Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.654
Filtrar
1.
BMC Biotechnol ; 24(1): 29, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720285

RESUMO

This research investigates the efficacy of a high-performance pilot-scale Internal Circulation Anaerobic Reactor inoculated with Granular Sludge (ICAGSR) for treating cattle slaughterhouse wastewater while concurrently generating biogas. The primary objective is to assess the efficiency and performance of ICAGSR in terms of organic pollutant removal and biogas production using granular anaerobic sludge. The research methodology entails operating the ICAGSR system under ambient conditions and systematically varying key parameters, including different Hydraulic Retention Times (HRTs) (24, 12, and 8 h) and Organic Loading Rates (OLRs) (3.3, 6.14, and 12.83 kg COD/m³. d). The study focuses on evaluating pollutants' removal and biogas production rates. Results reveal that the ICAGSR system achieves exceptional removal efficiency for organic pollutants, with Chemical Oxygen Demand (COD) removal exceeding 74%, 67%, and 68% at HRTs of 24, 12, and 8 h, respectively. Furthermore, the system demonstrates stable and sustainable biogas production, maintaining average methane contents of 80%, 76%, and 72% throughout the experimental period. The successful operation of the ICAGSR system underscores its potential as a viable technology for treating cattle slaughterhouse wastewater and generating renewable biogas. In conclusion, this study contributes to wastewater treatment and renewable energy production by providing a comprehensive analysis of the ICAGSR system's hydrodynamic properties. The research enhances our understanding of the system's performance optimization under varying conditions, emphasizing the benefits of utilizing ICAGSR reactors with granular sludge as an effective and sustainable approach. Identifying current gaps, future research directions aim to further refine and broaden the application of ICAGSR technology in wastewater treatment and renewable energy initiatives.


Assuntos
Matadouros , Biocombustíveis , Reatores Biológicos , Esgotos , Águas Residuárias , Animais , Bovinos , Esgotos/microbiologia , Águas Residuárias/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Metano/metabolismo , Análise da Demanda Biológica de Oxigênio
2.
Sci Rep ; 14(1): 10723, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730012

RESUMO

Our study investigates the effects of iron oxide (Fe3O4) nanoparticles combined microwave pretreatment on the anaerobic digestibility and soluble chemical oxygen demand (SCOD) of meat industry sludge. One of our main objectives was to see whether the different microwave-based pretreatment procedures can enhance biogas production by improving the biological availability of organic compounds. Results demonstrated that combining microwave irradiation with magnetic iron oxide nanoparticles considerably increased SCOD (enhancement ratio was above 1.5), the rate of specific biogas production, and the total cumulative specific biogas volume (more than a threefold increment), while having no negative effect on the biomethane content. Furthermore, the assessment of the sludge samples' dielectric properties (dielectric constant and loss factor measured at the frequency of 500 MHz) showed a strong correlation with SCOD changes (r = 0.9942, R2 = 0.99), offering a novel method to evaluate pretreatment efficiency.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro , Micro-Ondas , Esgotos , Esgotos/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Anaerobiose , Carne/análise , Análise da Demanda Biológica de Oxigênio , Biocombustíveis/análise , Indústria Alimentícia , Resíduos Industriais
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731961

RESUMO

Recently, the increase in marine temperatures has become an important global marine environmental issue. The ability of energy supply in marine animals plays a crucial role in avoiding the stress of elevated temperatures. The investigation into anaerobic metabolism, an essential mechanism for regulating energy provision under heat stress, is limited in mollusks. In this study, key enzymes of four anaerobic metabolic pathways were identified in the genome of scallop Chlamys farreri, respectively including five opine dehydrogenases (CfOpDHs), two aspartate aminotransferases (CfASTs) divided into cytoplasmic (CfAST1) and mitochondrial subtype (CfAST2), and two phosphoenolpyruvate carboxykinases (CfPEPCKs) divided into a primitive type (CfPEPCK2) and a cytoplasmic subtype (CfPEPCK1). It was surprising that lactate dehydrogenase (LDH), a key enzyme in the anaerobic metabolism of the glucose-lactate pathway in vertebrates, was absent in the genome of scallops. Phylogenetic analysis verified that CfOpDHs clustered according to the phylogenetic relationships of the organisms rather than substrate specificity. Furthermore, CfOpDHs, CfASTs, and CfPEPCKs displayed distinct expression patterns throughout the developmental process and showed a prominent expression in muscle, foot, kidney, male gonad, and ganglia tissues. Notably, CfASTs displayed the highest level of expression among these genes during the developmental process and in adult tissues. Under heat stress, the expression of CfASTs exhibited a general downregulation trend in the six tissues examined. The expression of CfOpDHs also displayed a downregulation trend in most tissues, except CfOpDH1/3 in striated muscle showing significant up-regulation at some time points. Remarkably, CfPEPCK1 was significantly upregulated in all six tested tissues at almost all time points. Therefore, we speculated that the glucose-succinate pathway, catalyzed by CfPEPCK1, serves as the primary anaerobic metabolic pathway in mollusks experiencing heat stress, with CfOpDH3 catalyzing the glucose-opine pathway in striated muscle as supplementary. Additionally, the high and stable expression level of CfASTs is crucial for the maintenance of the essential functions of aspartate aminotransferase (AST). This study provides a comprehensive and systematic analysis of the key enzymes involved in anaerobic metabolism pathways, which holds significant importance in understanding the mechanism of energy supply in mollusks.


Assuntos
Glucose , Resposta ao Choque Térmico , Pectinidae , Filogenia , Animais , Pectinidae/metabolismo , Pectinidae/genética , Glucose/metabolismo , Resposta ao Choque Térmico/fisiologia , Anaerobiose , Ácido Succínico/metabolismo , Redes e Vias Metabólicas , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/genética
4.
J Hazard Mater ; 471: 134451, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691935

RESUMO

Anaerobic biotechnology for wastewaters treatment can nowadays be considered as state of the art methods. Nonetheless, this technology exhibits certain inherent limitations when employed for industrial wastewater treatment, encompassing elevated substrate consumption, diminished electron transfer efficiency, and compromised system stability. To address the above issues, increasing interest is being given to the potential of using conductive non-biological materials, e,g., iron sulfide (FeS), as a readily accessible electron donor and electron shuttle in the biological decontamination process. In this study, Mackinawite nanoparticles (FeS NPs) were studied for their ability to serve as electron donors for p-chloronitrobenzene (p-CNB) anaerobic reduction within a coupled system. This coupled system achieved an impressive p-CNB removal efficiency of 78.3 ± 2.9% at a FeS NPs dosage of 1 mg/L, surpassing the efficiencies of 62.1 ± 1.5% of abiotic and 30.6 ± 1.6% of biotic control systems, respectively. Notably, the coupled system exhibited exclusive formation of aniline (AN), indicating the partial dechlorination of p-CNB. The improvements observed in the coupled system were attributed to the increased activity in the electron transport system (ETS), which enhanced the sludge conductivity and nitroaromatic reductases activity. The analysis of equivalent electron donors confirmed that the S2- ions dominated the anaerobic reduction of p-CNB in the coupled system. However, the anaerobic reduction of p-CNB would be adversely inhibited when the FeS NPs dosage exceeded 5 g/L. In a continuous operation, the p-CNB concentration and HRT were optimized as 125 mg/L and 40 h, respectively, resulting in an outstanding p-CNB removal efficiency exceeding 94.0% after 160 days. During the anaerobic reduction process, as contributed by the predominant bacterium of Thiobacillus with a 6.6% relative abundance, a mass of p-chloroaniline (p-CAN) and AN were generated. Additionally, Desulfomonile was emerged with abundances ranging from 0.3 to 0.7%, which was also beneficial for the reduction of p-CNB to AN. The long-term stable performance of the coupled system highlighted that anaerobic technology mediated by FeS NPs has a promising potential for the treatment of wastewater containing chlorinated nitroaromatic compounds, especially without the aid of organic co-substrates.


Assuntos
Compostos Ferrosos , Nitrobenzenos , Anaerobiose , Nitrobenzenos/metabolismo , Nitrobenzenos/química , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Nanopartículas/química , Oxirredução , Eliminação de Resíduos Líquidos/métodos , Compostos de Anilina/química , Compostos de Anilina/metabolismo , Águas Residuárias/química , Reatores Biológicos
5.
Water Sci Technol ; 89(9): 2311-2325, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747951

RESUMO

Rational disposal of sludge is an ongoing concern. This work is the first attempt for in-depth statistical analysis of anaerobic digestion (AD) research in recent three decades (1986-2022) using both quantitative and qualitative approaches in bibliometrics to investigate the research progress, trends and hot spots. All publications in the Web of Science Core Collection database from 1986 to April 4, 2022 were analyzed. Results showed that the research on AD started in 1999 and the number of papers significantly increased since 2012. The research about the disposal of sewage sludge mainly focuses on energy recovery (e.g. methane and short chain volatile organic acids) by AD. Besides, different pretreatment technologies were studied in this study to eliminate the negative effects on the disposal of sludge caused by hydrolysis (rate-limiting step of AD), water content (increasing the costs) and heavy metal (toxic to the environment) of sludge. Of those, the treatment technologies related to direct interspecies electron transfer were worth further studied in the future. Towards that end, iron conductive material, iron-based advanced oxidation and biological treatment were concluded as the prospective technologies and worth to further study.


Assuntos
Bibliometria , Esgotos , Anaerobiose , Eliminação de Resíduos Líquidos/métodos
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 757-764, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38708510

RESUMO

OBJECTIVE: To explore the effect of intestinal nitrates on the growth of Klebsiella pneumoniae and its regulatory mechanisms. METHODS: K. pneumoniae strains with nitrate reductase narG and narZ single or double gene knockout or with NarXL gene knockout were constructed and observed for both aerobic and anaerobic growth in the presence of KNO3 using an automated bacterial growth analyzer and a spectrophotometer, respectively. The mRNA expressions of narG and narZ in K. pneumoniae in anaerobic cultures in the presence of KNO3 and the effect of the binary regulatory system NarXL on their expresisons were detected using qRT-PCR. Electrophoretic mobility shift assays (EMSA) and MST analysis were performed to explore the specific regulatory mechanisms of NarXL in sensing and utilizing nitrates. Competitive experiments were conducted to examine anaerobic growth advantages of narG and narZ gene knockout strains of K. pneumoniae in the presence of KNO3. RESULTS: The presence of KNO3 in anaerobic conditions, but not in aerobic conditions, promoted bacterial growth more effectively in the wild-type K. pneumoniae strain than in the narXL gene knockout strain. In anaerobic conditions, the narXL gene knockout strain showed significantly lowered mRNA expressions of narG and narZ (P < 0.0001). EMSA and MST experiments demonstrated that the NarXL regulator could directly bind to narG and narZ promoter regions. The wild-type K. pneumoniae strain in anaerobic cultures showed significantly increased expressions of narG and narZ mRNAs in the presence of KNO3 (P < 0.01), and narG gene knockout resulted in significantly attenuated anaerobic growth and competitive growth abilities of K. pneumoniae in the presence of KNO3 (P < 0.01). CONCLUSION: The binary regulatory system NarXL of K. pneumoniae can sense changes in intestinal nitrate concentration and directly regulate the expression of nitrate reductase genes narG and narZ to promote bacterial growth.


Assuntos
Klebsiella pneumoniae , Nitrato Redutase , Nitratos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Nitratos/metabolismo , Nitratos/farmacologia , Nitrato Redutase/metabolismo , Nitrato Redutase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Intestinos/microbiologia , Regulação Bacteriana da Expressão Gênica , Anaerobiose , Técnicas de Inativação de Genes
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 748-756, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38708509

RESUMO

OBJECTIVE: To construct a mutant strain of Klebsiella pneumoniae NTUH- K2044 with modA gene deletion and its complementary strain and explore the role of modA gene in modulating anaerobic nitrate respiratory growth and phenotypes of K. pneumoniae. METHODS: The modA deletion mutant K. pneumoniae strain was constructed by homologous recombination using the suicide vector pKO3-Km. To obtain the complementary strain C-modA, the whole sequence fragment containing the promoter, open reading frame and terminator regions of modA was cloned into pGEM-T-easy and electrically transformed into the modA deletion mutant. The NTUH-K2044 wild-type strain, modA gene deletion mutant and complementary strain were compared by measuring in vitro anaerobic nitrate respiration growth, competitiveness index, biofilm quantification, mucoviscosity assay and morphological measurement using Image J. RESULTS: The modA deletion mutant strain ΔmodA and the complementary strain C-modA were successfully constructed. The modA gene knockout strain showed inhibited anaerobic nitrate respiratory growth compared with the wild- type and C-modA strains with significantly weakened competitiveness, reduced capacity of biofilm synthesis during anaerobiosis, and lowered mucoviscosity under anaerobic conditions. The ΔmodA strain showed a spherical morphology in anaerobic conditions as compared with the normal short rod-like morphology of K. pneumoniae, with also distinctly shorter length than the wild-type and C-modA strains. CONCLUSION: The molybdate transport system encoding gene modA is associated with the pathogenic capacity of K. pneumoniae by modulating its anaerobic nitrate respiration, competitiveness, biofilm formation, hypermucoviscous phenotype and morphology.


Assuntos
Biofilmes , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Deleção de Genes , Anaerobiose , Nitratos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Fenótipo
8.
Microb Cell Fact ; 23(1): 125, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698392

RESUMO

BACKGROUND: The facultatively anaerobic thermophile Parageobacillus thermoglucosidasius is able to produce hydrogen gas (H2) through the water-gas shift (WGS) reaction. To date this process has been evaluated under controlled conditions, with gas feedstocks comprising carbon monoxide and variable proportions of air, nitrogen and hydrogen. Ultimately, an economically viable hydrogenogenic system would make use of industrial waste/synthesis gases that contain high levels of carbon monoxide, but which may also contain contaminants such as H2, oxygen (O2) and other impurities, which may be toxic to P. thermoglucosidasius. RESULTS: We evaluated the effects of synthesis gas (syngas) mimetic feedstocks on WGS reaction-driven H2 gas production by P. thermoglucosidasius DSM 6285 in small-scale fermentations. Improved H2 gas production yields and faster onset towards hydrogen production were observed when anaerobic synthetic syngas feedstocks were used, at the expense of biomass accumulation. Furthermore, as the WGS reaction is an anoxygenic process, we evaluated the influence of O2 perturbation on P. thermoglucosidasius hydrogenogenesis. O2 supplementation improved biomass accumulation, but reduced hydrogen yields in accordance with the level of oxygen supplied. However, H2 gas production was observed at low O2 levels. Supplementation also induced rapid acetate consumption, likely to sustain growth. CONCLUSION: The utilisation of anaerobic syngas mimetic gas feedstocks to produce H2 and the relative flexibility of the P. thermoglucosidasius WGS reaction system following O2 perturbation further supports its applicability towards more robust and continuous hydrogenogenic operation.


Assuntos
Fermentação , Hidrogênio , Oxigênio , Hidrogênio/metabolismo , Oxigênio/metabolismo , Monóxido de Carbono/metabolismo , Anaerobiose , Biomassa , Gases/metabolismo
9.
Environ Microbiol Rep ; 16(3): e13276, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733087

RESUMO

Syntrophic interactions are key in anaerobic food chains, facilitating the conversion of complex organic matter into methane. A typical example involves acetogenic bacteria converting fatty acids (e.g., butyrate and propionate), a process thermodynamically reliant on H2 consumption by microorganisms such as methanogens. While most studies focus on H2-interspecies transfer between these groups, knowledge on acetate cross-feeding in anaerobic systems is lacking. This study investigated butyrate oxidation by co-cultures of Syntrophomonas wolfei and Methanospirillum hungatei, both with and without the addition of the acetate scavenger Methanothrix soehngenii. Growth and gene expression patterns of S. wolfei and M. hungatei were followed in the two conditions. Although butyrate consumption rates remained constant, genes in the butyrate degradation pathway of S. wolfei were less expressed in the presence of M. soehngenii, including genes involved in reverse electron transport. Higher expression of a type IV-pili operon in S. wolfei hints to the potential for direct interspecies electron transfer between S. wolfei and M. soehngenii and an energetically advantageous relationship between the two microorganisms. Overall, the presence of the acetate scavenger M. soehngenii positively influenced the energy metabolism of S. wolfei and highlighted the relevance of including acetate scavengers when investigating syntrophic fatty acid degradation.


Assuntos
Methanospirillum , Methanospirillum/metabolismo , Methanospirillum/genética , Butiratos/metabolismo , Transcriptoma , Anaerobiose , Oxirredução , Acetatos/metabolismo , Interações Microbianas , Metano/metabolismo , Técnicas de Cocultura , Transporte de Elétrons
10.
J Vis Exp ; (206)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38738879

RESUMO

The use of respirometry to study the biokinetics of microbiota treating wastewater or digesting wastewater sludges has become more prevalent over the last few decades. The use of respirometry to examine the biokinetics of anaerobic microbiota co-digesting organic waste streams such as wastewater sludge and food scrap is an area of active research. To date, no visualized protocol has been published on the topic. Accordingly, in this protocol, we configured a respirometer to measure methane production and flow rate over time using three different food-to-microorganism (F:M) ratios and food scrap waste and waste-activated sludge as substrates. The resulting data, coupled with substrate utilization measurements, provides the basis for understanding how different substrate concentrations influence the rate at which anaerobic microbiota produce methane. Additionally, this protocol presents a method to develop biokinetic parameters (e.g., methane production rate constant and yield). Others can use this respirometry protocol to examine organic degradation under anaerobic conditions and develop microbial parameters.


Assuntos
Metano , Esgotos , Metano/metabolismo , Esgotos/microbiologia , Anaerobiose , Eliminação de Resíduos Líquidos/métodos
11.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731399

RESUMO

The antibacterial effects of a selection of volatile fatty acids (acetic, propionic, butyric, valeric, and caproic acids) relevant to anaerobic digestion were investigated at 1, 2 and 4 g/L. The antibacterial effects were characterised by the dynamics of Enterococcus faecalis NCTC 00775, Escherichia coli JCM 1649 and Klebsiella pneumoniae A17. Mesophilic anaerobic incubation to determine the minimum bactericidal concentration (MBC) and median lethal concentration of the VFAs was carried out in Luria Bertani broth at 37 °C for 48 h. Samples collected at times 0, 3, 6, 24 and 48 h were used to monitor bacterial kinetics and pH. VFAs at 4 g/L demonstrated the highest bactericidal effect (p < 0.05), while 1 g/L supported bacterial growth. The VFA cocktail was the most effective, while propionic acid was the least effective. Enterococcus faecalis NCTC 00775 was the most resistant strain with the VFAs MBC of 4 g/L, while Klebsiella pneumoniae A17 was the least resistant with the VFAs MBC of 2 g/L. Allowing a 48 h incubation period led to more log decline in the bacterial numbers compared to earlier times. The VFA cocktail, valeric, and caproic acids at 4 g/L achieved elimination of the three bacteria strains, with over 7 log10 decrease within 48 h.


Assuntos
Antibacterianos , Enterococcus faecalis , Ácidos Graxos Voláteis , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Anaerobiose , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Propionatos/farmacologia , Concentração de Íons de Hidrogênio , Ácidos Pentanoicos/farmacologia
12.
Bioresour Technol ; 401: 130709, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636877

RESUMO

Low-temperature could inhibit the performance of anaerobic granular sludge (AnGS). Quorum sensing (QS), as a communication mode between microorganisms, can effectively regulate AnGS. In this study, a kind of embedded particles (PVA/SA@Serratia) based on signal molecule secreting bacteria was prepared by microbial immobilization technology based on polyvinyl alcohol and sodium alginate to accelerate the recovery of AnGS system after low temperature. Low-temperature shock experiment verified the positive effect of PVA/SA@Serratia on restoring the COD removal rate and methanogenesis capacity of AnGS. Further analysis by metagenomics analysis showed that PVA/SA@Serratia stimulated higher QS activity and promoted the secretion of extracellular polymeric substance (EPS) in AnGS. The rapid construction of EPS protective layer effectively accelerated the establishment of a robust microbial community structure. PVA/SA@Serratia also enhanced multiple methanogenic pathways, including direct interspecies electron transfer. In conclusion, this study demonstrated that PVA/SA@Serratia could effectively strengthen AnGS after low-temperature shock.


Assuntos
Alginatos , Temperatura Baixa , Álcool de Polivinil , Percepção de Quorum , Esgotos , Alginatos/farmacologia , Alginatos/química , Álcool de Polivinil/química , Esgotos/microbiologia , Anaerobiose , Metano/metabolismo
13.
Bioresour Technol ; 401: 130704, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636879

RESUMO

In this study, a SNAD-SBBR process was implemented to achieve ammonia removal and carbon reduction of mature landfill leachate under extremely low dissolved oxygen conditions (0.051 mg/L) for a continuous operation of 266 days. The process demonstrated excellent removal performance, with ammonia nitrogen removal efficiency reaching 100 %, total nitrogen removal efficiency reaching 87.56 %, and an average removal rate of 0.180 kg/(m3·d). The recalcitrant organic compound removal efficiency reached 34.96 %. Nitrogen mass balance analysis revealed that the Anammox process contributed to approximately 98.1 % of the nitrogen removal. Candidatus Kuenenia achieved a relative abundance of 1.49 % in the inner layer of the carrier. In the SNAD-SBBR system, the extremely low DO environment created by the highly efficient partial nitrification stage enabled the coexistence of AnAOB, denitrifying bacteria, and Nitrosomonas, synergistically achieving ammonia removal and carbon reduction. Overall, the SNAD-SBBR process exhibits low-cost and high-efficiency characteristics, holding tremendous potential for landfill leachate treatment.


Assuntos
Carbono , Desnitrificação , Nitrificação , Nitrogênio , Oxigênio , Poluentes Químicos da Água , Oxigênio/metabolismo , Poluentes Químicos da Água/metabolismo , Amônia/metabolismo , Reatores Biológicos , Oxirredução , Biodegradação Ambiental , Purificação da Água/métodos , Bactérias/metabolismo , Anaerobiose
14.
Bioresour Technol ; 401: 130713, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641305

RESUMO

The mainstream anaerobic ammonium oxidation (anammox) faces considerable challenges with low-strength municipal wastewater. A Fe(Ⅱ)-amended partial denitrification coupled anammox (PD/A) process was conducted and achieved a long-term and efficient nitrogen and phosphorus removal, yielding effluent total nitrogen and phosphorus concentrations of 1.97 ± 1.03 mg/L and 0.23 ± 0.13 mg/L, respectively, which could well meet more stringent effluent discharge standard of some wastewater treatment plants in specific geographical locations, e.g., estuaries. Fe(Ⅱ)-driven vivianite formation provided key nucleuses for the optimization of the spatial distribution of heterotrophic and anammox bacteria with enhanced extracellular polymeric substances as key driving forces. Metagenomics analysis further revealed the increase of key genes, enhancing anammox bacteria homeostasis, which also bolstered the resistance to environmental perturbations. This study provided a comprehensive sight into the function of Fe(Ⅱ) in mainstream PD/A process, and explored a promising alternative for synergetic nitrogen and phosphorus removal for low-strength municipal wastewater treatment.


Assuntos
Nitrogênio , Fósforo , Águas Residuárias , Fósforo/metabolismo , Nitrogênio/metabolismo , Águas Residuárias/química , Águas Residuárias/microbiologia , Bactérias/metabolismo , Bactérias/genética , Purificação da Água/métodos , Oxirredução , Desnitrificação , Reatores Biológicos/microbiologia , Processos Heterotróficos , Compostos Ferrosos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Anaerobiose
15.
Bioresour Technol ; 401: 130741, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670292

RESUMO

Acid accumulation and carbon emission are two major challenges in anaerobic digestion. Syntrophic consortia can employ reverse electron transfer (RET) to facilitate thermodynamically unfavorable redox reactions during acetogenesis. However, the potential mechanisms and regulatory methods of RET remain unclear. This study examines the regulatory mechanisms by which exogenous CO2 affects RET and demonstrates that biochar maximizes CO2 solubility at 25.8 mmol/L to enhance effects further. CO2 synergized with biochar significantly increases cumulative methane production and propionate degradation rate. From the bioenergetic perspective, CO2 decreases energy level to a maximum of -87 kJ/mol, strengthening the thermodynamic viability. The underlying mechanism can be attributed to RET promotion, as indicated by increased formate dehydrogenase and enrichment of H2/formate-producing bacteria with their partner Methanospirillum hungatei. Moreover, the 5 % 13CH4 and methane contribution result show that CO2 accomplishes directed methanogenesis. Overall, this investigation riches the roles of CO2 and biochar in AD surrounding RET.


Assuntos
Dióxido de Carbono , Carvão Vegetal , Metano , Metano/metabolismo , Dióxido de Carbono/metabolismo , Carvão Vegetal/farmacologia , Carvão Vegetal/química , Anaerobiose , Transporte de Elétrons , Methanospirillum/metabolismo , Propionatos/metabolismo
16.
Bioresour Technol ; 401: 130739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670291

RESUMO

A modified biodegradable plastic (PLA/PBAT) was developed by through covalent bonding with proteinase K, porcine pancreatic lipase, or amylase, and was then investigated in anaerobic co-digestion mixed with food waste. Fluorescence microscope validated that enzymes could remain stable in modified the plastic, even after co-digestion. The results of thermophilic anaerobic co-digestion showed that, degradation of the plastic modified with Proteinase K increased from 5.21 ± 0.63 % to 29.70 ± 1.86 % within 30 days compare to blank. Additionally, it was observed that the cumulative methane production increased from 240.9 ± 0.5 to 265.4 ± 1.8 mL/gVS, and the methane production cycle was shortened from 24 to 20 days. Interestingly, the kinetic model suggested that the modified the plastic promoted the overall hydrolysis progression of anaerobic co-digestion, possibly as a result of the enhanced activities of Bacteroidota and Thermotogota. In conclusion, under anaerobic co-digestion, the modified the plastic not only achieved effective degradation but also facilitated the co-digestion process.


Assuntos
Plásticos Biodegradáveis , Metano , Anaerobiose , Metano/metabolismo , Plásticos Biodegradáveis/química , Biodegradação Ambiental , Lipase/metabolismo , Suínos , Animais , Alimentos , Resíduos , Amilases/metabolismo , Cinética , Hidrólise , Eliminação de Resíduos/métodos , Perda e Desperdício de Alimentos
17.
Bioresour Technol ; 401: 130740, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677385

RESUMO

Microbial secondary metabolites (SMs) and their derivatives have been widely used in medicine, agriculture, and energy. Growing needs for renewable energy and the challenges posed by antibiotic resistance, cancer, and pesticides emphasize the crucial hunt for new SMs. Anaerobic ammonium-oxidation (anammox) systems harbor many uncultured or underexplored bacteria, representing potential resources for discovering novel SMs. Leveraging HiFi long-read metagenomic sequencing, 1,040 biosynthetic gene clusters (BGCs) were unearthed from the anammox microbiome with 58% being complete and showcasing rich diversity. Most of them showed distant relations to known BGCs, implying novelty. Members of the underexplored lineages (Chloroflexota and Planctomycetota) and Proteobacteria contained lots of BGCs, showcasing substantial biosynthetic potential. Metaproteomic results indicated that Planctomycetota members harbored the most active BGCs, particularly those involved in producing potential biofuel-ladderane. Overall, these findings underscore that anammox microbiomes could serve as valuable resources for mining novel BGCs and discovering new SMs for practical application.


Assuntos
Oxirredução , Bactérias/metabolismo , Bactérias/genética , Compostos de Amônio/metabolismo , Microbiota , Família Multigênica , Filogenia , Proteômica/métodos , Metagenômica/métodos , Anaerobiose , Multiômica
18.
J Hazard Mater ; 471: 134355, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643583

RESUMO

Straw addition markedly affects the soil aggregates and microbial community structure. However, its influence on the profile of antibiotic resistance genes (ARGs), which are likely associated with changes in bacterial life strategies, remains unclear. To clarify this issue, a soil microcosm experiment was incubated under aerobic (WS) or anaerobic (AnWS) conditions after straw addition, and metagenomic sequencing was used to characterise ARGs and bacterial communities in soil aggregates. The results showed that straw addition shifted the bacterial life strategies from K- to r-strategists in all aggregates, and the aerobic and anaerobic conditions stimulated the growth of aerobic and anaerobic r-strategist bacteria, respectively. The WS decreased the relative abundances of dominant ARGs such as QnrS5, whereas the AnWS increased their abundance. After straw addition, the macroaggregates consistently exhibited a higher number of significantly altered bacteria and ARGs than the silt+clay fractions. Network analysis revealed that the WS increased the number of aerobic r-strategist bacterial nodes and fostered more interactions between r-and K-strategist bacteria, thus promoting ARGs prevalence, whereas AnWS exhibited an opposite trend. These findings provide a new perspective for understanding the fate of ARGs and their controlling factors in soil ecosystems after straw addition. ENVIRONMENTAL IMPLICATIONS: Straw soil amendment has been recommended to mitigate soil fertility degradation, improve soil structure, and ultimately increase crop yields. However, our findings highlight the importance of the elevated prevalence of ARGs associated with r-strategist bacteria in macroaggregates following the addition of organic matter, particularly fresh substrates. In addition, when assessing the environmental risk posed by ARGs in soil that receives crop straw, it is essential to account for the soil moisture content. This is because the species of r-strategist bacteria that thrive under aerobic and anaerobic conditions play a dominant role in the dissemination and accumulation of ARG.


Assuntos
Bactérias , Microbiologia do Solo , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Solo/química , Aerobiose , Anaerobiose , Farmacorresistência Bacteriana/genética
19.
J Hazard Mater ; 471: 134296, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643574

RESUMO

The effective removal of viruses from swine wastewater using anaerobic membrane bioreactor (AnMBR) is vital to ecological safety. However, most studies have focused only on disinfectants, whereas the capabilities of the treatment process have not been investigated. In this study, the performance and mechanism of an AnMBR in the removal of porcine hepatitis E virus (HEV), porcine kobuvirus (PKoV), porcine epidemic diarrhea virus (PEDV), and transmissible gastroenteritis coronavirus (TGEV) are systematically investigated. The results show that the AnMBR effectively removes the four viruses, with average removal efficiencies of 1.62, 3.05, 2.41, and 1.34 log for HEV, PKoV, PEDV and TGEV, respectively. Biomass adsorption contributes primarily to the total virus removal in the initial stage of reactor operation, with contributions to HEV and PKoV removal exceeding 71.7 % and 68.2 %, respectively. When the membrane is fouled, membrane rejection dominated virus removal. The membrane rejection contribution test shows the significant contribution of membrane pore foulants (23-76 %). Correlation analysis shows that the surface characteristics and size differences of the four viruses contribute primarily to their different effects on biomass adsorption and membrane rejection. This study provides technical guidance for viral removal during the treatment of high-concentration swine wastewater using an AnMBR.


Assuntos
Reatores Biológicos , Membranas Artificiais , Águas Residuárias , Animais , Águas Residuárias/virologia , Suínos , Anaerobiose , Vírus de RNA/isolamento & purificação , Purificação da Água/métodos , Adsorção , Biomassa , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos
20.
Chemosphere ; 357: 141924, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599330

RESUMO

Research to increase biomethane recovery efficiency from thickened sewage sludge (TSWS) using sustainable anaerobic digestion (AD) in municipal wastewater treatment plants is ongoing. Pretreating substrates is known to increase organic biodegradation and biomethane conversion rates in AD. Cold plasma (CP), a recently adopted advanced oxidation processes (AOP) has emerged as an alternative to accelerate pretreatment times under different operation variables. This study assessed raw and CP-pretreated TSWS in an anaerobic sequencing batch reactor (ASBR) and anaerobic membrane bioreactor (AnMBR). The effects of incremental organic loading rates (OLR) and nitrogenous compounds concentration on enhanced CH4 bioconversion efficiency were evaluated. We found that the AnMBR outperformed the ASBR, with an overall chemical oxygen demand (COD) conversion rate of 67%, lower total nitrogen (T-N) accumulation (594 mg L-1), and an overall methane yield of 0.24 L CH4 g-1 COD. CP pretreatment improved TSWS AD, resulting in more efficient COD removal and methane recovery. This study suggests that CP technology is a promising pretreatment to improve AD when treating TSWS.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Metano , Nitrogênio , Gases em Plasma , Esgotos , Eliminação de Resíduos Líquidos , Metano/metabolismo , Anaerobiose , Nitrogênio/metabolismo , Esgotos/química , Hidrólise , Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...