNA-H1AP can be achieved through specific recognition and cleavage by APE1, targeting the apurinic/apyrimidinic site (AP site) modified within the stem region of hairpin 1 (H1AP). Subsequently, miRNA-21 facilitates the hybridization of activated H1AP on tFNA-H1AP with hairpin 2 (H2) on tFNA-H2, triggering a catalytic hairpin assembly (CHA) reaction that opens the H1AP at the vertices of tFNA-H1AP to bind with H2 at the vertices of tFNA-H2 and generate fluorescence signals. Upon completion of hybridization, miRNA-21 is released, initiating the subsequent cycle of the CHA reaction. The AND-gated intelligent DNA network can achieve specific tumor molecular imaging in vivo and also enables risk stratification of neuroblastoma patients.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA , MicroRNAs , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , MicroRNAs/metabolismo , MicroRNAs/análise , DNA/química , DNA/metabolismo , Imagem Molecular/métodos , Animais , Imagem Óptica
6.
Biosensors (Basel) ; 14(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38920578

RESUMO

A fluorogenic aptamer (FA)-based hybridization chain reaction (HCR) could provide a sensitive and label-free signal amplification method for imaging molecules in living cells. However, existing FA-HCR methods usually face some problems, such as a complicated design and significant background leakage, which greatly limit their application. Herein, we developed an FA-centered HCR (FAC-HCR) method based on a remote toehold-mediated strand displacement reaction. Compared to traditional HCRs mediated by four hairpin probes (HPs) and two HPs, the FAC-HCR displayed significantly decreased background leakage and improved sensitivity. Furthermore, the FAC-HCR was used to test a non-nucleic acid target, apurinic/apyrimidinic endonuclease 1 (APE1), an important BER-involved endonuclease. The fluorescence analysis results confirmed that FAC-HCR can reach a detection limit of 0.1174 U/mL. By using the two HPs for FAC-HCR with polyetherimide-based nanoparticles, the activity of APE1 in living cells can be imaged. In summary, this study could provide a new idea to design an FA-based HCR and improve the performance of HCRs in live cell imaging.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Hibridização de Ácido Nucleico , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Corantes Fluorescentes
7.
J Biol Chem ; 300(6): 107337, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705397

RESUMO

APE2 plays important roles in the maintenance of genomic and epigenomic stability including DNA repair and DNA damage response. Accumulating evidence has suggested that APE2 is upregulated in multiple cancers at the protein and mRNA levels and that APE2 upregulation is correlative with higher and lower overall survival of cancer patients depending on tumor type. However, it remains unknown how APE2 protein abundance is maintained and regulated in cells. Here, we provide the first evidence of APE2 regulation via the posttranslational modification ubiquitin. APE2 is poly-ubiquitinated via K48-linked chains and degraded via the ubiquitin-proteasome system where K371 is the key residue within APE2 responsible for its ubiquitination and degradation. We further characterize MKRN3 as the E3 ubiquitin ligase for APE2 ubiquitination in cells and in vitro. In summary, this study offers the first definition of the APE2 proteostasis network and lays the foundation for future studies pertaining to the posttranslational modification regulation and functions of APE2 in genome integrity and cancer etiology/treatment.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Ubiquitinação , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Ubiquitina/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , Endonucleases , Enzimas Multifuncionais
8.
J Biol Chem ; 300(6): 107355, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718860

RESUMO

Base excision repair (BER) requires a tight coordination between the repair enzymes through protein-protein interactions and involves gap filling by DNA polymerase (pol) ß and subsequent nick sealing by DNA ligase (LIG) 1 or LIGIIIα at the downstream steps. Apurinic/apyrimidinic-endonuclease 1 (APE1), by its exonuclease activity, proofreads 3' mismatches incorporated by polß during BER. We previously reported that the interruptions in the functional interplay between polß and the BER ligases result in faulty repair events. Yet, how the protein interactions of LIG1 and LIGIIIα could affect the repair pathway coordination during nick sealing at the final steps remains unknown. Here, we demonstrate that LIGIIIα interacts more tightly with polß and APE1 than LIG1, and the N-terminal noncatalytic region of LIG1 as well as the catalytic core and BRCT domain of LIGIIIα mediate interactions with both proteins. Our results demonstrated less efficient nick sealing of polß nucleotide insertion products in the absence of LIGIIIα zinc-finger domain and LIG1 N-terminal region. Furthermore, we showed a coordination between APE1 and LIG1/LIGIIIα during the removal of 3' mismatches from the nick repair intermediate on which both BER ligases can seal noncanonical ends or gap repair intermediate leading to products of single deletion mutagenesis. Overall results demonstrate the importance of functional coordination from gap filling by polß coupled to nick sealing by LIG1/LIGIIIα in the presence of proofreading by APE1, which is mainly governed by protein-protein interactions and protein-DNA intermediate communications, to maintain repair efficiency at the downstream steps of the BER pathway.


Assuntos
DNA Ligase Dependente de ATP , DNA Polimerase beta , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Polimerase beta/metabolismo , DNA Polimerase beta/química , DNA Ligase Dependente de ATP/metabolismo , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/química , Humanos , Ligação Proteica , Reparo por Excisão , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas de Xenopus
9.
Nanoscale ; 16(23): 11290-11295, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38787656

RESUMO

Despite many advances in the use of DNA nanodevices as assembly or disassembly modules to build various complex structures, the simultaneous assembly and disassembly of DNA structures in living cells remains a challenge. In this study, we present a modular engineering approach for assembling and disassembling DNA nanodevices in response to endogenous biomarkers. As a result of pairwise prehybridization of original DNA strands, the DNA nanodevice is initially inert. In an effort to bind one of the paired strands and release its complement, nucleolin competes. Assembly of the DNA nanodevice is initiated when the released complement binds to it, and disassembly is initiated when APE1 shears the assembled binding site of the DNA nanodevice. Spatial-temporal logic control is achieved through our approach during the assembly and disassembly of DNA nanodevices. Furthermore, by means of this assembly and disassembly procedure, the sequential detection and imaging of two tumor markers can be achieved, thereby effectively reducing false-positive signal results and accelerating the detection time. This study emphasizes the simultaneous assembly and disassembly of DNA nanodevices controlled by biomarkers in a simple and versatile manner; it has the potential to expand the application scope of DNA nanotechnology and offers an idea for the implementation of precision medicine testing.


Assuntos
DNA , Nanoestruturas , Fosfoproteínas , Humanos , DNA/química , DNA/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Nanoestruturas/química , Nucleolina , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Biomarcadores Tumorais/metabolismo , Nanotecnologia
10.
Cell Cycle ; 23(5): 602-612, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38717991

RESUMO

Gastric cancer is a highly immunogenic malignancy. Immune tolerance facilitated by myeloid-derived suppressor cells (MDSCs) has been implicated in gastric cancer resistance mechanisms. The potential role of APE1 in regulating gastric cancer metastasis by targeting MDSCs remains uncertain. In this study, the plasmid Plxpsp-mGM-CSF was used to induce high expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) in GES-1 cells. For tumor transplantation experiments, AGS, AGS+GM-CSF and AGS+GM-CSF-siAPE1 cell lines were established by transfection, followed by subcutaneous implantation of tumor cells. MDSCs, Treg cells, IgG, CD3 and CD8 levels were assessed. Transfection with siAPE1 significantly inhibited tumor growth compared to the AGS+GM-CSF group. APE1 gene knockdown modulated the immune system in gastric cancer mice, characterized by a decrease in MDSCs and an increase in Treg cells, IgG, CD3 and CD8. In addition, APE1 gene knockdown resulted in decreased levels of pro-MDSC cytokines (HGF, CCL5, IL-6, CCL12). Furthermore, APE1 gene knockdown inhibited proliferation, migration and invasion of AGS and MKN45 cells. AGS-GM-CSF cell transplantation increased MDSC levels and accelerated tumor growth, whereas APE1 knockdown reduced MDSC levels, inhibited tumor growth and attenuated inflammatory infiltration in gastric cancer tissues. Strategies targeting the APE1/MDSC axis offer a promising approach to the prevention and treatment of gastric cancer, providing new insights into its management.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Células Supressoras Mieloides , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Animais , Células Supressoras Mieloides/metabolismo , Linhagem Celular Tumoral , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Camundongos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Técnicas de Silenciamento de Genes , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Metástase Neoplásica , Camundongos Endogâmicos BALB C , Citocinas/metabolismo , Proliferação de Células/genética
11.
Sci Rep ; 14(1): 11242, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755230

RESUMO

The interaction of Plasmodium falciparum-infected red blood cells (iRBCs) with the vascular endothelium plays a crucial role in malaria pathology and disease. KAHRP is an exported P. falciparum protein involved in iRBC remodelling, which is essential for the formation of protrusions or "knobs" on the iRBC surface. These knobs and the proteins that are concentrated within them allow the parasites to escape the immune response and host spleen clearance by mediating cytoadherence of the iRBC to the endothelial wall, but this also slows down blood circulation, leading in some cases to severe cerebral and placental complications. In this work, we have applied genetic and biochemical tools to identify proteins that interact with P. falciparum KAHRP using enhanced ascorbate peroxidase 2 (APEX2) proximity-dependent biotinylation and label-free shotgun proteomics. A total of 30 potential KAHRP-interacting candidates were identified, based on the assigned fragmented biotinylated ions. Several identified proteins have been previously reported to be part of the Maurer's clefts and knobs, where KAHRP resides. This study may contribute to a broader understanding of P. falciparum protein trafficking and knob architecture and shows for the first time the feasibility of using APEX2-proximity labelling in iRBCs.


Assuntos
Eritrócitos , Plasmodium falciparum , Proteômica , Proteínas de Protozoários , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Humanos , Proteômica/métodos , Malária Falciparum/parasitologia , Malária Falciparum/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Ascorbato Peroxidases/metabolismo , Ligação Proteica , Biotinilação , Endonucleases , Peptídeos , Proteínas , Enzimas Multifuncionais
12.
Braz J Med Biol Res ; 57: e13250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808886

RESUMO

Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/REF-1) is a multifunctional protein acting on cellular signaling pathways, including DNA repair and redox activities. APE1/REF-1 has emerged as a target for cancer therapy, and its role in breast cancer models would reveal new strategies for cancer therapy. APX2009 is a specific APE1/REF-1 redox inhibitor whose anticancer properties have not been described in breast cancer cells. Here, we investigated the effect of the APX2009 treatment in the breast cancer cell lines MDA-MB-231 and MCF-7. Breast cancer cell lines were cultured, and WST1 and colony formation assays were performed to evaluate cell proliferation. Annexin V-FITC/7-AAD and LDH-Glo™ assays were performed to evaluate cell death. The wound healing assay and Matrigel transwell assay were performed after APX2009 treatment to evaluate the cellular migration and invasion processes, respectively. Our findings demonstrated that APX2009 treatment decreased breast cancer cell proliferative, migratory, and invasive properties. Furthermore, it induced apoptosis in both cell lines. Our study is the first to show the effects of APX2009 treatment on apoptosis in a breast cancer cell. Therefore, this study suggested that APX2009 treatment is a promising anticancer molecule for breast cancer.


Assuntos
Apoptose , Neoplasias da Mama , Movimento Celular , Proliferação de Células , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Oxirredução , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Feminino , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Fenótipo , Células MCF-7 , Antineoplásicos/farmacologia
13.
Transl Psychiatry ; 14(1): 207, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789433

RESUMO

Previous evidence suggests elevated levels of oxidatively-induced DNA damage, particularly 8-hydroxy-2'-deoxyguanosine (8-OH-dG), and abnormalities in the repair of 8-OH-dG by the base excision repair (BER) in bipolar disorder (BD). However, the genetic disposition of these abnormalities remains unknown. In this study, we aimed to investigate the levels of oxidatively-induced DNA damage and BER mechanisms in individuals with BD and their siblings, as compared to healthy controls (HCs). 46 individuals with BD, 41 siblings of individuals with BD, and 51 HCs were included in the study. Liquid chromatography-tandem mass spectrometry was employed to evaluate the levels of 8-OH-dG in urine, which were then normalized based on urine creatinine levels. The real-time-polymerase chain reaction was used to measure the expression levels of 8-oxoguanine DNA glycosylase 1 (OGG1), apurinic/apyrimidinic endonuclease 1 (APE1), poly ADP-ribose polymerase 1 (PARP1), and DNA polymerase beta (POLß). The levels of 8-OH-dG were found to be elevated in both individuals with BD and their siblings when compared to the HCs. The OGG1 and APE1 expressions were downregulated, while POLß expressions were upregulated in both the patient and sibling groups compared to the HCs. Age, smoking status, and the number of depressive episodes had an impact on APE1 expression levels in the patient group while body mass index, smoking status, and past psychiatric history had an impact on 8-OH-dG levels in siblings. Both individuals with BD and unaffected siblings presented similar abnormalities regarding oxidatively-induced DNA damage and BER, suggesting a link between abnormalities in DNA damage/BER mechanisms and familial susceptibility to BD. Our findings suggest that targeting the oxidatively-induced DNA damage and BER pathway could offer promising therapeutic strategies for reducing the risk of age-related diseases and comorbidities in individuals with a genetic predisposition to BD.


Assuntos
8-Hidroxi-2'-Desoxiguanosina , Transtorno Bipolar , Dano ao DNA , DNA Glicosilases , Reparo do DNA , Estresse Oxidativo , Irmãos , Humanos , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Feminino , Masculino , Adulto , DNA Glicosilases/genética , Estresse Oxidativo/genética , Pessoa de Meia-Idade , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Estudos de Casos e Controles , Adulto Jovem , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Reparo por Excisão
14.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791183

RESUMO

Apurinic/apyrimidinic endonuclease 1 (APE1) is involved in DNA repair and transcriptional regulation mechanisms. This multifunctional activity of APE1 should be supported by specific structural properties of APE1 that have not yet been elucidated. Herein, we applied atomic force microscopy (AFM) to characterize the interactions of APE1 with DNA containing two well-separated G-rich segments. Complexes of APE1 with DNA containing G-rich segments were visualized, and analysis of the complexes revealed the affinity of APE1 to G-rich DNA sequences, and their yield was as high as 53%. Furthermore, APE1 is capable of binding two DNA segments leading to the formation of loops in the DNA-APE1 complexes. The analysis of looped APE1-DNA complexes revealed that APE1 can bridge G-rich segments of DNA. The yield of loops bridging two G-rich DNA segments was 41%. Analysis of protein size in various complexes was performed, and these data showed that loops are formed by APE1 monomer, suggesting that APE1 has two DNA binding sites. The data led us to a model for the interaction of APE1 with DNA and the search for the specific sites. The implication of these new APE1 properties in organizing DNA, by bringing two distant sites together, for facilitating the scanning for damage and coordinating repair and transcription is discussed.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA , Microscopia de Força Atômica , Ligação Proteica , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA/metabolismo , DNA/química , Humanos , Sítios de Ligação , Reparo do DNA
15.
Anal Chem ; 96(21): 8754-8762, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38740024

RESUMO

Simultaneous profiling of redox-regulated markers at different cellular sublocations is of great significance for unraveling the upstream and downstream molecular mechanisms of oxidative stress in living cells. Herein, by synchronizing dual target-triggered DNA machineries in one nanoentity, we engineered a DNA walker-driven mass nanotag (MNT) assembly system (w-MNT-AS) that can be sequentially activated by oxidative stress-associated mucin 1 (MUC1) and apurinic/apyrimidinic endonuclease 1 (APE1) from plasma membrane to cytoplasm and induce recycled assembly of MNTs for multiplex detection of the two markers by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS). In the working cascade, the sensing process governs the separate activation of w-MNT-AS by MUC1 and APE1 in diverse locations, while the assembly process contributes to the parallel amplification of the ion signal of the characteristic mass tags. In this manner, the differences between MCF-7, HeLa, HepG2, and L02 cells in membrane MUC1 expression and cytoplasmic APE1 activation were fully characterized. Furthermore, the oxidative stress level and dynamics caused by exogenous H2O2, doxorubicin, and simvastatin were comprehensively demonstrated by tracking the fate of the two markers across different cellular locations. The proposed w-MNT-AS coupled MS method provides an effective route to probe multiple functional molecules that lie at different locations while participating in the same cellular event, facilitating the mechanistic studies on cellular response to oxidative stress and other disease-related cellular processes.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA , Mucina-1 , Estresse Oxidativo , Humanos , Mucina-1/metabolismo , DNA/metabolismo , DNA/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Peróxido de Hidrogênio/metabolismo
16.
Redox Biol ; 72: 103135, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565069

RESUMO

Cutaneous melanoma, a lethal skin cancer, arises from malignant transformation of melanocytes. Solar ultraviolet radiation (UVR) is a major environmental risk factor for melanoma since its interaction with the skin generates DNA damage, either directly or indirectly via oxidative stress. Pheomelanin pigments exacerbate oxidative stress in melanocytes by UVR-dependent and independent mechanisms. Thus, oxidative stress is considered to contribute to melanomagenesis, particularly in people with pheomelanic pigmentation. The melanocortin 1 receptor gene (MC1R) is a major melanoma susceptibility gene. Frequent MC1R variants (varMC1R) associated with fair skin and red or yellow hair color display hypomorphic signaling to the cAMP pathway and are associated with higher melanoma risk. This association is thought to be due to production of photosensitizing pheomelanins as well as deficient induction of DNA damage repair downstream of varMC1R. However, the data on modulation of oxidative DNA damage repair by MC1R remain scarce. We recently demonstrated that varMC1R accelerates clearance of reactive oxygen species (ROS)-induced DNA strand breaks in an AKT-dependent manner. Here we show that varMC1R also protects against ROS-dependent formation of 8-oxodG, the most frequent oxidative DNA lesion. Since the base excision repair (BER) pathway mediates clearance of these DNA lesions, we analyzed induction of BER enzymes in human melanoma cells of varMC1R genotype. Agonist-mediated activation of both wildtype (wtMC1R) and varMC1R significantly induced OGG and APE-1/Ref1, the rate-limiting BER enzymes responsible for repair of 8-oxodG. Moreover, we found that NADPH oxidase (NOX)-dependent generation of ROS was responsible for AKT activation and oxidative DNA damage repair downstream of varMC1R. These observations provide a better understanding of the functional properties of melanoma-associated MC1R alleles and may be useful for the rational development of strategies to correct defective varMC1R responses for efficient photoprotection and melanoma prevention in fair-skinned individuals.


Assuntos
Dano ao DNA , Melanoma , Estresse Oxidativo , Receptor Tipo 1 de Melanocortina , Transdução de Sinais , Humanos , Linhagem Celular Tumoral , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Melanócitos/metabolismo , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/prevenção & controle , Raios Ultravioleta/efeitos adversos
17.
Oncogene ; 43(24): 1861-1876, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38664500

RESUMO

The base excision repair (BER) Apurinic/apyrimidinic endonuclease 1 (APE1) enzyme is endowed with several non-repair activities including miRNAs processing. APE1 is overexpressed in many cancers but its causal role in the tumorigenic processes is largely unknown. We recently described that APE1 can be actively secreted by mammalian cells through exosomes. However, APE1 role in EVs or exosomes is still unknown, especially regarding a putative regulatory function on vesicular small non-coding RNAs. Through dedicated transcriptomic analysis on cellular and vesicular small RNAs of different APE1-depleted cancer cell lines, we found that miRNAs loading into EVs is a regulated process, dependent on APE1, distinctly conveying RNA subsets into vesicles. We identified APE1-dependent secreted miRNAs characterized by enriched sequence motifs and possible binding sites for APE1. In 33 out of 34 APE1-dependent-miRNA precursors, we surprisingly found EXO-motifs and proved that APE1 cooperates with hnRNPA2B1 for the EV-sorting of a subset of miRNAs, including miR-1246, through direct binding to GGAG stretches. Using TCGA-datasets, we showed that these miRNAs identify a signature with high prognostic significance in cancer. In summary, we provided evidence that the ubiquitous DNA-repair enzyme APE1 is part of the EV protein cargo with a novel post-transcriptional role for this ubiquitous DNA-repair enzyme that could explain its role in cancer progression. These findings could open new translational perspectives in cancer biology.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , MicroRNAs , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Reparo do DNA/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Exossomos/metabolismo , Exossomos/genética , Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Regulação Neoplásica da Expressão Gênica
18.
Chem Commun (Camb) ; 60(35): 4695-4698, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38592754

RESUMO

This study presents an innovative method for the highly sensitive detection of apurinic/apyrimidinic endonuclease 1 (APE1), a crucial biomarker and target for cancer diagnosis and treatment. The method is predicated on our discovery that the apurinic or apyrimidinic site (AP site) can inhibit the activity of Taq DNA polymerase. Subsequent experiments further led to the development of a new amplification method based on the digestion activity of Lambda exonuclease. This approach showed potential to detect trace amounts of APE1 in biological samples with high sensitivity.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Taq Polimerase/antagonistas & inibidores , Taq Polimerase/metabolismo
19.
Anal Chem ; 96(17): 6774-6783, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38634427

RESUMO

The identification of a specific tumor cell is crucial for the early diagnosis and treatment of cancer. However, it remains a challenge due to the limited sensitivity and accuracy, long response time, and low contrast of the recent approaches. In this study, we develop a dual miRNA-triggered DNA walker (DMTDW) assisted by APE1 for the specific recognition of tumor cells. miR-10b and miR-155 were selected as the research models. Without miR-10b and miR-155 presence, the DNA walker remains inactive as its walking strand of W is locked by L1 and L2. After miR-10b and miR-155 are input, the DNA walker is triggered as miR-10b and miR-155 bind to L1 and L2 of W-L1-L2, respectively, unlocking W. The DNA walker is driven by endogenous APE1 that is highly catalytic and is highly expressed in the cytoplasm of tumor cells but barely expressed in normal cells, ensuring high contrast and reaction efficiency for specific recognition of tumor cells. Dual miRNA input is required to trigger the DNA walker, making this strategy with a high accuracy. The DMTDW strategy exhibited high sensitivity for miRNA analysis with a detection limit of 44.05 pM. Living cell-imaging experiments confirmed that the DMTDW could effectively respond to the fluctuation of miRNA and specifically identified MDA-MB-231 cells from different cell lines. The proposed DMTDW is sensitive, rapid, and accurate for specific tumor cell recognition. We believe that the DMTDW strategy can become a powerful diagnostic tool for the specific recognition of tumor cells.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , MicroRNAs , MicroRNAs/análise , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/química , Linhagem Celular Tumoral
20.
Anal Chem ; 96(18): 7030-7037, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656919

RESUMO

Intracellular cancer-related biomarker imaging strategy has been used for specific identification of cancer cells, which was of great importance to accurate cancer clinical diagnosis and prognosis studies. Localized DNA circuits with improved sensitivity showed great potential for intracellular biomarkers imaging. However, the ability of localized DNA circuits to specifically image cancer cells is limited by off-site signal leakage associated with a single-biomarker sensing strategy. Herein, we integrated the endogenous enzyme-powered strategy with logic-responsive and localized signal amplifying capability to construct a self-assembled endogenously AND logic DNA nanomachine (EDN) for highly specific cancer cell imaging. When the EDN encountered a cancer cell, the overexpressed DNA repairing enzyme apurinic/apyrimidinic endonuclease 1 (APE1) and miR-21 could synergistically activate a DNA circuit via cascaded localized toehold-mediated strand displacement (TMSD) reactions, resulting in amplified fluorescence resonance energy transfer (FRET) signal. In this strategy, both endogenous APE1 and miR-21, served as two "keys" to activate the AND logic operation in cancer cells to reduce off-tumor signal leakage. Such a multiplied molecular recognition/activation nanomachine as a powerful toolbox realized specific capture and reliable imaging of biomolecules in living cancer cells.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA , Transferência Ressonante de Energia de Fluorescência , MicroRNAs , Humanos , MicroRNAs/análise , MicroRNAs/metabolismo , DNA/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Neoplasias/diagnóstico por imagem , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...