Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.246
Filtrar
1.
Sci Rep ; 14(1): 17744, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085260

RESUMO

The biology of extinct animals is usually reconstructed from external morphological characters and comparison with present-day analogues. Internal soft organs are very rarely preserved in fossils and require high-tech approaches for visualization. Here, we report the internal anatomy of a female and male of the ~ 162 Myr-old lobster Eryma ventrosum from the Jurassic La Voulte-sur-Rhône Konservat-Lagerstätte in France using X-ray synchrotron tomography. The Erymidae is an extinct, species-rich, widespread and ecologically important Mesozoic family of decapod crustaceans. Our investigation revealed the anatomy of the locomotory, respiratory, circulatory, excretory, digestive, nervous and sensory, and reproductive systems at a resolution resembling low-magnification histology. Particularly notable is the detailed preservation of the small brain and the fragile hepatopancreas, the main metabolic organ of decapods that decays rapidly post-mortem. The remarkable preservation shows that the internal anatomy of Eryma ventrosum is closer to that of Nephropidae (clawed lobsters) than Astacidae (freshwater crayfish), their closest living relatives based on skeletal morphology. The microanatomy of the gonads and hepatopancreas indicates that the two specimens investigated were a young, well-nourished female and male prior to sexual maturity. The analysis of the soft anatomy reveals remarkable conservatism over 160 Myr and offers new insights into feeding, reproduction, life history and lifestyle of an important component of the macrozoobenthos of Middle Jurassic seas.


Assuntos
Fósseis , Animais , Feminino , Fósseis/anatomia & histologia , Masculino , Decápodes/anatomia & histologia , França , Nephropidae/anatomia & histologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-39004301

RESUMO

Decapod Crustacea exhibit a marine origin, but many taxa have occupied environments ranging from brackish to fresh water and terrestrial habitats, overcoming their inherent osmotic challenges. Osmotic and ionic regulation is achieved by the gill epithelia, driven by two active ATP-hydrolyzing ion transporters, the basal (Na+, K+)-ATPase and the apical V(H+)-ATPase. The kinetic characteristic of gill (Na+, K+)-ATPase and the mRNA expression of its α subunit have been widely studied in various decapod species under different salinity challenges. However, the evolution of the primary structure has not been explored, especially considering the functional modifications associated with decapod phylogeny. Here, we proposed a model for the topology of the decapod α subunit, identifying the sites and motifs involved in its function and regulation, as well as the patterns of its evolution assuming a decapod phylogeny. We also examined both the amino acid substitutions and their functional implications within the context of biochemical and physiological adaptation. The α-subunit of decapod crustaceans shows greater conservation (∼94% identity) compared to the ß-subunit (∼40%). While the binding sites for ATP and modulators are conserved in the decapod enzyme, the residues involved in the α-ß interaction are only partially conserved. In the phylogenetic context of the complete sequence of (Na+, K+)-ATPase α-subunit, most substitutions appear to be characteristic of the entire group, with specific changes for different subgroups, especially among brachyuran crabs. Interestingly, there was no consistent separation of α-subunit partial sequences related to habitat, suggesting that the convergent evolution for freshwater or terrestrial modes of life is not correlated with similar changes in the enzyme's primary amino acid sequence.


Assuntos
Sequência de Aminoácidos , Decápodes , Osmorregulação , Filogenia , ATPase Trocadora de Sódio-Potássio , Animais , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , Osmorregulação/genética , Decápodes/genética , Decápodes/enzimologia , Decápodes/fisiologia , Evolução Molecular , Brânquias/metabolismo , Brânquias/enzimologia
3.
Mar Pollut Bull ; 206: 116709, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38991607

RESUMO

The reliable quantification of microplastic contamination in chitinous organisms requires validated methods to remove interfering complex organic and inorganic material. This study trialled KOH, H2O2 and HNO3 digestion methods on the digestive tracts of two large decapods (Panulirus cygnus and Portunus armatus) to validate a protocol that facilitates reliable microplastic extraction. KOH digestion provided the best recovery (>95 %) of all polymers (e.g. polyamide, polyethylene, polyethylene terephthalate, polypropylene, polystyrene and polyvinyl chloride), with the lowest impact to their physical morphology and chemical spectra. While HNO3, and HNO3 + H2O2 treatments were more effective at digesting chitin, they destroyed polyamide, and altered several other polymers. High digestion efficiency did not result in high matrix clarification or high microplastic recovery for large decapods. This study emphasises the importance of validating species-specific microplastic extraction methods, whilst proposing additional post-digestion protocols, such as density separation, for complex samples, that can be applied in future research investigating plastic contamination in large decapods.


Assuntos
Monitoramento Ambiental , Trato Gastrointestinal , Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/análise , Trato Gastrointestinal/química , Poluentes Químicos da Água/análise , Decápodes
4.
PLoS One ; 19(7): e0305909, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39052581

RESUMO

Anchialine systems are coastal groundwater habitats around the world which host a unique community of cave adapted species (stygobionts). Such communities are expected to be separated by haloclines into either fresh or saline groundwater communities, hence climate changes (e.g., eustatic sea level shifts) and anthropic driven changes (e.g., salinization) may have a great impact on these stygobiont communities. Here we used cave-restricted species of Typhlatya from the Yucatan Peninsula as models to identify physiological capacities that enable the different species to thrive in marine groundwater (T. dzilamensis) or fresh groundwater (T. mitchelli and T. pearsei), and test if their distribution is limited by their salinity tolerance capacity. We used behavior, metabolic rates, indicators of the antioxidant system and cellular damage, and lactate content to evaluate the response of individuals to acute changes in salinity, as a recreation of crossing a halocline in the anchialine systems of the Yucatan Peninsula. Our results show that despite being sister species, some are restricted to the freshwater portion of the groundwater, while others appear to be euryhaline.


Assuntos
Cavernas , Ecossistema , Salinidade , Animais , Água Subterrânea , Tolerância ao Sal , Decápodes/fisiologia
5.
J Exp Biol ; 227(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39036825

RESUMO

Until recently, the decapod crustacean heart was regarded as a simple, single ventricle, contraction of which forces haemolymph out into seven arteries. Differential tissue perfusion is achieved by contraction and relaxation of valves at the base of each artery. In this Review, we discuss recent work that has shown that the heart is bifurcated by muscular sheets that may effectively divide the single ventricle into 'chambers'. Preliminary research shows that these chambers may contract differentially; whether this enables selective tissue perfusion remains to be seen. Crustaceans are unusual in that they can stop their heart for extended periods. These periods of cardiac arrest can become remarkably rhythmic, accounting for a significant portion of the cardiac repertoire. As we discuss in this Review, in crustaceans, changes in heart rate have been used extensively as a measurement of stress and metabolism. We suggest that the periods of cardiac pausing should also be quantified in this context. In the past three decades, an exponential increase in crustacean aquaculture has occurred and heart rate (and changes thereof) is being used to understand the stress responses of farmed crustaceans, as well as providing an indicator of disease progression. Furthermore, as summarized in this Review, heart rate is now being used as an effective indicator of humane methods to anaesthetize, stun or euthanize crustaceans destined for the table or for use in scientific research. We believe that incorporation of new biomedical technology and new animal welfare policies will guide future research directions in this field.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Decápodes , Frequência Cardíaca , Animais , Decápodes/fisiologia , Frequência Cardíaca/fisiologia
6.
J Econ Entomol ; 117(4): 1510-1517, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38824448

RESUMO

Rice seedlings of different stages of development were infested with tadpole shrimp (TPS, Triops longicaudatus [LeConte]), of different sizes in four experiments conducted in a lath house in Colusa, CA, during 2015 and 2016. Tadpole shrimp size was based on carapace length. Rice seedling stages were classified as S0 if no structures were present; S1 if only the coleoptile was present; S2 if the coleoptile and radicle were present; S3-I if the prophyll had emerged; S3-II if the first true leave had emerged but was not unfurled; and V1 if the first true leave was unfurled. Results showed that TPS of all sizes are capable of injuring rice and reducing seedling establishment, with larger TPS causing more seedling establishment reduction than medium or small TPS. The coleoptile, radicle, and roots were the structures most injured by TPS. During the S0 stage, TPS buried seeds, preventing their establishment. Seedling stages S1, S2, and S3-I were found to have the highest risk of injury by TPS, while seedling stage V1 had the lowest. Pearson's correlation between injured seedlings and the normalized number of established seedlings indicates that injury to the coleoptile, root, and radicle combined are the most important in preventing seedling establishment.


Assuntos
Oryza , Plântula , Animais , Oryza/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Decápodes/crescimento & desenvolvimento , Decápodes/fisiologia , Herbivoria , Larva/crescimento & desenvolvimento , Larva/fisiologia
7.
Sci Total Environ ; 944: 173798, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38844236

RESUMO

Trehalase gene is mainly expressed in the digestive circulatory system for regulating energy metabolism and chitin synthesis in insects, but it is significantly expressed in gill for immunomodulation in shrimp. However, its function in regulating immunity, particularly metal resistance in crustaceans has yet to be elucidated. In this study, one Tre2 gene (NdTre2) was isolated from Neocaridina denticulata sinensis. It could bind to Cd2+ and inhibit its toxicity. Spatiotemporal expression analysis showed that the expression of NdTre2 was highest in the gill and significantly reduced at 12 h after Cd2+ stimulation. The transcriptomic analysis of the gill after NdTre2 knockdown showed that the expression of genes synthetizing 20E was up-regulated and the increased 20E could further induce apoptosis by activating the intrinsic mitochondrial pathway, exogenous death receptor-ligand pathway, and MAPK pathway. In vitro, overexpressing NdTre2 enhanced the tolerance of E. coli in Cd2+ environment. In summary, these results indicate that NdTre2 plays an essential role in regulating immunity and chitin metabolism in N. denticulata sinensis.


Assuntos
Apoptose , Cádmio , Trealase , Cádmio/toxicidade , Animais , Apoptose/efeitos dos fármacos , Trealase/metabolismo , Trealase/genética , Poluentes Químicos da Água/toxicidade , Decápodes/fisiologia , Decápodes/genética
8.
BMC Genomics ; 25(1): 570, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844864

RESUMO

Compound eyes formation in decapod crustaceans occurs after the nauplius stage. However, the key genes and regulatory mechanisms of compound eye development during crustacean embryonic development have not yet been clarified. In this study, RNA-seq was used to investigate the gene expression profiles of Neocaridina denticulata sinensis from nauplius to zoea stage. Based on RNA-seq data analysis, the phototransduction and insect hormone biosynthesis pathways were enriched, and molting-related neuropeptides were highly expressed. There was strong cell proliferation in the embryo prior to compound eye development. The formation of the visual system and the hormonal regulation of hatching were the dominant biological events during compound eye development. The functional analysis of DEGs across all four developmental stages showed that cuticle formation, muscle growth and the establishment of immune system occurred from nauplius to zoea stage. Key genes related to eye development were discovered, including those involved in the determination and differentiation of the eye field, eye-color formation, and visual signal transduction. In conclusion, the results increase the understanding of the molecular mechanism of eye formation in crustacean embryonic stage.


Assuntos
Olho Composto de Artrópodes , Perfilação da Expressão Gênica , Animais , Olho Composto de Artrópodes/metabolismo , Olho Composto de Artrópodes/crescimento & desenvolvimento , Transcriptoma , Regulação da Expressão Gênica no Desenvolvimento , Decápodes/genética , Decápodes/crescimento & desenvolvimento , Olho/metabolismo , Olho/embriologia , Olho/crescimento & desenvolvimento
9.
PeerJ ; 12: e17314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799064

RESUMO

Background: Despite the Caridean shrimps' vast species richness and ecological diversity, controversies persist in their molecular classification. Within Caridea, the Pandalidae family exemplifies significant taxonomic diversity. As of June 25, 2023, GenBank hosts only nine complete mitochondrial genomes (mitogenomes) for this family. The Plesionika genus within Pandalidae is recognized as polyphyletic. To improve our understanding of the mitogenome evolution and phylogenetic relationships of Caridea, this study introduces three novel mitogenome sequences from the Plesionika genus: P.  ortmanni, P. izumiae and P. lophotes. Methods: The complete mitochondrial genomes of three Plesionika species were sequenced utilizing Illumina's next-generation sequencing (NGS) technology. After assembling and annotating the mitogenomes, we conducted structural analyses to examine circular maps, sequence structure characteristics, base composition, amino acid content, and synonymous codon usage frequency. Additionally, phylogenetic analysis was performed by integrating existing mitogenome sequences of true shrimp available in GenBank. Results: The complete mitogenomes of the three Plesionika species encompass 37 canonical genes, comprising 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and one control region (CR). The lengths of these mitogenomes are as follows: 15,908 bp for P. ortmanni, 16,074 bp for P. izumiae and 15,933 bp for P. lophotes. Our analyses extended to their genomic features and structural functions, detailing base composition, gene arrangement, and codon usage. Additionally, we performed selection pressure analysis on the PCGs of all Pandalidae species available in Genbank, indicating evolutionary purification selection acted on the PCGs across Pandalidae species. Compared with the ancestral Caridea, translocation of two tRNA genes, i.e., trnP or trnT, were found in the two newly sequenced Plesionika species-P. izumiae and P. lophotes. We constructed a phylogenetic tree of Caridea using the sequences of 13 PCGs in mitogenomes. The results revealed that family Pandalidae exhibited robust monophyly, while genus Plesionika appeared to be a polyphyletic group. Conclusions: Gene rearrangements within the Pandalidae family were observed for the first time. Furthermore, a significant correlation was discovered between phylogenetics of the Caridea clade and arrangement of mitochondrial genes. Our findings offer a detailed exploration of Plesionika mitogenomes, laying a crucial groundwork for subsequent investigations into genetic diversity, phylogenetic evolution, and selective breeding within this genus.


Assuntos
Rearranjo Gênico , Genoma Mitocondrial , Filogenia , Animais , Genoma Mitocondrial/genética , Rearranjo Gênico/genética , Decápodes/genética , Decápodes/classificação , RNA de Transferência/genética , Sequenciamento de Nucleotídeos em Larga Escala
10.
Mar Environ Res ; 198: 106526, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723300

RESUMO

The study examines the complex impact of climatic patterns, driven by the North Atlantic Oscillation (NAO), on regional climate, hydrology, and sea surface temperatures. Focused on the period from 2003 to 2012, the research specifically investigates the influence of thermal variability on decapod larval communities. Monthly zooplanktonic sampling conducted at the Mondego Estuary, Portugal, entrance over a decade revealed the prevalence of Carcinus maenas, Diogenes pugilator, and Pachigrapsus marmoratus larvae. These assemblages displayed notable interannual and seasonal fluctuations, often corresponding with changes in sea surface temperatures. Significant system shifts around 2007, instigated by the large-scale NAO, led to subsequent modifications in sea surface temperature and decapod larvae communities' dynamics. Post-2007, there was an upward trajectory in both species' abundance and richness. Phenologically during the former period, the community exhibited two abundance peaks, with the earlier peak occurring sooner, attributed to heightened temperatures instead of the unique peak exhibited before 2007. The research further elucidated the occurrences of Marine Heatwaves (MHW) in the region, delving into their temporal progression influenced by the NAO. Although water temperature emerged as a crucial factor influencing decapod larvae communities annually and seasonally, the study did not observe discernible impacts of MHW events on these communities. These communities represent essential trophic links and are crucial for the survival success of adult decapods. Given the rapid pace of climate change and increasing temperatures, it is imperative to assess whether these environmental shifts, particularly in thermal conditions, affect these meroplanktonic communities.


Assuntos
Mudança Climática , Estuários , Larva , Temperatura , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Portugal , Decápodes/fisiologia , Estações do Ano , Monitoramento Ambiental , Clima , Biodiversidade , Zooplâncton/fisiologia
11.
PLoS One ; 19(4): e0296146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626153

RESUMO

The fossil record of parasitism is poorly understood, due largely to the scarcity of strong fossil evidence of parasites. Understanding the preservation potential for fossil parasitic evidence is critical to contextualizing the fossil record of parasitism. Here, we present the first use of X-ray computed tomography (CT) scanning and finite elements analysis (FEA) to analyze the impact of a parasite-induced fossil trace on host preservation. Four fossil and three modern decapod crustacean specimens with branchial swellings attributed to an epicaridean isopod parasite were CT scanned and examined with FEA to assess differences in the magnitude and distribution of stress between normal and swollen branchial chambers. The results of the FEA show highly localized stress peaks in reaction to point forces, with higher peak stress on the swollen branchial chamber for nearly all specimens and different forces applied, suggesting a possible shape-related decrease in the preservation potential of these parasitic swellings. Broader application of these methods as well as advances in the application of 3D data analysis in paleontology are critical to understanding the fossil record of parasitism and other poorly represented fossil groups.


Assuntos
Decápodes , Isópodes , Parasitos , Animais , Paleontologia , Fósseis , Isópodes/parasitologia
12.
Mol Phylogenet Evol ; 195: 108070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574781

RESUMO

We inventoried all nine species of the 'Acanthephyra purpurea' complex, one of the most abundant and cosmopolitan group of mesopelagic shrimps. We used 119 specimens at hand and genetic data for 124 specimens from GenBank and BOLD. Phylogenetic analysis of four genes (COI, 16S, NaK, and enolase) showed that the 'Acanthephyra purpurea' complex is polyphyletic and encompasses two species groups, 'A. purpurea' (mostly Atlantic) and 'A. smithi' (Indo-West Pacific). The 'A. purpurea' species group consists of two major molecular clades A. pelagica and A. kingsleyi - A. purpurea - A. quadrispinosa. Molecular data suggest that hitherto accepted species A. acanthitelsonis, A. pelagica, and A. sica should be considered as synonyms. The Atlantic is inhabited by at least two cryptic genetic lineages of A. pelagica and A. quadrispinosa. Morphological analyses of qualitative and quantitative (900 measurements) characters resulted in a tabular key to species and in a finding of four evolutionary traits. Atlantic species showed various scenarios of diversification visible on mitochondrial gene level, nuclear gene level, and morphological level. We recorded and discussed similar phylogeographic trends in diversification and in distribution of genetic lineages within two different clades: A. pelagica and A. kingsleyi - A. purpurea - A. quadrispinosa.


Assuntos
Acantocéfalos , Decápodes , Animais , Filogenia , DNA Mitocondrial/genética , Filogeografia , Evolução Biológica , Acantocéfalos/genética
13.
Mar Environ Res ; 197: 106464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583356

RESUMO

Seagrass meadows are biodiversity hotspots for invertebrate species including decapods. Understanding the drivers of species abundance, richness and diversity of decapod assemblages is crucial for the conservation of such hotspots, but how drivers act across multiple spatial scales remains unexplored. Here we describe the decapod assemblages of Posidonia oceanica seagrass meadows and assess the influence of attributes from three increasing spatial scales (habitat, landscape, and geographical levels) on the assemblages' structure and composition, as well as the variability partitioning among each one of these levels. Overall, geographical level attributes (i.e., inlet aperture, confinement) affected the most the decapod assemblages, while we only found a modest contribution from habitat (e.g., detritus biomass, sediment organic matter) and landscape attributes (e.g., fragmentation). We suggest that decapod assemblages are driven by the interaction of multiple processes occurring at different scales and other highly stochastic phenomena such as larval dispersion and recruitment.


Assuntos
Alismatales , Decápodes , Animais , Ecossistema , Biodiversidade , Biomassa
14.
Sci Rep ; 14(1): 8017, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580836

RESUMO

Cyanobacteria produce neurotoxic non-protein amino acids (NPAAs) that accumulate in ecosystems and food webs. American lobsters (Homarus americanus H. Milne-Edwards) are one of the most valuable seafood industries in Canada with exports valued at > $2 billion. Two previous studies have assessed the occurrence of ß-N-methylamino-L-alanine (BMAA) in a small number of lobster tissues but a complete study has not previously been undertaken. We measured NPAAs in eyeballs, brain, legs, claws, tails, and eggs of 4 lobsters per year for the 2021 and 2022 harvests. Our study included 4 male and 4 female lobsters. We detected BMAA and its isomers, N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB) and ß-aminomethyl-L-alanine (BAMA) by a fully validated reverse phase chromatography-tandem mass spectrometry method. We quantified BMAA, DAB, AEG and BAMA in all of the lobster tissues. Our quantification data varied by individual lobster, sex and collection year. Significantly more BMAA was quantified in lobsters harvested in 2021 than 2022. Interestingly, more BAMA was quantified in lobsters harvested in 2022 than 2021. Monitoring of lobster harvests for cyanobacterial neurotoxins when harmful algal bloom events occur could mitigate risks to human health.


Assuntos
Diamino Aminoácidos , Decápodes , Síndromes Neurotóxicas , Animais , Masculino , Feminino , Humanos , Nephropidae/metabolismo , Ecossistema , Neurotoxinas/toxicidade , Diamino Aminoácidos/metabolismo , Alimentos Marinhos/análise , Decápodes/metabolismo , beta-Alanina
15.
Zoolog Sci ; 41(1): 14-20, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587513

RESUMO

The Japanese spiny lobster Panulirus japonicus lives on rocky shores and is mainly distributed along the Pacific coast around Japan. Due to the high demand for it, the development of aquaculture systems and increasing its resource volume requires further expansive production. However, a major factor preventing the establishment of aquaculture technology for this lobster is the difficulty with rearing processes from larval to juvenile production. A recent study shed light on the molecular mechanisms underlying larval development from the perspective of physiological functions of endocrine factors such as molting hormones. However, physiological studies of P. japonicus are still lacking. In decapod crustaceans, the X-organ/sinus gland complex is a well-known endocrine system that secretes the crustacean hyperglycemic hormone (CHH)-superfamily peptides that regulate growth, molting, sexual maturation, reproduction, and change in body color. In this study, we identified two CHHs from the sinus glands of P. japonicus using reversed-phase high-performance liquid chromatography in order to elucidate their physiological function for the first time.


Assuntos
Proteínas de Artrópodes , Decápodes , Hormônios de Invertebrado , Proteínas do Tecido Nervoso , Palinuridae , Animais , Japão
16.
Sci Rep ; 14(1): 9536, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664522

RESUMO

Neocaridina davidi, a small freshwater shrimp native to Asia, specifically China, Japan, Korea, and Vietnam, possesses remarkable resistance to poor water quality and offers various advantages over other invertebrate species to examine crucial issues in neuroscience and other related areas. These advantages include robustness, ease of maintenance, and transparency, making them useful for in vivo studies with optical imaging techniques. Despite its suitability for research purposes, particularly in the fields of imaging and fluorescent techniques, the lack of attention given to this species has resulted in the absence of a robust and replicable sedation protocol for immobilization and safe manipulation. Consequently, researchers face challenges in performing experimental procedures while minimizing harm to this specimen. In this study, we have developed and evaluated a simple sedation protocol specifically designed for Neocaridina davidi, assessing its effectiveness using light microscopy and image processing.


Assuntos
Decápodes , Animais
17.
Integr Comp Biol ; 64(1): 80-91, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38599630

RESUMO

Limitations on energetic resources create evolutionary trade-offs, prompting us to investigate if investment in claw strength remains consistent across crustaceans living in diverse habitats. Decapod crustaceans living in deep-sea hydrothermal vents are ideal for this study due to their extreme environment. In this study, we investigated whether decapods (blind crab Austinograea sp. and the squat lobster Munidopsis lauensis) living in deep-sea hydrothermal vents prioritize investing in strong claws compared to the carapace, like coastal decapods. We analyzed exoskeleton morphology, mechanical properties, structures, and elemental composition in both the carapace and claws of four Decapoda species (two each from Brachyura and Anomura infraorders) in vent and coastal habitats. Coastal decapods had ∼4-9 times more teeth on their claw cutting edge than the vent species. Further, only the coastal species exhibited higher firmness in their claws than in their carapaces. Each infraorder controlled exoskeletal hardness differently: Brachyura changed the stacking height of the Bouligand structure, while Anomura regulated magnesium content in the exoskeleton. The vent decapods may prioritize strengthening their carapace over developing robust claws, allocating resources to adapt to the harsh conditions of deep-sea hydrothermal vents. This choice might enhance their survival in the extreme environment, where carapace strength is crucial for protecting internal organs from environmental factors, rather than relying on the powerful claws seen in coastal decapods for a competitive advantage.


Assuntos
Exoesqueleto , Decápodes , Fontes Hidrotermais , Animais , Exoesqueleto/química , Decápodes/fisiologia , Fenômenos Biomecânicos , Anomuros/fisiologia , Braquiúros/fisiologia , Casco e Garras/anatomia & histologia
18.
Front Endocrinol (Lausanne) ; 15: 1348465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444586

RESUMO

G protein-coupled receptors (GPCRs) are an ancient family of signal transducers that are both abundant and consequential in metazoan endocrinology. The evolutionary history and function of the GPCRs of the decapod superfamilies of gonadotropin-releasing hormone (GnRH) are yet to be fully elucidated. As part of which, the use of traditional phylogenetics and the recycling of a diminutive set of mis-annotated databases has proven insufficient. To address this, we have collated and revised eight existing and three novel GPCR repertoires for GnRH of decapod species. We developed a novel bioinformatic workflow that included clustering analysis to capture likely GnRH receptor-like proteins, followed by phylogenetic analysis of the seven transmembrane-spanning domains. A high degree of conservation of the sequences and topology of the domains and motifs allowed the identification of species-specific variation (up to ~70%, especially in the extracellular loops) that is thought to be influential to ligand-binding and function. Given the key functional role of the DRY motif across GPCRs, the classification of receptors based on the variation of this motif can be universally applied to resolve cryptic GPCR families, as was achieved in this work. Our results contribute to the resolution of the evolutionary history of invertebrate GnRH receptors and inform the design of bioassays in their deorphanization and functional annotation.


Assuntos
Decápodes , Hormônio Liberador de Gonadotropina , Animais , Filogenia , Receptores Acoplados a Proteínas G/genética , Bioensaio
19.
Sci Total Environ ; 926: 171924, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522537

RESUMO

This study employs a comprehensive approach combining metagenomic analysis and bacterial isolation to elucidate the microbial composition, antibiotic resistance genes (ARGs), and virulence factors (VFGs) present in shrimps from market and supermarket. Metagenomic analysis of shrimps revealed a dominance of Proteobacteria and Bacteroidetes with Firmicutes notably enriched in some samples. On the other hand, the dominant bacteria isolated included Citrobacter portucalensis, Escherichia coli, Salmonella enterica, Vibrio species and Klebsiella pneumonaie. Metagenomic analysis unveiled a diverse spectrum of 23 main types and 380 subtypes of ARGs in shrimp samples including many clinical significant ARGs such as blaKPC, blaNDM, mcr, tet(X4) etc. Genomic analysis of isolated bacterial strains identified 14 ARG types with 109 subtype genes, which complemented the metagenomic data. Genomic analysis also allowed us to identify a rich amount of MDR plasmids, which provided further insights into the dissemination of resistance genes in different species of bacteria in the same samples. Examination of VFGs and mobile genetic elements (MGEs) in both metagenomic and bacterial genomes revealed a complex landscape of factors contributing to bacterial virulence and genetic mobility. Potential co-occurrence patterns of ARGs and VFGs within human pathogenic bacteria underlined the intricate interplay between antibiotic resistance and virulence. In conclusion, this integrated analysis for the first time provides a comprehensive view and sheds new light on the potential hazards associated with shrimp products in the markets. The findings underscore the necessity of ongoing surveillance and intervention strategies to mitigate risks posed by antibiotic-resistant bacteria in the food supply chain using the novel comprehensive approaches.


Assuntos
Decápodes , Genes Bacterianos , Animais , Humanos , Antibacterianos/farmacologia , Bactérias/genética , Plasmídeos , Resistência Microbiana a Medicamentos/genética , Crustáceos
20.
Biol Lett ; 20(3): 20230285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38471565

RESUMO

For prey, taking refuge from predators has obvious fitness benefits but may also be costly by impinging on time and effort available for feeding or attracting mates. The antipredator responses of refuge-seeking animals are therefore predicted to vary strategically depending on how threatening they perceive the risk. To test this, we studied the impacts of a simulated predatory threat on the antipredator responses of wild sandy prawn-gobies (Ctenogobiops feroculus) that co-inhabit burrows with Alpheus shrimp (family Alpheidae) in a mutualistic relationship. We exposed goby-shrimp pairs, repeatedly on three separate occasions, to an approaching threat and measured the antipredator behaviours of both partners. We found that re-emerging from the burrow took longer in large compared to small fish. Moreover, quicker re-emergence by small-but not medium or large-sized gobies-was associated with an earlier flight from the approaching threat (i.e. when the threat was still further away). Finally, the goby and shrimp sharing a burrow were matched in body size and their risk-taking behaviour was highly dependent on one another. The findings contribute to our understanding of how an individual's phenotype and perception of danger relates to its risk-taking strategy, and how mutualistic partners can have similar risk sensitivities.


Assuntos
Decápodes , Perciformes , Animais , Simbiose , Peixes/fisiologia , Decápodes/fisiologia , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA