Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.249
Filtrar
1.
Methods Mol Biol ; 2841: 179-188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115777

RESUMO

Vacuoles in plant cells are the most prominent organelles that harbor distinctive features, including lytic function, storage of proteins and sugars, balance of cell volume, and defense responses. Despite their dominant size and functional versatility, the nature and biogenesis of vacuoles in plants per se remain elusive and several models have been proposed. Recently, we used the whole-cell 3D electron tomography (ET) technique to study vacuole formation and distribution at nanometer resolution and demonstrated that small vacuoles are derived from multivesicular body maturation and fusion. Good sample preparation is a critical step to get high-quality electron tomography images. In this chapter, we provide detailed sample preparation methods for high-resolution ET in Arabidopsis thaliana root cells, including high-pressure freezing, subsequent freeze-substitution fixation, embedding, and serial sectioning.


Assuntos
Arabidopsis , Tomografia com Microscopia Eletrônica , Vacúolos , Tomografia com Microscopia Eletrônica/métodos , Vacúolos/ultraestrutura , Vacúolos/metabolismo , Arabidopsis/ultraestrutura , Arabidopsis/metabolismo , Raízes de Plantas/ultraestrutura , Raízes de Plantas/metabolismo , Imageamento Tridimensional/métodos , Substituição ao Congelamento/métodos , Biogênese de Organelas
2.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(3): 358-367, 2024 Mar 29.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39188182

RESUMO

OBJECTIVES: To investigate the effect of Chinese medicine He's Yangchao recipe on premature ovarian insufficiency (POI) and its relationship with mitochondrial function of ovarian granulose cells in an animal model. METHODS: Thirty-six female C57BL/6J mice were randomly divided into blank control group, model group, low-, medium- and high-dose He's Yangchao recipe treatment group and coenzyme Q10 (Q10) treatment group (positive control). The POI model was induced by a single intraperitoneal injection of cyclophosphamide (90 mg/kg). The animals were sacrificed after 21 days. Primary granulose cells were obtained from POI mice and treated with He's Yangchao recipe, ERß inhibitor PHTPP, and He's Yangchao recipe+PHTPP in vitro for 24 h, respectively. Ovarian histopathological changes were observed by hematoxylin-eosin (HE) staining, ATP levels were detected by luciferase assay, mtDNA copy numbers were detected by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), mitochondrial structure changes were observed by transmission electron microscopy, protein and mRNA expression levels of estrogen receptor ß (ERß), peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), mitochondrial transcription factor A (TFAM), and superoxide dismutase 2 (SOD2) were detected by Western blotting and qRT-PCR. RESULTS: The ovarian tissue in model group exhibited few secondary and tertiary follicles, whereas the He's Yangchao recipe groups and Q10 group had abundant secondary and tertiary follicles. Compared with the blank control group, ATP and mtDNA levels in model group decreased (P<0.01), mitochondrial crista disappeared or abnormal vacuolated structure increased; the protein and mRNA levels of ERß, PGC1α, TFAM, and SOD2 decreased (all P<0.01). ATP production increased in granulose cells of high-dose He's Yangchao recipe group and Q10 group; mtDNA copy numbers increased (P<0.05 or P<0.01); abnormal mitochondrial structure was reduced; the protein and mRNA expressions of ERß, PGC1α, TFAM, and SOD2 increased (P<0.05 or P<0.01). Compared with the PHTPP intervention group, the proportion of normal mitochondrial structure in the granulose cells of He's Yangchao recipe + PHTPP group was higher; ATP content increased (P<0.05 or P<0.01); mtDNA copy numbers increased (P<0.05 or P<0.01); the protein and mRNA expression of ERß, PGC1α, TFAM and SOD2 increased (P<0.05 or P<0.01). CONCLUSIONS: He's Yangchao recipe can regulate mitochondrial biogenesis through ERß/PGC1α/TFAM pathway to improve ovarian function in POI mice.


Assuntos
Proteínas de Ligação a DNA , Receptor beta de Estrogênio , Camundongos Endogâmicos C57BL , Mitocôndrias , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Insuficiência Ovariana Primária , Fatores de Transcrição , Feminino , Animais , Receptor beta de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Camundongos , Insuficiência Ovariana Primária/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Medicamentos de Ervas Chinesas/farmacologia , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Superóxido Dismutase/metabolismo , Proteínas de Grupo de Alta Mobilidade
3.
Cytokine ; 182: 156733, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128194

RESUMO

BACKGROUND: Septic cardiomyopathy is a component of multiple organ dysfunction in sepsis. Mitochondrial dysfunction plays an important role in septic cardiomyopathy. Studies have shown that cyclooxygenase-2 (COX-2) had a protective effect on the heart, and prostaglandin E2 (PGE2), the downstream product of COX-2, was increasingly recognized to have a protective effect on mitochondrial function. OBJECTIVE: This study aims to demonstrate that COX-2/PGE2 can protect against septic cardiomyopathy by regulating mitochondrial function. METHODS: Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis and RAW264.7 macrophages and H9C2 cells were used to simulate sepsis in vitro. The NS-398 and celecoxib were used to inhibit the activity of COX-2. ZLN005 and SR18292 were used to activate or inhibit the PGC-1α activity. The mitochondrial biogenesis was examined through the Mitotracker Red probe, mtDNA copy number, and ATP content detection. RESULTS: The experimental data suggested that COX-2 inhibition attenuated PGC-1α expression thus decreasing mitochondrial biogenesis, whereas increased PGE2 could promote mitochondrial biogenesis by activating PGC-1α. The results also showed that the effect of COX-2/PGE2 on PGC-1α was mediated by the activation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB). Finally, the effect of COX-2/PGE2 on the heart was also verified in the septic mice. CONCLUSION: Collectively, these results suggested that COX-2/PGE2 pathway played a cardioprotective role in septic cardiomyopathy through improving mitochondrial biogenesis, which has changed the previous understanding that COX-2/PGE2 only acted as an inflammatory factor.


Assuntos
Ciclo-Oxigenase 2 , Dinoprostona , Biogênese de Organelas , Sepse , Animais , Sepse/metabolismo , Sepse/tratamento farmacológico , Camundongos , Ciclo-Oxigenase 2/metabolismo , Células RAW 264.7 , Dinoprostona/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Cardiotônicos/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Cardiomiopatias/metabolismo , Cardiomiopatias/tratamento farmacológico , Modelos Animais de Doenças , Inibidores de Ciclo-Oxigenase 2/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
4.
ACS Chem Neurosci ; 15(15): 2870-2883, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39074306

RESUMO

Parkinson's disease (PD) is a complex neurodegenerative disorder that affects dopamine neurons of the substantia nigra pars compacta (SNpc), resulting in motor dysfunction. Among the pathways examined, mitochondria and α-synuclein were found to play a major role in the disease progression. Hence, several attempts are being made to restore mitochondrial bioenergetics or protein aggregation pathways as disease-modifying strategies. Our earlier studies reported the protective effect of 2,4-dihydroxy-azaflavanone (azaflavanone) in a transgenic Drosophila fly model of PD. In the present study, we found that azaflavanone acts as an allosteric activator of SIRT1 in both cell-free and cell-based systems and the effects were more pronounced as compared to resveratrol. Also, azaflavanone appears to interact selectively with SIRT1 as other SIRTs such as SIRT3 and SIRT6 did not exhibit any gross changes in cellular thermal shift assay (CETSA). Molecular docking studies depicted a higher docking score with azaflavanone than with resveratrol. Further, N27 cells treated with azaflavanone exhibited a dose-dependent increase in the mitotracker staining, mtDNA/nuclear DNA ratio, and also mitochondrial bioenergetics. The observed effects appear to be due to the activation of SIRT1, as evidenced by an increase in the expression of PGC-1α and TFAM, which are the downstream targets of SIRT1. Lastly, the Parkinsonian mimic MPP+-induced disturbance in the mitochondrial membrane potential, mitochondrial bioenergetics, and biogenesis were ameliorated by azaflavanone. Overall, our findings indicate that azaflavanone, being an antioxidant and an allosteric activator of SIRT1, is a promising compound for ameliorating the pathophysiology of PD.


Assuntos
Flavanonas , Mitocôndrias , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Flavanonas/farmacologia , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Regulação Alostérica/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Simulação de Acoplamento Molecular , Biogênese de Organelas , 1-Metil-4-fenilpiridínio/toxicidade , Ratos , Resveratrol/farmacologia , Humanos
5.
Neurosci Lett ; 837: 137895, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39025434

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by progressive cognitive decline. Yttrium oxide nanoparticles (Y2O3NPs) have recently attracted much attention for their potential anti-inflammatory and antioxidant properties. However, the effects of Y2O3NPs in animal models of AD are less studied. This study aimed to investigate the potential therapeutic effects of Y2O3NPs in streptozotocin (STZ)-treated rats, a reliable animal model of AD, with special emphasis on cognitive function, neuroinflammation, and mitochondrial biogenesis in the hippocampus. Male Wistar rats were stereotaxically injected with STZ (3 mg/kg, 3 µl/ventricle). Three weeks after STZ injection, cognitive function was assessed using the Morris water maze, elevated plus maze, and passive avoidance tasks. Intraperitoneal treatment with Y2O3NPs (0.1, 0.3, or 0.5 mg/kg) was started 24 h after the STZ injection and continued for 21 days. The mRNA and protein levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß) and components involved in mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM) were measured in the hippocampus. The results indicated that STZ induced cognitive impairment and led to neuroinflammation and mitochondrial biogenesis impairment in the hippocampus of rats. Interestingly, treatment with Y2O3NPs effectively reduced STZ-induced cognitive deficits in a dose-dependent manner, possibly by attenuating neuroinflammation and mitochondrial biogenesis impairment. These findings suggest that Y2O3NPs can be considered as a promising therapeutic agent for treating or ameliorating the neuropathological effects associated with AD.


Assuntos
Disfunção Cognitiva , Hipocampo , Nanopartículas , Biogênese de Organelas , Ratos Wistar , Estreptozocina , Ítrio , Animais , Masculino , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Estreptozocina/toxicidade , Nanopartículas/administração & dosagem , Ratos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Ítrio/farmacologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Modelos Animais de Doenças
6.
Sci Rep ; 14(1): 16260, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009622

RESUMO

The aim of this study was to evaluate the effects of C-type natriuretic peptide (CNP) treatment prior to in vitro maturation (IVM) on mitochondria biogenesis in bovine oocyte matured in vitro and explore the related causes. The results showed that treatment with CNP before IVM significantly improved mitochondrial content, elevated the expression of genes related to mitochondria biogenesis, and increased the protein levels of phosphorylation of cAMP-response element binding protein (p-CREB) in bovine oocytes following IVM. However, further studies revealed that treatment with CNP before IVM could not increased the protein levels of p-CREB in bovine oocytes when natriuretic peptide receptor 2 activities was inhibited using the relative specific inhibitor Gö6976. In addition, treatment with CNP before IVM could not improved mitochondrial content or elevated the expression of genes related to mitochondria biogenesis in bovine oocytes when CREB activities was abolished using the specific inhibitor 666-15. In summary, these results provide evidence that treatment of bovine oocytes with CNP before IVM promotes mitochondrial biogenesis in vitro, possibly by activating CREB.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Mitocôndrias , Peptídeo Natriurético Tipo C , Oócitos , Biogênese de Organelas , Animais , Bovinos , Peptídeo Natriurético Tipo C/farmacologia , Peptídeo Natriurético Tipo C/metabolismo , Oócitos/metabolismo , Oócitos/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Feminino , Técnicas de Maturação in Vitro de Oócitos/métodos , Fosforilação/efeitos dos fármacos
7.
Chem Biol Interact ; 400: 111158, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39033796

RESUMO

Multi-walled carbon nanotube (MWCNT) induced respiratory toxicity has become a growing concern, with ferroptosis emerging as a novel mechanism implicated in various respiratory diseases. However, whether ferroptosis is involved in MWCNT-elicited lung injury and the underlying molecular mechanisms warrant further exploration. In this study, we found that MWCNT-induced ferroptosis is autophagy-dependent, contributing to its cellular toxicity. Inhibiting of autophagy by pharmacological inhibitors 3-MA or ATG5 gene knockdown significantly attenuated MWCNT-induced ferroptosis, concomitant with rescued mitochondrial biogenesis. Rapamycin, the autophagy agonist, exacerbated the mitochondrial damage and MWCNT-induced ferroptosis. Moreover, lentivirus-mediated overexpression of PGC-1α inhibited ferroptosis, while inhibition of PGC-1α aggravated ferroptosis. In summary, our study unveils ferroptosis as a novel mechanism underlying MWCNT-induced respiratory toxicity, with autophagy promoting MWCNT-induced ferroptosis by hindering PGC-1α-dependent mitochondrial biogenesis.


Assuntos
Autofagia , Ferroptose , Pulmão , Nanotubos de Carbono , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Nanotubos de Carbono/toxicidade , Ferroptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/citologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Biogênese de Organelas , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Animais , Sirolimo/farmacologia , Camundongos , Linhagem Celular
8.
J Ovarian Res ; 17(1): 143, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987824

RESUMO

BACKGROUND: This study was designed to examine the effect of resveratrol on mitochondrial biogenesis, oxidative stress (OS), and assisted reproductive technology (ART) outcomes in individuals with polycystic ovary syndrome (PCOS). METHODS: Fifty-six patients with PCOS were randomly assigned to receive 800 mg/day of resveratrol or placebo for 60 days. The primary outcome was OS in follicular fluid (FF). The secondary outcome involved assessing gene and protein expression related to mitochondrial biogenesis, mitochondrial DNA (mtDNA) copy number, and adenosine triphosphate (ATP) content in granulosa cells (GCs). ART outcomes were evaluated at the end of the trial. RESULTS: Resveratrol significantly reduced the total oxidant status (TOS) and oxidative stress index (OSI) in FF (P = 0.0142 and P = 0.0039, respectively) while increasing the total antioxidant capacity (TAC) (P < 0.0009). Resveratrol consumption also led to significant increases in the expression of critical genes involved in mitochondrial biogenesis, including peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) and mitochondrial transcription factor A (TFAM) (P = 0.0032 and P = 0.0003, respectively). However, the effect on nuclear respiratory factor 1 (Nrf-1) expression was not statistically significant (P = 0.0611). Resveratrol significantly affected sirtuin1 (SIRT1) and PGC-1α protein levels (P < 0.0001 and P = 0.0036, respectively). Resveratrol treatment improved the mtDNA copy number (P < 0.0001) and ATP content in GCs (P = 0.0014). Clinically, the resveratrol group exhibited higher rates of oocyte maturity (P = 0.0012) and high-quality embryos (P = 0.0013) than did the placebo group. There were no significant differences between the groups in terms of chemical or clinical pregnancy rates (P > 0.05). CONCLUSIONS: These findings indicate that resveratrol may be a promising therapeutic agent for patients with PCOS undergoing assisted reproduction. TRIAL REGISTRATION NUMBER: http://www.irct.ir ; IRCT20221106056417N1; 2023 February 09.


Assuntos
Biogênese de Organelas , Síndrome do Ovário Policístico , Técnicas de Reprodução Assistida , Resveratrol , Humanos , Feminino , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Adulto , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , DNA Mitocondrial/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo
9.
FASEB J ; 38(14): e23816, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39072779

RESUMO

Acetaminophen (APAP) is one of the most clinically relevant medications associated with acute liver damage. A prolific deal of research validated the hepatoprotective effect of empagliflozin (EMPA); however, its effect on APAP-induced hepatotoxicity has still not been investigated. In this study, the prospective hepatoprotective impact of EMPA against APAP-induced hepatotoxicity was investigated. Twenty-eight Balb-C mice were assigned to four groups: control, APAP, EMPA10/APAP, and EMPA25/APAP. At the end of the experiment, serum hepatotoxicity biomarkers, MDA level, and GSH content were estimated. Hepatic mitofusin-2 (MFN2), optic atrophy 1 (OPA1), dynamin-related protein 1 (Drp1), and mitochondrial fission 1 protein (FIS1) were immunoassayed. PGC-1α, cGAS, and STING mRNA expression were assessed by real-time PCR. Histopathological changes and immunohistochemistry of INF-ß, p-NF-κB, and iNOS were evaluated. APAP treatment caused significant hepatic functional impairment and increased hepatic MDA levels, as well as a concomitant decrease in GSH content. Marked elevation in Drp1 and FIS1 levels, INF-ß, p-NF-κB, and iNOS immunoreactivity, and reduction in MFN2 and OPA1 levels in the APAP-injected group, PGC-1α downregulation, and high expression of cGAS and STING were also documented. EMPA effectively ameliorated APAP-generated structural and functional changes in the liver, restored redox homeostasis and mitochondrial dynamics balance, and enhanced mitochondrial biogenesis, remarkably diminished hepatic expression of cGAS and STING, and elicited a reduction in hepatic inflammation. Moreover, the computational modeling data support the interaction of APAP with antioxidant system-related proteins as well as the interactions of EMPA against Drp1, cGAS, IKKA, and iNOS proteins. Our findings demonstrated for the first time that EMPA has an ameliorative impact against APAP-induced hepatotoxicity in mice via modulation of mitochondrial dynamics, biogenesis, and cGAS/STING-dependent inflammation. Thus, this study concluded that EMPA could be a promising therapeutic modality for acute liver toxicity.


Assuntos
Acetaminofen , Compostos Benzidrílicos , Doença Hepática Induzida por Substâncias e Drogas , Dinaminas , GTP Fosfo-Hidrolases , Glucosídeos , Proteínas de Membrana , Dinâmica Mitocondrial , Nucleotidiltransferases , Animais , Masculino , Camundongos , Acetaminofen/toxicidade , Acetaminofen/efeitos adversos , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Dinaminas/metabolismo , Dinaminas/genética , Glucosídeos/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , NF-kappa B/metabolismo , Nucleotidiltransferases/metabolismo , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39078368

RESUMO

Lysosome-related organelles (LROs) are specialized lysosomes with cell type-specific roles in organismal homeostasis. Dysregulation of LROs leads to many human disorders, but the mechanisms underlying their biogenesis are not fully understood. Here, we identify a group of LYSMD proteins as evolutionarily conserved regulators of LROs. In Caenorhabditis elegans, mutations of LMD-2, a LysM domain-containing protein, reduce the levels of the Rab32 GTPase ortholog GLO-1 on intestine-specific LROs, the gut granules, leading to their abnormal enlargement and defective biogenesis. LMD-2 interacts with GLO-3, a subunit of GLO-1 guanine nucleotide exchange factor (GEF), thereby promoting GLO-1 activation. Mammalian homologs of LMD-2, LYSMD1, and LYSMD2 can functionally replace LMD-2 in C. elegans. In mammals, LYSMD1/2 physically interact with the HPS1 subunit of BLOC-3, the GEF of Rab32/38, thus promoting Rab32 activation. Inactivation of both LYSMD1 and LYSMD2 reduces Rab32 activation, causing melanosome enlargement and decreased melanin production in mouse melanoma cells. These findings provide important mechanistic insights into LRO biogenesis and functions.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Lisossomos , Biogênese de Organelas , Proteínas rab de Ligação ao GTP , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Lisossomos/metabolismo , Humanos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Camundongos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Melanossomas/metabolismo , Mutação
11.
Cell Rep ; 43(7): 114507, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39003742

RESUMO

The oxidative-stress-related protein Kelch-like ECH-associated protein 1 (KEAP1) is a substrate articulator of E3 ubiquitin ligase, which plays an important role in the ubiquitination modification of proteins. However, the function of KEAP1 in breast cancer and its impact on the survival of patients with breast cancer remain unclear. Our study demonstrates that KEAP1, a positive prognostic factor, plays a crucial role in regulating cell proliferation, apoptosis, and cell cycle transition in breast cancer. We investigate the underlying mechanism using human tumor tissues, high-throughput detection technology, and a mouse xenograft tumor model. KEAP1 serves as a key regulator of cellular metabolism, the reprogramming of which is one of the hallmarks of tumorigenesis. KEAP1 has a significant effect on mitochondrial biogenesis and oxidative phosphorylation by regulating HSPA9 ubiquitination and degradation. These results suggest that KEAP1 could serve as a potential biomarker and therapeutic target in the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Proliferação de Células , Proteína 1 Associada a ECH Semelhante a Kelch , Ubiquitinação , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Feminino , Animais , Camundongos , Linhagem Celular Tumoral , Biogênese de Organelas , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteólise , Camundongos Nus , Mitocôndrias/metabolismo , Apoptose , Camundongos Endogâmicos BALB C , Células MCF-7 , Proteínas Mitocondriais
12.
Exp Gerontol ; 194: 112517, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986856

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and memory loss. Imipramine, a tricyclic antidepressant, has potent anti-inflammatory and antioxidant properties in the central nervous system. The aim of this study was to investigate the neuroprotective effects of imipramine on streptozotocin (STZ)-induced memory impairment. Male Wistar rats received an intracerebroventricular injection of STZ (3 mg/kg, 3 µl/ventricle) using the stereotaxic apparatus. The Morris water maze and passive avoidance tests were used to evaluate cognitive functions. 24 h after the STZ injection, imipramine was administered intraperitoneally at doses of 10 or 20 mg/kg for 14 consecutive days. The mRNA and protein levels of neurotrophic factors (BDNF and GDNF) and pro-inflammatory cytokines (IL-6, IL-1ß, and TNF-α) were measured in the hippocampus using real-time PCR and ELISA techniques, respectively. In addition, real-time PCR was used to evaluate the mRNA levels of markers associated with neurogenesis (Nestin, DCX, and Ki67) and mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM). The results showed that imipramine, especially at a dose of 20 mg/kg, effectively improved STZ-induced memory impairment. This improvement was associated with an increase in neurogenesis and neurotrophic factors and a decrease in neuroinflammation and mitochondrial biogenesis dysfunction. Based on these results, imipramine appears to be a promising therapeutic option for improving cognitive functions in neurodegenerative diseases such as AD.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Hipocampo , Imipramina , Neurogênese , Biogênese de Organelas , Ratos Wistar , Estreptozocina , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Masculino , Neurogênese/efeitos dos fármacos , Imipramina/farmacologia , Ratos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Proteína Duplacortina , Doenças Neuroinflamatórias/tratamento farmacológico , Memória/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Antidepressivos Tricíclicos/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Citocinas/metabolismo
13.
J Exp Clin Cancer Res ; 43(1): 180, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937832

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is characterized by its high metastatic potential, which results in poor patient survival. Cancer-associated fibroblasts (CAFs) are crucial in facilitating TNBC metastasis via induction of mitochondrial biogenesis. However, how to inhibit CAF-conferred mitochondrial biogenesis is still needed to explore. METHODS: We investigated metastasis using wound healing and cell invasion assays, 3D-culture, anoikis detection, and NOD/SCID mice. Mitochondrial biogenesis was detected by MitoTracker green FM staining, quantification of mitochondrial DNA levels, and blue-native polyacrylamide gel electrophoresis. The expression, transcription, and phosphorylation of peroxisome-proliferator activated receptor coactivator 1α (PGC-1α) were detected by western blotting, chromatin immunoprecipitation, dual-luciferase reporter assay, quantitative polymerase chain reaction, immunoprecipitation, and liquid chromatography-tandem mass spectrometry. The prognostic role of PGC-1α in TNBC was evaluated using the Kaplan-Meier plotter database and clinical breast cancer tissue samples. RESULTS: We demonstrated that PGC-1α indicated lymph node metastasis, tumor thrombus formation, and poor survival in TNBC patients, and it was induced by CAFs, which functioned as an inducer of mitochondrial biogenesis and metastasis in TNBC. Shikonin impeded the CAF-induced PGC-1α expression, nuclear localization, and interaction with estrogen-related receptor alpha (ERRα), thereby inhibiting PGC-1α/ERRα-targeted mitochondrial genes. Mechanistically, the downregulation of PGC-1α was mediated by synthase kinase 3ß-induced phosphorylation of PGC-1α at Thr295, which associated with neural precursor cell expressed developmentally downregulated 4e1 recognition and subsequent degradation by ubiquitin proteolysis. Mutation of PGC-1α at Thr295 negated the suppressive effects of shikonin on CAF-stimulated TNBC mitochondrial biogenesis and metastasis in vitro and in vivo. CONCLUSIONS: Our findings indicate that PGC-1α is a viable target for blocking TNBC metastasis by disrupting mitochondrial biogenesis, and that shikonin merits potential for treatment of TNBC metastasis as an inhibitor of mitochondrial biogenesis through targeting PGC-1α.


Assuntos
Glicogênio Sintase Quinase 3 beta , Naftoquinonas , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos , Animais , Fosforilação , Glicogênio Sintase Quinase 3 beta/metabolismo , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Feminino , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Camundongos SCID , Metástase Neoplásica , Camundongos Endogâmicos NOD , Mitocôndrias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167301, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38878832

RESUMO

A critical role for mitochondrial dysfunction has been shown in the pathogenesis of fibromyalgia. It is a chronic pain syndrome characterized by neuroinflammation and impaired oxidative balance in the central nervous system. Boswellia serrata (BS), a natural polyphenol, is a well-known able to influence the mitochondrial metabolism. The objective of this study was to evaluate the mitochondrial dysfunction and biogenesis in fibromyalgia and their modulation by BS. To induce the model reserpine (1 mg/Kg) was subcutaneously administered for three consecutive days and BS (100 mg/Kg) was given orally for twenty-one days. BS reduced pain like behaviors in reserpine-injected rats and the astrocytes activation in the dorsal horn of the spinal cord and prefrontal cortex that are recognized as key regions associated with the neuropathic pain. Vulnerability to neuroinflammation and impaired neuronal plasticity have been described as consequences of mitochondrial dysfunction. BS administration increased PGC-1α expression in the nucleus of spinal cord and brain tissues, promoting the expression of regulatory genes for mitochondrial biogenesis (NRF-1, Tfam and UCP2) and cellular antioxidant defence mechanisms (catalase, SOD2 and Prdx 3). According with these data BS reduced lipid peroxidation and the GSSG/GSH ratio and increased SOD activity in the same tissues. Our results also showed that BS administration mitigates cytochrome-c leakage by promoting mitochondrial function and supported the movement of PGC-1α protein into the nucleus restoring the quality control of mitochondria. Additionally, BS reduced Drp1 and Fis1, preventing both mitochondrial fission and cell death, and increased the expression of Mfn2 protein, facilitating mitochondrial fusion. Overall, our results showed important mitochondrial dysfunction in central nervous system in fibromyalgia syndrome and the role of BS in restoring mitochondrial dynamics.


Assuntos
Fibromialgia , Mitocôndrias , Fibromialgia/metabolismo , Fibromialgia/patologia , Animais , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Ratos , Masculino , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Biogênese de Organelas , Medula Espinal/metabolismo , Medula Espinal/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Extratos Vegetais/farmacologia , Modelos Animais de Doenças
15.
Int Endod J ; 57(9): 1326-1342, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38881187

RESUMO

AIM: To elucidate whether mitochondrial biogenesis disorder and damage from oxidative stress promote refractory apical periodontitis (RAP) in rat and human. METHODOLOGY: Twenty Enterococcus faecalis-induced RAPs were established in the maxillary first molars of male Wistar rats. Concurrently, 12 periapical lesion specimens from patients presenting with RAP were obtained by apicoectomy. Radiographic examination and histologic analysis were conducted to evaluate periapical bone tissue destruction and morphological changes. The expression of key regulators of mitochondrial biogenesis, PGC-1α and Nrf2, were detected by immunohistochemistry and double immunofluorescence staining, Western blot and real-time PCR were also assayed. Mitochondrial ROS (mtROS) was identified by MitoSOX staining. Mitochondrial function was detected by the quantification of ATP production, mitochondrial DNA (mtDNA) copy number and activities of mitochondrial respiratory chain complexes. Furthermore, mitochondrial oxidative stress was evaluated by the determination of 3-nitrotyrosine (3-NT), 4-hydroxy-2-nonenal (4-HNE) and 8-hydroxy-deoxyguanosine (8-OHdG) expression levels, as well as malondialdehyde (MDA) expression and antioxidant capacity. Student's t-test was performed to determine significance between the groups; p < .05 was considered significant. RESULTS: In the maxilla, significantly more bone resorption, greater number of periapical apoptotic cells and Tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells were observed in the RAP group compared with the control group (p < .01). PGC-1α and Nrf2 were significantly reduced in rat and human RAP lesions compared to the control group (p < .01) at both the mRNA and protein levels. Double immunofluorescence analysis of PGC-1α or Nrf2 with TOMM20 also indicated that mitochondrial biogenesis was impaired in RAP group (p < .01). Additionally, mitochondrial dysfunction was observed in RAP group, as reflected by increased mtROS, decreased ATP production, reduced mtDNA copy number and complexes of the mitochondrial respiratory chain. Finally, the expression levels of mitochondrial oxidative stress markers, 3-NT, 4-HNE and 8-OHdG, were significantly increased in the RAP group (p < .01). Consistent with this, systemic oxidative damage was also present in the progression of RAP, including increased MDA expression and decreased antioxidant activity (p < .01). CONCLUSIONS: Mitochondrial biogenesis disorder and damage from oxidative stress contribute to the development of RAP.


Assuntos
Fator 2 Relacionado a NF-E2 , Biogênese de Organelas , Estresse Oxidativo , Periodontite Periapical , Ratos Wistar , Periodontite Periapical/metabolismo , Periodontite Periapical/patologia , Animais , Masculino , Humanos , Ratos , Fator 2 Relacionado a NF-E2/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Mitocôndrias/metabolismo , Adulto , DNA Mitocondrial/metabolismo , Modelos Animais de Doenças
16.
Nutrients ; 16(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38931191

RESUMO

Skeletal muscle is composed of bundles of muscle fibers with distinctive characteristics. Oxidative muscle fiber types contain higher mitochondrial content, relying primarily on oxidative phosphorylation for ATP generation. Notably, as a result of obesity, or following prolonged exposure to a high-fat diet, skeletal muscle undergoes a shift in fiber type toward a glycolytic type. Mitochondria are highly dynamic organelles, constantly undergoing mitochondrial biogenesis and dynamic processes. Our study aims to explore the impact of obesity on skeletal muscle mitochondrial biogenesis and dynamics and also ascertain whether the skeletal muscle fiber type shift occurs from the aberrant mitochondrial machinery. Furthermore, we investigated the impact of exercise in preserving the oxidative muscle fiber types despite obesity. Mice were subjected to a normal standard chow and water or high-fat diet with sugar water (HFS) with or without exercise training. After 12 weeks of treatment, the HFS diet resulted in a noteworthy reduction in the markers of mitochondrial content, which was recovered by exercise training. Furthermore, higher mitochondrial biogenesis markers were observed in the exercised group with a subsequent increase in the mitochondrial fission marker. In conclusion, these findings imply a beneficial impact of moderate-intensity exercise on the preservation of oxidative capacity in the muscle of obese mouse models.


Assuntos
Dieta Hiperlipídica , Modelos Animais de Doenças , Mitocôndrias Musculares , Músculo Esquelético , Obesidade , Biogênese de Organelas , Condicionamento Físico Animal , Animais , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Condicionamento Físico Animal/fisiologia , Músculo Esquelético/metabolismo , Camundongos , Masculino , Mitocôndrias Musculares/metabolismo , Camundongos Endogâmicos C57BL , Biomarcadores/metabolismo , Dinâmica Mitocondrial , Fibras Musculares Esqueléticas/metabolismo
17.
Sci Adv ; 10(26): eadn4508, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924407

RESUMO

Once considered as a "metabolic waste," lactate is now recognized as a major fuel for tricarboxylic acid (TCA) cycle. Our metabolic flux analysis reveals that skeletal muscle mainly uses lactate to fuel TCA cycle. Lactate is transported through the cell membrane via monocarboxylate transporters (MCTs) in which MCT1 is highly expressed in the muscle. We analyzed how MCT1 affects muscle functions using mice with specific deletion of MCT1 in skeletal muscle. MCT1 deletion enhances running performance, increases oxidative fibers while decreasing glycolytic fibers, and enhances flux of glucose to TCA cycle. MCT1 deficiency increases the expression of mitochondrial proteins, augments cell respiration rate, and elevates mitochondrial activity in the muscle. Mechanistically, the protein level of PGC-1α, a master regulator of mitochondrial biogenesis, is elevated upon loss of MCT1 via increases in cellular NAD+ level and SIRT1 activity. Collectively, these results demonstrate that MCT1-mediated lactate shuttle plays a key role in regulating muscle functions by modulating mitochondrial biogenesis and TCA flux.


Assuntos
Ciclo do Ácido Cítrico , Ácido Láctico , Transportadores de Ácidos Monocarboxílicos , Músculo Esquelético , Biogênese de Organelas , Simportadores , Animais , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Músculo Esquelético/metabolismo , Simportadores/metabolismo , Simportadores/genética , Ácido Láctico/metabolismo , Camundongos , Mitocôndrias/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos Knockout , Glicólise
18.
Exp Gerontol ; 194: 112485, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38876448

RESUMO

The natural polyphenol resveratrol (RSV) might counteract the skeletal muscle age-related loss of muscle mass and strength/function partly acting on mitochondria. This work analysed the effects of a six-week administration of RSV (50 mg/kg/day) in the oxidative Soleus (Sol) skeletal muscle of old rats (27 months old). RSV effects on key mitochondrial biogenesis proteins led to un unchanged amount of SIRT1 protein and a marked decrease (60 %) in PGC-1α protein. In addition, Peroxyredoxin 3 (PRXIII) protein decreased by 50 %, which on overall suggested the absence of induction of mitochondrial biogenesis by RSV in old Sol. A novel direct correlation between PGC-1α and PRXIII proteins was demonstrated by correlation analysis in RSV and ad-libitum (AL) rats, supporting the reciprocally coordinated expression of the proteins. RSV supplementation led to an unexpected 50 % increase in the frequency of the oxidized base OH8dG in mtDNA. Furthermore, RSV supplementation induced a 50 % increase in the DRP1 protein of mitochondrial dynamics. In both rat groups an inverse correlation between PGC-1α and the frequency of OH8dG as well as an inverse correlation between PRXIII and the frequency of OH8dG were also found, suggestive of a relationship between oxidative damage to mtDNA and mitochondrial biogenesis activity. Such results may indicate that the antioxidant activity of RSV in aged Sol impinged on the oxidative fiber-specific, ROS-mediated, retrograde communication, thereby affecting the expression of SIRT1, PGC-1α and PRXIII, reducing the compensatory responses to the age-related mitochondrial oxidative stress and decline.


Assuntos
Envelhecimento , Mitocôndrias Musculares , Músculo Esquelético , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos Wistar , Resveratrol , Sirtuína 1 , Animais , Resveratrol/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Masculino , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/metabolismo , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Ratos , Estilbenos/farmacologia , Antioxidantes/farmacologia , Peroxirredoxinas/metabolismo , DNA Mitocondrial/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Dinaminas/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos
19.
J Transl Med ; 22(1): 419, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702818

RESUMO

BACKGROUND: Glioblastoma is an aggressive brain tumor linked to significant angiogenesis and poor prognosis. Anti-angiogenic therapies with vascular endothelial growth factor receptor 2 (VEGFR2) inhibition have been investigated as an alternative glioblastoma treatment. However, little is known about the effect of VEGFR2 blockade on glioblastoma cells per se. METHODS: VEGFR2 expression data in glioma patients were retrieved from the public database TCGA. VEGFR2 intervention was implemented by using its selective inhibitor Ki8751 or shRNA. Mitochondrial biogenesis of glioblastoma cells was assessed by immunofluorescence imaging, mass spectrometry, and western blot analysis. RESULTS: VEGFR2 expression was higher in glioma patients with higher malignancy (grade III and IV). VEGFR2 inhibition hampered glioblastoma cell proliferation and induced cell apoptosis. Mass spectrometry and immunofluorescence imaging showed that the anti-glioblastoma effects of VEGFR2 blockade involved mitochondrial biogenesis, as evidenced by the increases of mitochondrial protein expression, mitochondria mass, mitochondrial oxidative phosphorylation (OXPHOS), and reactive oxygen species (ROS) production, all of which play important roles in tumor cell apoptosis, growth inhibition, cell cycle arrest and cell senescence. Furthermore, VEGFR2 inhibition exaggerated mitochondrial biogenesis by decreased phosphorylation of AKT and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which mobilized PGC1α into the nucleus, increased mitochondrial transcription factor A (TFAM) expression, and subsequently enhanced mitochondrial biogenesis. CONCLUSIONS: VEGFR2 blockade inhibits glioblastoma progression via AKT-PGC1α-TFAM-mitochondria biogenesis signaling cascade, suggesting that VEGFR2 intervention might bring additive therapeutic values to anti-glioblastoma therapy.


Assuntos
Apoptose , Proliferação de Células , Glioblastoma , Mitocôndrias , Biogênese de Organelas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Int J Cardiol ; 408: 132149, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723908

RESUMO

BACKGROUND: Ubiquitination is an enzymatic modification involving ubiquitin chains, that can be reversed by deubiquitination (DUB) enzymes. Ubiquitin-specific protease 7 (USP7), which is also known as herpes virus-associated ubiquitin-specific protease (HAUSP), has been shown to play a vital role in cardiovascular diseases. However, the underlying molecular mechanism by which USP7 regulates cardiomyocyte function has not been reported. METHODS: To understand the physiological function of USP7 in the heart, we constructed cardiomyocyte-specific USP7 conditional knockout mice. RESULTS: We found that homozygous knockout mice died approximately three weeks after birth, while heterozygous knockout mice grew normally into adulthood. Severe cardiac dysfunction, hypertrophy, fibrosis, and cell apoptosis were observed in cardiomyocyte-specific USP7 knockout mice, and these effects were accompanied by disordered mitochondrial dynamics and cardiometabolic-related proteins. CONCLUSIONS: In summary, we investigated changes in the growth status and cardiac function of cardiomyocyte-specific USP7 knockout mice, and preliminarily explored the underlying mechanism.


Assuntos
Animais Recém-Nascidos , Camundongos Knockout , Miócitos Cardíacos , Peptidase 7 Específica de Ubiquitina , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Camundongos , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Biogênese de Organelas , Dinâmica Mitocondrial/fisiologia , Dinâmica Mitocondrial/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA