Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.782
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(36): e2405510121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190361

RESUMO

Synonymous codons were originally viewed as interchangeable, with no phenotypic consequences. However, substantial evidence has now demonstrated that synonymous substitutions can perturb a variety of gene expression and protein homeostasis mechanisms, including translational efficiency, translational fidelity, and cotranslational folding of the encoded protein. To date, most studies of synonymous codon-derived perturbations have focused on effects within a single gene. Here, we show that synonymous codon substitutions made far within the coding sequence of Escherichia coli plasmid-encoded chloramphenicol acetyltransferase (cat) can significantly increase expression of the divergent upstream tetracycline resistance gene, tetR. In four out of nine synonymously recoded cat sequences tested, expression of the upstream tetR gene was significantly elevated due to transcription of a long antisense RNA (asRNA) originating from a transcription start site within cat. Surprisingly, transcription of this asRNA readily bypassed the native tet transcriptional repression mechanism. Even more surprisingly, accumulation of the TetR protein correlated with the level of asRNA, rather than total tetR RNA. These effects of synonymous codon substitutions on transcription and translation of a neighboring gene suggest that synonymous codon usage in bacteria may be under selection to both preserve the amino acid sequence of the encoded gene and avoid DNA sequence elements that can significantly perturb expression of neighboring genes. Avoiding such sequences may be especially important in plasmids and prokaryotic genomes, where genes and regulatory elements are often densely packed. Similar considerations may apply to the design of genetic circuits for synthetic biology applications.


Assuntos
Cloranfenicol O-Acetiltransferase , Códon , Escherichia coli , Biossíntese de Proteínas , RNA Antissenso , Transcrição Gênica , RNA Antissenso/genética , RNA Antissenso/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cloranfenicol O-Acetiltransferase/genética , Cloranfenicol O-Acetiltransferase/metabolismo , Códon/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Mutação Silenciosa
2.
Mol Biol Rep ; 51(1): 939, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196367

RESUMO

BACKGROUND: Plasmids are the most commonly used vectors for heterologous protein expression in Escherichia coli. However, the plasmid copy number decreases with the segregational instability, which inevitably leads to a decrease in the yield of heterologous protein. METHODS AND RESULTS: In this study, plasmid stabilization systems were used to enhance the expression level of heterologous proteins in E. coli. With the investigation of protein expression level, biomass and plasmid retention rate in different plasmid stabilization systems, the hok/sok system had the greatest potential on plasmid stabilization. In order to further investigate the molecular mechanism of hok/sok system, the structure of the binding region of hok mRNA and sok antisense RNA was modified based on the minimum free energy of mRNA, which resulted in the reduction of the binding efficiency of hok mRNA and sok asRNA, and then the toxicity of the Hok protein led to the decreased viability of the host cells. Finally, the hok/sok plasmid stabilization system was testified in 5 L fermenter, and the plasmid retention rate and protein expression level were significantly increased without the addition of antibiotics. CONCLUSIONS: This study lays a solid foundation for a deeper understanding of the mechanism of the hok/sok plasmid stabilization system and improving the productivity of heterologous protein in E. coli.


Assuntos
Escherichia coli , Plasmídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Plasmídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , RNA Antissenso/genética , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/genética
3.
Wiley Interdiscip Rev RNA ; 15(4): e1864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39087253

RESUMO

A considerable proportion of the eukaryotic genome undergoes transcription, leading to the generation of noncoding RNA molecules that lack protein-coding information and are not subjected to translation. These noncoding RNAs (ncRNAs) are well recognized to have essential roles in several biological processes. Long noncoding RNAs (lncRNAs) represent the most extensive category of ncRNAs found in the human genome. Much research has focused on investigating the roles of cis-acting lncRNAs in the regulation of specific target gene expression. In the majority of instances, the regulation of sense gene expression by its corresponding antisense pair occurs in a negative (discordant) manner, resulting in the suppression of the target genes. The notion that a negative correlation exists between sense and antisense pairings is, however, not universally valid. In fact, several recent studies have reported a positive relationship between corresponding cis antisense pairs within plants, budding yeast, and mammalian cancer cells. The positive (concordant) correlation between anti-sense and sense transcripts leads to an increase in the level of the sense transcript within the same genomic loci. In addition, mechanisms such as altering chromatin structure, the formation of R loops, and the recruitment of transcription factors can either enhance transcription or stabilize sense transcripts through their antisense pairs. The primary objective of this work is to provide a comprehensive understanding of both aspects of antisense regulation, specifically focusing on the positive correlation between sense and antisense transcripts in the context of eukaryotic gene expression, including its implications towards cancer progression. This article is categorized under: RNA Processing > 3' End Processing Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.


Assuntos
Regulação da Expressão Gênica , Humanos , Animais , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
Physiol Plant ; 176(4): e14418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39004808

RESUMO

Plant organelle transcription has been studied for decades. As techniques advanced, so did the fields of mitochondrial and plastid transcriptomics. The current view is that organelle genomes are pervasively transcribed, irrespective of their size, content, structure, and taxonomic origin. However, little is known about the nature of organelle noncoding transcriptomes, including pervasively transcribed noncoding RNAs (ncRNAs). Next-generation sequencing data have uncovered small ncRNAs in the organelles of plants and other organisms, but long ncRNAs remain poorly understood. Here, we argue that publicly available third-generation long-read RNA sequencing data from plants can provide a fine-tuned picture of long ncRNAs within organelles. Indeed, given their bloated architectures, plant mitochondrial genomes are well suited for studying pervasive transcription of ncRNAs. Ultimately, we hope to showcase this new avenue of plant research while also underlining the limitations of the proposed approach.


Assuntos
RNA Antissenso , RNA Longo não Codificante , RNA de Plantas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Organelas/genética , Organelas/metabolismo , Plantas/genética , RNA Antissenso/genética , RNA Longo não Codificante/genética , RNA de Plantas/genética , RNA-Seq/métodos , Análise de Sequência de RNA/métodos , Transcriptoma/genética
5.
Plant J ; 119(5): 2255-2272, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39015950

RESUMO

Advancing chloroplast genetic engineering in Chlamydomonas reinhardtii remains challenging, decades after its first successful transformation. This study introduces the development of a chloroplast-optimized mNeonGreen fluorescent reporter, enabling in vivo observation through a sixfold increase in fluorescence via context-aware construct engineering. Our research highlights the influence of transcriptional readthrough and antisense mRNA pairing on post-transcriptional regulation, pointing to novel strategies for optimizing heterologous gene expression. We further demonstrate the applicability of these insights using an accessible experimentation system using glass-bead transformation and reestablishment of photosynthesis using psbH mutants, focusing on the mitigation of transcriptional readthrough effects. By characterizing heterologous expression using regulatory elements such as PrrnS, 5'atpA, and 3' rbcL in a sense-transcriptional context, we further documented up to twofold improvement in fluorescence levels. Our findings contribute new tools for molecular biology research in the chloroplast and evidence fundamental gene regulation processes that could enable the development of more effective chloroplast engineering strategies. This work not only paves the way for more efficient genetic engineering of chloroplasts but also deepens our understanding of the regulatory mechanisms at play.


Assuntos
Chlamydomonas reinhardtii , Cloroplastos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Transcrição Gênica , Genes Reporter , Fotossíntese/genética , RNA Antissenso/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo
6.
Nucleic Acids Res ; 52(14): 8628-8642, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994565

RESUMO

Precise gene regulation and programmable RNA editing are vital RNA-level regulatory mechanisms. Gene repression tools grounded in small non-coding RNAs, microRNAs, and CRISPR-dCas proteins, along with RNA editing tools anchored in Adenosine Deaminases acting on RNA (ADARs), have found extensive application in molecular biology and cellular engineering. Here, we introduced a novel approach wherein we developed an EcCas6e mediated crRNA-mRNA annealing system for gene repression in Escherichia coli and RNA editing in Saccharomyces cerevisiae. We found that EcCas6e possesses inherent RNA annealing ability attributed to a secondary positively charged cleft, enhancing crRNA-mRNA hybridization and stability. Based on this, we demonstrated that EcCas6e, along with its cognate crRNA repeat containing a complementary region to the ribosome binding site of a target mRNA, effectively represses gene expression up to 25-fold. Furthermore, we demonstrated that multiple crRNAs can be easily assembled and can simultaneously target up to 13 genes. Lastly, the EcCas6e-crRNA system was developed as an RNA editing tool by fusing it with the ADAR2 deaminase domain. The EcCas6e-crRNA mediated gene repression and RNA editing tools hold broad applications for research and biotechnology.


Assuntos
Escherichia coli , Edição de RNA , RNA Antissenso , RNA Mensageiro , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Sistemas CRISPR-Cas , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética
7.
World J Surg Oncol ; 22(1): 201, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080678

RESUMO

BACKGROUND: Cross-species horizontal gene transfer (HGT) involves the transfer of genetic material between different species of organisms. In recent years, mounting evidence has emerged that cross-species HGT does take place and may play a role in the development and progression of diseases. METHODS: Transcriptomic data obtained from patients with gallbladder cancer (GBC) was assessed for the differential expression of antisense RNAs (asRNAs). The Basic Local Alignment Search Tool (BLAST) was used for cross-species analysis with viral, bacterial, fungal, and ancient human genomes to elucidate the evolutionary cross species origins of these differential asRNAs. Functional enrichment analysis and text mining were conducted and a network of asRNAs targeting mRNAs was constructed to understand the function of differential asRNAs better. RESULTS: A total of 17 differentially expressed antisense RNAs (asRNAs) were identified in gallbladder cancer tissue compared to that of normal gallbladder. BLAST analysis of 15 of these asRNAs (AFAP1-AS1, HMGA2-AS1, MNX1-AS1, SLC2A1-AS1, BBOX1-AS1, ELFN1-AS1, TRPM2-AS, DNAH17-AS1, DCST1-AS1, VPS9D1-AS1, MIR1-1HG-AS1, HAND2-AS1, PGM5P4-AS1, PGM5P3-AS1, and MAGI2-AS) showed varying degree of similarities with bacterial and viral genomes, except for UNC5B-AS1 and SOX21-AS1, which were conserved during evolution. Two of these 15 asRNAs, (VPS9D1-AS1 and SLC2A1-AS1) exhibited a high degree of similarity with viral genomes (Chikungunya virus, Human immunodeficiency virus 1, Stealth virus 1, and Zika virus) and bacterial genomes including (Staphylococcus sp., Bradyrhizobium sp., Pasteurella multocida sp., and, Klebsiella pneumoniae sp.), indicating potential HGT during evolution. CONCLUSION: The results provide novel evidence supporting the hypothesis that differentially expressed asRNAs in GBC exhibit varying sequence similarity with bacterial, viral, and ancient human genomes, indicating a potential shared evolutionary origin. These non-coding genes are enriched with methylation and were found to be associated with cancer-related pathways, including the P53 and PI3K-AKT signaling pathways, suggesting their possible involvement in tumor development.


Assuntos
Neoplasias da Vesícula Biliar , Transferência Genética Horizontal , Humanos , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/patologia , Neoplasias da Vesícula Biliar/virologia , Carcinogênese/genética , RNA Antissenso/genética , Regulação Neoplásica da Expressão Gênica , Transcriptoma
8.
FASEB J ; 38(13): e23772, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38963337

RESUMO

Ovarian cancer is one of the most common gynecologic malignancies that has a poor prognosis. THUMPD3-AS1 is an oncogenic long noncoding RNA (lncRNA) in several cancers. Moreover, miR-320d is downregulated and inhibited proliferation in ovarian cancer cells, whereas ARF1 was upregulated and promoted the malignant progression in epithelial ovarian cancer. Nevertheless, the role of THUMPD3-AS1 in ovarian cancer and the underlying mechanism has yet to be elucidated. Human normal ovarian epithelial cells (IOSE80) and ovarian cancer cell lines (CAVO3, A2780, SKOV3, OVCAR3, and HEY) were adopted for in vitro experiments. The functional roles of THUMPD3-AS1 in cell viability and apoptosis were determined using CCK-8, flow cytometry, and TUNEL assays. Western blot was performed to assess the protein levels of ARF1, Bax, Bcl-2, and caspase 3, whereas RT-qPCR was applied to measure ARF1 mRNA, THUMPD3-AS1, and miR-320d levels. The targeting relationship between miR-320d and THUMPD3-AS1 or ARF1 was validated with dual luciferase assay. THUMPD3-AS1 and ARF1 were highly expressed in ovarian cancer cells, whereas miR-320d level was lowly expressed. THUMPD3-AS1 knockdown was able to repress cell viability and accelerate apoptosis of OVCAR3 and SKOV3 cells. Also, THUMPD3-AS1 acted as a sponge of miR-320d, preventing the degradation of ARF1. MiR-320d downregulation reversed the tumor suppressive function induced by THUMPD3-AS1 depletion. Additionally, miR-320d overexpression inhibited ovarian cancer cell viability and accelerated apoptosis, which was overturned by overexpression of ARF1. THUMPD3-AS1 inhibited ovarian cancer cell apoptosis by modulation of miR-320d/ARF1 axis. The discoveries might provide a prospective target for ovarian cancer treatment.


Assuntos
Fator 1 de Ribosilação do ADP , Apoptose , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Feminino , Humanos , Fator 1 de Ribosilação do ADP/metabolismo , Fator 1 de Ribosilação do ADP/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Antissenso/genética
9.
PLoS One ; 19(7): e0305012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38980892

RESUMO

Pre-messenger RNA (pre-mRNA) splicing modulation is an attractive approach for investigating the mechanisms of genetic disorders caused by mis-splicing. Previous reports have indicated that a modified U7 small nuclear RNA (U7 snRNA) is a prospective tool for modulating splicing both in vitro and in vivo. To date, very few studies have investigated the role of antisense sequence length in modified U7 snRNA. In this study, we designed a series of antisense sequences with various lengths and evaluated their efficiency in inducing splicing modulation. To express modified U7 snRNAs, we constructed a series of plasmid DNA sequences which codes cytomegalovirus (CMV) enhancer, human U1 promoter, and modified mouse U7 snRNAs with antisense sequences of different lengths. We evaluated in vitro splicing modulation efficiency using a luciferase reporter system for simple and precise evaluation as well as reverse transcription-polymerase chain reaction to monitor splicing patterns. Our in vitro assay findings suggest that antisense sequences of modified mouse U7 snRNAs have an optimal length for efficient splicing modulation, which depends on the target exon. In addition, antisense sequences that were either too long or too short decreased splicing modulation efficiency. To confirm reproducibility, we performed an in vitro assay using two target genes, mouse Fas and mouse Dmd. Together, our data suggests that the antisense sequence length should be optimized for modified mouse U7 snRNAs to induce efficient splicing modulation.


Assuntos
Precursores de RNA , Splicing de RNA , RNA Nuclear Pequeno , RNA Nuclear Pequeno/genética , Animais , Camundongos , Humanos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Sequência de Bases , Éxons/genética , RNA Antissenso/genética
10.
Mol Biol Rep ; 51(1): 874, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080124

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) play various roles in gene regulation. GATA3 antisense RNA 1 (GATA3-AS1) is an lncRNA gene neighboring GATA binding protein 3 (GATA3). The current study aims to quantitatively compare the levels of the expression of GATA3-AS1, GATA3, and Interleukin-4 (IL-4) in peripheral blood mononuclear cells (PBMC) samples of MS patients and healthy individuals under the hypothesis of regulation of GATA3 and IL-4 expression orchestrated by GATA3-AS1. METHODS AND RESULTS: In this case-control study, the GATA3-AS1, GATA3 and IL-4 expression profiles were assessed using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Also, we assessed the IL-4 levels in the serum. The median fold changes in MS patients vs. controls were (4.39 ± 0.38 vs. 2.44 ± 0.20) for GATA3-AS1, (5.22 ± 0.51 vs. 2.86 ± 0.30) for GATA3, and (6.16 ± 0.52 vs. 3.57 ± 0.38) for IL-4, (P < 0.001). Furthermore, the mean serum levels of IL-4 were 30.85 ± 1.53 pg/ml in MS patients and 11.15 ± 4.23 pg/ml in healthy controls (P < 0.001). ROC curve analysis showed that the level of GATA3-AS1 might serve as a biomarker for diagnosing MS patients with the area under the curve (AUC = 0.918, P < 0.0001). Based on our results, this GATA3-AS1/GATA3/IL-4 pathway may increase IL-4 expression in MS patients. CONCLUSIONS: Our results indicate a probably regulatory function for GATA3-AS1and the levels of GATA3-AS1 in blood could be important biomarkers for MS diagnosis. To confirm and be more certain of these results, it is necessary to study neuromyelitis optica (NMO) and asthma patients in future studies.


Assuntos
Fator de Transcrição GATA3 , Interleucina-4 , Leucócitos Mononucleares , Esclerose Múltipla , RNA Longo não Codificante , Humanos , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Interleucina-4/genética , Interleucina-4/sangue , RNA Longo não Codificante/genética , RNA Longo não Codificante/sangue , Feminino , Adulto , Masculino , Esclerose Múltipla/genética , Esclerose Múltipla/sangue , Esclerose Múltipla/metabolismo , Estudos de Casos e Controles , Leucócitos Mononucleares/metabolismo , Regulação para Cima/genética , Pessoa de Meia-Idade , Regulação da Expressão Gênica/genética , RNA Antissenso/genética
11.
Nat Commun ; 15(1): 6187, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043684

RESUMO

Protein coding features can emerge de novo in non coding transcripts, resulting in emergence of new protein coding genes. Studies across many species show that a large fraction of evolutionarily novel non-coding RNAs have an antisense overlap with protein coding genes. The open reading frames (ORFs) in these antisense RNAs could also overlap with existing ORFs. In this study, we investigate how the evolution an ORF could be constrained by its overlap with an existing ORF in three different reading frames. Using a combination of mathematical modeling and genome/transcriptome data analysis in two different model organisms, we show that antisense overlap can increase the likelihood of ORF emergence and reduce the likelihood of ORF loss, especially in one of the three reading frames. In addition to rationalising the repeatedly reported prevalence of de novo emerged genes in antisense transcripts, our work also provides a generic modeling and an analytical framework that can be used to understand evolution of antisense genes.


Assuntos
Evolução Molecular , Fases de Leitura Aberta , RNA Antissenso , RNA Antissenso/genética , RNA Antissenso/metabolismo , Fases de Leitura Aberta/genética , Animais , Modelos Genéticos , Transcriptoma
12.
Nature ; 631(8020): 432-438, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38898279

RESUMO

When mRNAs have been transcribed and processed in the nucleus, they are exported to the cytoplasm for translation. This export is mediated by the export receptor heterodimer Mex67-Mtr2 in the yeast Saccharomyces cerevisiae (TAP-p15 in humans)1,2. Interestingly, many long non-coding RNAs (lncRNAs) also leave the nucleus but it is currently unclear why they move to the cytoplasm3. Here we show that antisense RNAs (asRNAs) accelerate mRNA export by annealing with their sense counterparts through the helicase Dbp2. These double-stranded RNAs (dsRNAs) dominate export compared with single-stranded RNAs (ssRNAs) because they have a higher capacity and affinity for the export receptor Mex67. In this way, asRNAs boost gene expression, which is beneficial for cells. This is particularly important when the expression program changes. Consequently, the degradation of dsRNA, or the prevention of its formation, is toxic for cells. This mechanism illuminates the general cellular occurrence of asRNAs and explains their nuclear export.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular , Regulação Fúngica da Expressão Gênica , Transporte de RNA , RNA Antissenso , RNA de Cadeia Dupla , RNA Mensageiro , Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Citoplasma/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , RNA Antissenso/metabolismo , RNA Antissenso/genética , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
13.
J Agric Food Chem ; 72(26): 14821-14829, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38897918

RESUMO

d-Allulose, a C-3 epimer of d-fructose, has great market potential in food, healthcare, and medicine due to its excellent biochemical and physiological properties. Microbial fermentation for d-allulose production is being developed, which contributes to cost savings and environmental protection. A novel metabolic pathway for the biosynthesis of d-allulose from a d-xylose-methanol mixture has shown potential for industrial application. In this study, an artificial antisense RNA (asRNA) was introduced into engineered Escherichia coli to diminish the flow of pentose phosphate (PP) pathway, while the UDP-glucose-4-epimerase (GalE) was knocked out to prevent the synthesis of byproducts. As a result, the d-allulose yield on d-xylose was increased by 35.1%. Then, we designed a d-xylose-sensitive translation control system to regulate the expression of the formaldehyde detoxification operon (FrmRAB), achieving self-inductive detoxification by cells. Finally, fed-batch fermentation was carried out to improve the productivity of the cell factory. The d-allulose titer reached 98.6 mM, with a yield of 0.615 mM/mM on d-xylose and a productivity of 0.969 mM/h.


Assuntos
Escherichia coli , Fermentação , Metanol , RNA Antissenso , Xilose , Escherichia coli/genética , Escherichia coli/metabolismo , Xilose/metabolismo , RNA Antissenso/genética , RNA Antissenso/metabolismo , Metanol/metabolismo , Engenharia Metabólica , Frutose/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
14.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892231

RESUMO

Aristolochia contorta Bunge is an academically and medicinally important plant species. It belongs to the magnoliids, with an uncertain phylogenetic position, and is one of the few plant species lacking a whole-genome duplication (WGD) event after the angiosperm-wide WGD. A. contorta has been an important traditional Chinese medicine material. Since it contains aristolochic acids (AAs), chemical compounds with nephrotoxity and carcinogenicity, the utilization of this plant has attracted widespread attention. Great efforts are being made to increase its bioactive compounds and reduce or completely remove toxic compounds. MicroRNAs (miRNAs) and natural antisense transcripts (NATs) are two classes of regulators potentially involved in metabolism regulation. Here, we report the identification and characterization of 223 miRNAs and 363 miRNA targets. The identified miRNAs include 51 known miRNAs belonging to 20 families and 172 novel miRNAs belonging to 107 families. A negative correlation between the expression of miRNAs and their targets was observed. In addition, we identified 441 A. contorta NATs and 560 NAT-sense transcript (ST) pairs, of which 12 NATs were targets of 13 miRNAs, forming 18 miRNA-NAT-ST modules. Various miRNAs and NATs potentially regulated secondary metabolism through the modes of miRNA-target gene-enzyme genes, NAT-STs, and NAT-miRNA-target gene-enzyme genes, suggesting the complexity of gene regulatory networks in A. contorta. The results lay a solid foundation for further manipulating the production of its bioactive and toxic compounds.


Assuntos
Aristolochia , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , MicroRNAs , Metabolismo Secundário , MicroRNAs/genética , MicroRNAs/metabolismo , Aristolochia/genética , Metabolismo Secundário/genética , RNA Antissenso/genética , Genoma de Planta , RNA de Plantas/genética
15.
Curr Med Sci ; 44(3): 503-511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38748366

RESUMO

OBJECTIVE: This study aimed to examine the role of long non-coding RNA PCED1B antisense RNA 1 (PCED1B-AS1) in the development of hepatocellular carcinoma (HCC). METHODS: A total of 62 pairs of HCC tissues and adjacent non-tumor tissues were obtained from 62 HCC patients. The interactions of PCED1B-AS1 and microRNA-34a (miR-34a) were detected by dual luciferase activity assay and RNA pull-down assay. The RNA expression levels of PCED1B-AS1, miR-34a and CD44 were detected by RT-qPCR, and the protein expression level of CD44 was determined by Western blotting. The cell proliferation was detected by cell proliferation assay, and the cell invasion and migration by transwell invasion assay. The HCC tumor growth after PCED1B-AS1 was downregulated was determined by in vivo animal study. RESULTS: PCED1B-AS1 was highly expressed in HCC tissues, which was associated with poor survival of HCC patients. Furthermore, PCED1B-AS1 interacted with miR-34a in HCC cells, but they did not regulate the expression of each other. Additionally, PCED1B-AS1 increased the expression level of CD44, which was targeted by miR-34a. The cell proliferation and invasion assay revealed that miR-34a inhibited the proliferation and invasion of HCC in vitro, while CD44 exhibited the opposite effects. Furthermore, PCED1B-AS1 suppressed the role of miR-34a. Moreover, the knockdown of PCED1B-AS1 repressed the HCC tumor growth in nude mice in vivo. CONCLUSION: PCED1B-AS1 may play an oncogenic role by regulating the miR-34a/CD44 axis in HCC.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos , Neoplasias Hepáticas , MicroRNAs , Invasividade Neoplásica , RNA Longo não Codificante , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Proliferação de Células/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Camundongos , Invasividade Neoplásica/genética , Masculino , Linhagem Celular Tumoral , Feminino , Movimento Celular/genética , Pessoa de Meia-Idade , Camundongos Nus , RNA Antissenso/genética
16.
Hum Mol Genet ; 33(R1): R26-R33, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38779774

RESUMO

Mitochondria are vital organelles present in almost all eukaryotic cells. Although most of the mitochondrial proteins are nuclear-encoded, mitochondria contain their own genome, whose proper expression is necessary for mitochondrial function. Transcription of the human mitochondrial genome results in the synthesis of long polycistronic transcripts that are subsequently processed by endonucleases to release individual RNA molecules, including precursors of sense protein-encoding mRNA (mt-mRNA) and a vast amount of antisense noncoding RNAs. Because of mitochondrial DNA (mtDNA) organization, the regulation of individual gene expression at the transcriptional level is limited. Although transcription of most protein-coding mitochondrial genes occurs with the same frequency, steady-state levels of mature transcripts are different. Therefore, post-transcriptional processes are important for regulating mt-mRNA levels. The mitochondrial degradosome is a complex composed of the RNA helicase SUV3 (also known as SUPV3L1) and polynucleotide phosphorylase (PNPase, PNPT1). It is the best-characterized RNA-degrading machinery in human mitochondria, which is primarily responsible for the decay of mitochondrial antisense RNA. The mechanism of mitochondrial sense RNA decay is less understood. This review aims to provide a general picture of mitochondrial genome expression, with a particular focus on mitochondrial RNA (mtRNA) degradation.


Assuntos
Mitocôndrias , Polirribonucleotídeo Nucleotidiltransferase , Estabilidade de RNA , RNA Mitocondrial , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/genética , Estabilidade de RNA/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/genética , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Antissenso/genética , RNA Antissenso/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , RNA Helicases/metabolismo , RNA Helicases/genética , RNA/metabolismo , RNA/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Endorribonucleases , Exorribonucleases , Complexos Multienzimáticos
17.
Nucleic Acids Res ; 52(13): 7572-7589, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38801067

RESUMO

The RNA polymerase II carboxy-terminal domain (CTD) consists of conserved heptapeptide repeats that can be phosphorylated to influence distinct stages of the transcription cycle, including RNA processing. Although CTD-associated proteins have been identified, phospho-dependent CTD interactions have remained elusive. Proximity-dependent biotinylation (PDB) has recently emerged as an alternative approach to identify protein-protein associations in the native cellular environment. In this study, we present a PDB-based map of the fission yeast RNAPII CTD interactome in living cells and identify phospho-dependent CTD interactions by using a mutant in which Ser2 was replaced by alanine in every repeat of the fission yeast CTD. This approach revealed that CTD Ser2 phosphorylation is critical for the association between RNAPII and the histone methyltransferase Set2 during transcription elongation, but is not required for 3' end processing and transcription termination. Accordingly, loss of CTD Ser2 phosphorylation causes a global increase in antisense transcription, correlating with elevated histone acetylation in gene bodies. Our findings reveal that the fundamental role of CTD Ser2 phosphorylation is to establish a chromatin-based repressive state that prevents cryptic intragenic transcription initiation.


Assuntos
RNA Polimerase II , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Serina , Transcrição Gênica , RNA Polimerase II/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Fosforilação , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Serina/metabolismo , Histonas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Regulação Fúngica da Expressão Gênica , RNA Antissenso/metabolismo , RNA Antissenso/genética , Domínios Proteicos , Acetilação
18.
Ageing Res Rev ; 99: 102336, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38740308

RESUMO

Several proteins play critical roles in vulnerability or resistance to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and frontotemporal dementia (FTD). Regulation of these proteins is critical to maintaining healthy neurohomeostasis. In addition to transcription factors regulating gene transcription and microRNAs regulating mRNA translation, natural antisense transcripts (NATs) regulate mRNA levels, splicing, and translation. NATs' roles are significant in regulating key protein-coding genes associated with neurodegenerative disorders. Elucidating the functions of these NATs could prove useful in treating or preventing diseases. NAT activity is not restricted to mRNA translation; it can also regulate DNA (de)methylation and other gene expression steps. NATs are noncoding RNAs (ncRNAs) encoded by DNA sequences overlapping the pertinent protein genes. These NATs have complex structures, including introns and exons, and therefore bind their target genes, precursor mRNAs (pre-mRNAs), and mature RNAs. They can occur at the 5'- or 3'-ends of a mRNA-coding sequence or internally to a parent gene. NATs can downregulate translation, e.g., microtubule-associated protein tau (MAPT) antisense-1 gene (MAPT-AS1), or upregulate translation, e.g., ß-Amyloid site Cleaving Enzyme 1 (BACE1) antisense gene (BACE1-AS). Regulation of NATs can parallel pathogenesis, wherein a "pathogenic" NAT (e.g., BACE1-AS) is upregulated under pathogenic conditions, while a "protective" NAT (e.g., MAPT-AS1) is downregulated under pathogenic conditions. As a relatively underexplored endogenous control mechanism of protein expression, NATs may present novel mechanistic targets to prevent or ameliorate aging-related disorders.


Assuntos
Regulação da Expressão Gênica , Doenças Neurodegenerativas , RNA Antissenso , Humanos , Doenças Neurodegenerativas/genética , RNA Antissenso/genética , Regulação da Expressão Gênica/genética , Animais
19.
Plant Physiol ; 195(4): 2911-2920, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38708585

RESUMO

Glutamine synthetase (GS) is a key enzyme involved in nitrogen assimilation and the maintenance of C/N balance, and it is strictly regulated in all bacteria. In cyanobacteria, GS expression is controlled by nitrogen control A (NtcA) transcription factor, which operates global nitrogen regulation in these photosynthetic organisms. Furthermore, posttranslational regulation of GS is operated by protein-protein interaction with GS inactivating factors (IFs). In this study, we describe an additional regulatory mechanism involving an antisense RNA. In Nostoc sp. PCC 7120, the gifA gene (encoding GS inactivating factor IF7) is transcribed downstream of the GS (glnA) gene, from the opposite strand, and the gifA mRNA extends into the glnA coding sequence in antisense orientation. Therefore, the dual RNA transcript that encodes gifA constitutes two functional regions: a 5' protein-coding region, encoding IF7, and a 3' untranslated region that acts as an antisense to glnA. By increasing the levels of such antisense RNA either in cis or in trans, we demonstrate that the amount of GS activity can be modulated by the presence of the antisense RNA. The tail-to-tail disposition of the glnA and gifA genes observed in many cyanobacterial strains from the Nostocales clade suggests the prevalence of such antisense RNA-mediated regulation of GS in this group of cyanobacteria.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Glutamato-Amônia Ligase , Nostoc , RNA Antissenso , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , RNA Antissenso/genética , Nostoc/genética , Nostoc/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
20.
Nucleic Acids Res ; 52(11): 6707-6717, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38738637

RESUMO

The abnormal expansion of GGGGCC/GGCCCC hexanucleotide repeats (HR) in C9orf72 is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Structural polymorphisms of HR result in the multifactorial pathomechanism of ALS/FTD. Consequently, many ongoing studies are focused at developing therapies targeting pathogenic HR RNA. One of them involves small molecules blocking sequestration of important proteins, preventing formation of toxic nuclear foci. However, rational design of potential therapeutics is hindered by limited number of structural studies of RNA-ligand complexes. We determined the crystal structure of antisense HR RNA in complex with ANP77 ligand (1.1 Šresolution) and in the free form (0.92 and 1.5 Šresolution). HR RNA folds into a triplex structure composed of four RNA chains. ANP77 interacted with two neighboring single-stranded cytosines to form pseudo-canonical base pairs by adopting sandwich-like conformation and adjusting the position of its naphthyridine units to the helical twist of the RNA. In the unliganded structure, the cytosines formed a peculiar triplex i-motif, assembled by trans C•C+ pair and a third cytosine located at the Hoogsteen edge of the C•C+ pair. These results extend our knowledge of the structural polymorphisms of HR and can be used for rational design of small molecules targeting disease-related RNAs.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Humanos , Ligantes , RNA Antissenso/genética , RNA Antissenso/química , RNA Antissenso/metabolismo , Conformação de Ácido Nucleico , Expansão das Repetições de DNA/genética , Cristalografia por Raios X , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA