Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.198
Filtrar
1.
Mikrochim Acta ; 191(9): 543, 2024 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153033

RESUMO

A nanohybrid-modified glassy carbon electrode based on conducting polypyrrole doped with carbon quantum dots (QDs) was developed and used for the electrochemical detection of anti-tissue transglutaminase (anti-tTG) antibodies. To improve the polypyrrole conductivity, carrier mobility, and carrier concentration, four types of carbon nanoparticles were tested. Furthermore, a polypyrrole-modified electrode doped with QDs was functionalized with a PAMAM dendrimer and transglutaminase 2 protein by cross-linking with N-hydroxysuccinimide (NHS)/N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC). The steps of electrode surface modification were surveyed via electrochemical measurements (differential pulse voltammetry (DPV), impedance spectroscopy, and X-ray photoelectron spectroscopy (XPS)). The surface characteristics were observed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and contact angle measurements. The obtained modified electrode exhibited good stability and repeatability. DPV between - 0.1 and 0.6 V (vs. Ag/AgCl 3 M KCl reference electrode) was used to evaluate the electrochemical alterations that occur after the antibody interacts with the antigen (transglutaminase 2 protein), for which the limit of detection was 0.79 U/mL. Without the use of a secondary label, (anti-tTG) antibodies may be detected at low concentrations because of these modified electrode features.


Assuntos
Dendrímeros , Proteína 2 Glutamina gama-Glutamiltransferase , Pirróis , Pontos Quânticos , Transglutaminases , Humanos , Anticorpos/imunologia , Anticorpos/química , Técnicas Biossensoriais/métodos , Carbono/química , Dendrímeros/química , Técnicas Eletroquímicas/métodos , Eletrodos , Proteínas de Ligação ao GTP/imunologia , Polímeros/química , Pirróis/química , Pontos Quânticos/química , Transglutaminases/imunologia , Transglutaminases/química
2.
Sensors (Basel) ; 24(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39123900

RESUMO

Nanotechnology has ushered in significant advancements in drug design, revolutionizing the prevention, diagnosis, and treatment of various diseases. The strategic utilization of nanotechnology to enhance drug loading, delivery, and release has garnered increasing attention, leveraging the enhanced physical and chemical properties offered by these systems. Polyamidoamine (PAMAM) dendrimers have been pivotal in drug delivery, yet there is room for further enhancement. In this study, we conjugated PAMAM dendrimers with chitosan (CS) to augment cellular internalization in tumor cells. Specifically, doxorubicin (DOX) was initially loaded into PAMAM dendrimers to form DOX-loaded PAMAM (DOX@PAMAM) complexes via intermolecular forces. Subsequently, CS was linked onto the DOX-loaded PAMAM dendrimers to yield CS-conjugated PAMAM loaded with DOX (DOX@CS@PAMAM) through glutaraldehyde crosslinking via the Schiff base reaction. The resultant DOX@CS@PAMAM complexes were comprehensively characterized using Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). Notably, while the drug release profile of DOX@CS@PAMAM in acidic environments was inferior to that of DOX@PAMAM, DOX@CS@PAMAM demonstrated effective acid-responsive drug release, with a cumulative release of 70% within 25 h attributed to the imine linkage. Most importantly, DOX@CS@PAMAM exhibited significant selective cellular internalization rates and antitumor efficacy compared to DOX@PAMAM, as validated through cell viability assays, fluorescence imaging, and flow cytometry analysis. In summary, DOX@CS@PAMAM demonstrated superior antitumor effects compared to unconjugated PAMAM dendrimers, thereby broadening the scope of dendrimer-based nanomedicines with enhanced therapeutic efficacy and promising applications in cancer therapy.


Assuntos
Quitosana , Dendrímeros , Doxorrubicina , Dendrímeros/química , Quitosana/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Humanos , Poliaminas/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral
3.
J Org Chem ; 89(16): 11261-11271, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39104055

RESUMO

The negligible cytotoxicity of anion surface-linked dendrons makes glutamic acid-based dendrons a potential candidate for materials and biological applications. Despite the inherent drawbacks of the conventional solution phase synthesis of glutamic acid-based dendrons, there have been no advancements in these protocols. Herein, we demonstrate the first-ever convergent solid phase synthesis of dendrons, up to fourth generation, having glutamic acid branching points produced by preactivation of dicarboxylic acid groups with N-hydroxysuccinimide and simultaneous coupling with amine groups of two growing peptide chains, with excellent yields (30-70%). In addition to the general advantages, such as the easy workup, a final single purification step, and an overall short synthesis duration, the convergent solid phase synthesis allowed us to chemically synthesize glutamic acid branching-based dendrons that cannot be accessed by standard divergent solid phase synthesis. This method has also been validated for its application in synthesizing hard-to-achieve Janus peptide dendrimers in a single stretch on a solid support. Our work corroborates the efficacy of controlled -COOH activation to accomplish an atypical solid phase synthesis of diverse glutamic acid dendrons in a convergent fashion. This is the first example of a Janus peptide dendrimer being synthesized on a solid support, utilizing both convergent and divergent approaches simultaneously.


Assuntos
Dendrímeros , Ácido Glutâmico , Peptídeos , Técnicas de Síntese em Fase Sólida , Dendrímeros/química , Dendrímeros/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Peptídeos/química , Peptídeos/síntese química , Ácido Glutâmico/química , Estrutura Molecular
4.
Artif Cells Nanomed Biotechnol ; 52(1): 384-398, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39101753

RESUMO

Nanotechnology-based cancer treatment has received considerable attention, and these treatments generally use drug-loaded nanoparticles (NPs) to target and destroy cancer cells. Nanotechnology combined with photodynamic therapy (PDT) has demonstrated positive outcomes in cancer therapy. Combining nanotechnology and PDT is effective in targeting metastatic cancer cells. Nanotechnology can also increase the effectiveness of PDT by targeting cells at a molecular level. Dendrimer-based nanoconjugates (DBNs) are highly stable and biocompatible, making them suitable for drug delivery applications. Moreover, the hyperbranched structures in DBNs have the capacity to load hydrophobic compounds, such as photosensitizers (PSs) and chemotherapy drugs, and deliver them efficiently to tumour cells. This review primarily focuses on DBNs and their potential applications in cancer treatment. We discuss the chemical design, mechanism of action, and targeting efficiency of DBNs in tumour metastasis, intracellular trafficking in cancer treatment, and DBNs' biocompatibility, biodegradability and clearance properties. Overall, this study will provide the most recent insights into the application of DBNs and PDT in cancer therapy.


DBNs' intracellular journey in cancer-PDT refines targeted therapy, boosting efficacy.DBN in PDT for tumour metastasis: targeting and drug release mechanisms.DBNs' biocompatibility, biodegradability and clearance were explored thoroughly.


Assuntos
Dendrímeros , Nanoconjugados , Neoplasias , Fotoquimioterapia , Humanos , Dendrímeros/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Nanoconjugados/química , Nanoconjugados/uso terapêutico , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Transporte Biológico , Espaço Intracelular/metabolismo , Espaço Intracelular/efeitos dos fármacos , Portadores de Fármacos/química
5.
Analyst ; 149(17): 4363-4369, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39007642

RESUMO

The importance of avian influenza virus (AIV) detection in clinical diagnosis and prognosis has been deeply recognized. In this study, the ultrasensitive detection of AIV subtype H5N1 was achieved by ICP-MS combined with DNA dendrimer-carried silver nanoparticle (AgNP) labeling. First, a magnetic control system was constructed by anchoring double-strand DNAs (dsDNAs) which contained a complementary sequence of H5N1 and two locked triggers on the surface of magnetic beads (MBs). When H5N1 was present, the two triggers were released and initiated dendrimer hybridization chain reactions which led to the generation of DNA dendrimer-carried AgNPs on the surface of the MBs. Finally, the AgNPs were collected via magnetic separation, digested by nitric acid, and tested using ICP-MS. The signal intensities of 107Ag were positively correlated with the concentrations of H5N1. Notably, the DNA dendrimer assembly contributed to significant signal amplification and good sensitivity with the limit of detection as low as 2.0 × 10-11 mol L-1. Moreover, the method displayed favorable selectivity against mismatched H5N1 and good recoveries in human serum samples. It is a promising analytical tool for the H5N1 virus and other subtypes of AIV, and has potential value in clinical diagnosis and prognosis of infectious diseases.


Assuntos
Dendrímeros , Virus da Influenza A Subtipo H5N1 , Limite de Detecção , Nanopartículas Metálicas , Prata , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Prata/química , Dendrímeros/química , Nanopartículas Metálicas/química , Humanos , DNA Viral/análise , DNA Viral/sangue , Espectrometria de Massas/métodos , Hibridização de Ácido Nucleico , DNA/química
6.
Bioconjug Chem ; 35(8): 1218-1232, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39081220

RESUMO

Minimal immunogen vaccines are being developed to focus antibody responses against otherwise challenging targets, including human immunodeficiency virus (HIV), but multimerization of the minimal peptide immunogen on a carrier platform is required for activity. Star copolymers comprising multiple hydrophilic polymer chains ("arms") radiating from a central dendrimer unit ("core") were recently reported to be an effective platform for arraying minimal immunogens for inducing antibody responses in mice and primates. However, the impact of different parameters of the star copolymer (e.g., minimal immunogen density and hydrodynamic size) on antibody responses and the optimal synthetic route for controlling those parameters remains to be fully explored. We synthesized a library of star copolymers composed of poly[N-(2-hydroxypropyl)methacrylamide] hydrophilic arms extending from poly(amidoamine) dendrimer cores with the aim of identifying the optimal composition for use as minimal immunogen vaccines. Our results show that the length of the polymer arms has a crucial impact on the star copolymer hydrodynamic size and is precisely tunable over a range of 20-50 nm diameter, while the dendrimer generation affects the maximum number of arms (and therefore minimal immunogens) that can be attached to the surface of the dendrimer. In addition, high-resolution images of selected star copolymer taken by a custom-modified environmental scanning electron microscope enabled the acquisition of high-resolution images, providing new insights into the star copolymer structure. Finally, in vivo studies assessing a star copolymer vaccine comprising an HIV minimal immunogen showed the criticality of polymer arm length in promoting antibody responses and highlighting the importance of composition tunability to yield the desired biological effect.


Assuntos
Dendrímeros , Animais , Dendrímeros/química , Camundongos , Polímeros/química , Portadores de Fármacos/química , Vacinas/imunologia , Vacinas/química , Vacinas/administração & dosagem , Humanos , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/química , Vacinas contra a AIDS/administração & dosagem , Poliaminas
7.
Nanomedicine (Lond) ; 19(17): 1569-1580, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39011593

RESUMO

Radiolabeling of bionanomaterials with technetium-99m (99mTc) has become a promising approach in combining the benefits of nanotechnology and nuclear medicine for diagnostic and therapeutic purposes. This review is intended to provide a comprehensive overview of the state-of-the-art of radiolabeling of bionanomaterials with 99mTc, highlighting the synthesis methods, labeling mechanisms, biological evaluation, physicochemical characterization and clinical applications of 99mTc-labeled bionanomaterials. Various types of nanomaterials are considered in the review, including lipid- and protein-based nanosystems, dendrimers and polymeric nanomaterials. Moreover, the review assesses the challenges presented by this emerging field, such as stability of the radiolabel, potential toxicity of the nanomaterials and regulatory aspects. Finally, promising future perspectives and areas of research development in 99mTc-labeled bionanomaterials are discussed.


[Box: see text].


Assuntos
Nanoestruturas , Tecnécio , Tecnécio/química , Humanos , Nanoestruturas/química , Compostos Radiofarmacêuticos/química , Marcação por Isótopo/métodos , Animais , Dendrímeros/química
8.
ACS Appl Mater Interfaces ; 16(32): 41907-41915, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39083440

RESUMO

Polyamidoamine (PAMAM) dendrimers are nanoparticles that have a wide scope in the field of biomedicine. Previous evidence shows that the generation 4 (G4) dendrimers with a 100% amine surface (G4-NH2) are highly toxic to cells in vitro and in vivo due to their positively charged amine groups. To reduce the toxicity, we modified the surface of the dendrimers to have more neutral functional groups, with 10% of the surface covered with -NH2 and 90% of the surface covered with hydroxyl groups (-OH; G4-90/10). Our previous in vitro data show that these modified dendrimers are taken up by cells, neurons, and different types of stem cells in vitro and neurons and glial cells in vivo. The toxicity assay shows that these modified dendrimers are less toxic compared with G4-NH2 dendrimers. Moreover, prolonged dendrimer exposure (G1-90/10 and G4-90/10), up to 3 weeks following unilateral intrastriatal injections into the striatum of mice, showed that dendrimers have the tendency to migrate within the brain via corpus callosum at different rates depending on their size. We also found that there is a difference in migration between the G1 and G4 dendrimers based on their size differences. The G4 dendrimers migrate in the anterior and posterior directions as well as more laterally from the site of injection in the striatum compared to the G1 dendrimers. Moreover, the G4 dendrimers have unique projections from the site of injection to the cortical areas.


Assuntos
Dendrímeros , Dendrímeros/química , Dendrímeros/toxicidade , Animais , Camundongos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Propriedades de Superfície
9.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000306

RESUMO

The unique structure of G4.0 PAMAM dendrimers allows a drug to be enclosed in internal spaces or immobilized on the surface. In the conducted research, the conditions for the formation of the active G4.0 PAMAM complex with doxorubicin hydrochloride (DOX) were optimized. The physicochemical properties of the system were monitored using dynamic light scattering (DLS), circular dichroism (CD), and fluorescence spectroscopy. The Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) method was chosen to determine the preferential conditions for the complex formation. The highest binding efficiency of the drug to the cationic dendrimer was observed under basic conditions when the DOX molecule was deprotonated. The decrease in the zeta potential of the complex confirms that DOX immobilizes through electrostatic interaction with the carrier's surface amine groups. The binding constants were determined from the fluorescence quenching of the DOX molecule in the presence of G4.0 PAMAM. The two-fold way of binding doxorubicin in the structure of dendrimers was visible in the Isothermal calorimetry (ITC) isotherm. Fluorescence spectra and release curves identified the reversible binding of DOX to the nanocarrier. Among the selected cancer cells, the most promising anticancer activity of the G4.0-DOX complex was observed in A375 malignant melanoma cells. Moreover, the preferred intracellular location of the complexes concerning the free drug was found, which is essential from a therapeutic point of view.


Assuntos
Dendrímeros , Doxorrubicina , Dendrímeros/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Humanos , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Sobrevivência Celular/efeitos dos fármacos
10.
Top Curr Chem (Cham) ; 382(3): 27, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033235

RESUMO

Supramolecular polymers are polymeric materials of monomeric fragments, held jointly by reversible and directional non-covalent interactions such as multiple hydrogen-bonding, charge transfer effects, host-guest interactions, metal coordination, and aromatic stacking. This review article on the Hamilton-based supramolecular polymers aims to shed light on the molecular recognition achievements by the Hamilton-based polymeric systems, evaluate Hamilton receptor's future prospects, and capitalize its potential applications in supramolecular chemistry. To the best of our knowledge, this is the first elaborative and sole manuscript in which polymeric Hamilton receptors are being exposed in detail. The first portion of this manuscript is related to the importance and urgency of polymers along with the historic background of Hamilton receptors. The middle section discloses the potential applications of Hamilton-type receptors in various fields, e.g., dendrimers, mechanically polymeric rotaxanes, and self-assemblies. The final section of the manuscript discloses the future aspects and the importance of novel polymer-based Hamilton-type receptors in the modern era. We believe that this first review in this emerging yet immature field will be useful to inspire scientists around the world to find the unseen future prospects, thereby boosting the field related to this valued artificial receptor in the province of supramolecular chemistry and also in other domains of scientific fields and technology, as well.


Assuntos
Polímeros , Polímeros/química , Substâncias Macromoleculares/química , Rotaxanos/química , Dendrímeros/química , Estrutura Molecular , Receptores Artificiais/química , Receptores Artificiais/metabolismo , Ligação de Hidrogênio
11.
Adv Pharmacol ; 100: 119-155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39034050

RESUMO

Drug discovery is challenging task with numerous obstacles in translating drug candidates into clinical products. Dendrimers are highly adaptable nanostructured polymers with significant potential to improve the chances of clinical success for drugs. Yet, dendrimer-based drug products are still in their infancy. However, Hydroxyl polyamidoamine (PAMAM) dendrimers showed significant promise in drug discovery efforts, owning their remarkable potential to selectively target and deliver drugs specifically to activated microglia and astrocytes at the site of brain injury in several preclinical models. After a decade's worth of academic research and pre-clinical efforts, the hydroxyl PAMAM dendrimer-N-acetyl cysteine conjugate (OP-101) nanomedicine has made a significant advancement in the field of nanomedicine and targeted delivery. The OP-101 conjugate, primarily developed and validated in academic labs, has now entered clinical trials as a potential treatment for hyperinflammation in hospitalized adults with severe COVID-19 through Ashvattha Therapeutics. This chapter, we delve into the journey of the hydroxyl PAMAM dendrimer-N-acetylcysteine (NAC) OP-101 formulation from the laboratory to the clinic. It will specifically focus on the design, synthesis, preclinical, and clinical development of OP-101, highlighting the potential it holds for the future of medicine and the positive Phase 2a results for treating severe COVID-19.


Assuntos
Acetilcisteína , Dendrímeros , Nanomedicina , Dendrímeros/química , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Acetilcisteína/química , Humanos , Animais , Nanomedicina/métodos , Tratamento Farmacológico da COVID-19 , Sistemas de Liberação de Medicamentos/métodos , Desenvolvimento de Medicamentos/métodos
12.
J Sep Sci ; 47(13): e2400154, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38948935

RESUMO

Glycosylation and phosphorylation rank as paramount post-translational modifications, and their analysis heavily relies on enrichment techniques. In this work, a facile approach was developed for the one-step simultaneous enrichment and stepwise elution of glycoproteins and phosphoproteins. The core of this approach was the application of the novel titanium (IV) ion immobilized poly(glycidyl methacrylate) microparticles functionalized with dendrimer polyethylenimine and phytic acid. The microparticles possessed dual enrichment capabilities due to their abundant titanium ions and hydroxyl groups on the surface. They demonstrate rapid adsorption equilibrium (within 30 min) and exceptional adsorption capacity for ß-casein (1107.7 mg/g) and horseradish peroxidase (438.6 mg/g), surpassing that of bovine serum albumin (91.7 mg/g). Furthermore, sodium dodecyl sulfate-polyacrylamide gel electrophoresis was conducted to validate the enrichment capability. Experimental results across various biological samples, including standard protein mixtures, non-fat milk, and human serum, demonstrated the remarkable ability of these microparticles to enrich low-abundance glycoproteins and phosphoproteins from biological samples.


Assuntos
Dendrímeros , Glicoproteínas , Fosfoproteínas , Polietilenoimina , Ácidos Polimetacrílicos , Titânio , Glicoproteínas/química , Fosfoproteínas/química , Polietilenoimina/química , Dendrímeros/química , Humanos , Titânio/química , Ácidos Polimetacrílicos/química , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Animais , Tamanho da Partícula , Adsorção , Bovinos
13.
ACS Appl Mater Interfaces ; 16(30): 39153-39164, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39018481

RESUMO

Temporomandibular joint osteoarthritis (TMJ OA) is characterized by the degeneration of cartilage and subchondral bone. In this study, we observed a significant increase in cell-free DNA (cfDNA) levels during the progression of TMJ OA. Bioinformatics analysis identified TLR9 as a pivotal molecule in TMJ OA pathogenesis. The polyamidoamine (PAMAM) dendrimer characterized by a well-structured, highly branched, and reactive nature, exhibits robust binding and clearance capabilities for cfDNA. However, the abundant amino groups on the surface of PAMAM lead to its inherent toxicity. To mitigate this, PEG-5000 was conjugated to the surface of PAMAM dendrimers, enhancing safety. Our results indicate that PEG-PAMAM effectively inhibits the upregulation of the TLR9 protein in TMJ OA, significantly suppressing the activation of the p-IκBα/p-NF-κB signaling pathway and subsequently decreasing chondrocyte inflammation and apoptosis, as evidenced by both in vivo and in vitro experiments. We conclude that PEG-PAMAM is a safe and effective material for in vivo applications, offering a promising therapeutic strategy for TMJ OA by targeting cfDNA clearance.


Assuntos
Ácidos Nucleicos Livres , Dendrímeros , Osteoartrite , Polietilenoglicóis , Articulação Temporomandibular , Dendrímeros/química , Dendrímeros/farmacologia , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Animais , Polietilenoglicóis/química , Articulação Temporomandibular/patologia , Articulação Temporomandibular/efeitos dos fármacos , Articulação Temporomandibular/metabolismo , Adsorção , Humanos , Receptor Toll-Like 9/metabolismo , Masculino , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Nylons/química , Nylons/farmacologia , Apoptose/efeitos dos fármacos , Camundongos
14.
J Biomater Sci Polym Ed ; 35(12): 1892-1921, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38910561

RESUMO

The main objective of this work is to synthesize multifunctional nanodendritic structural molecules that can effectively encapsulate hydrophilic as well as hydrophobic therapeutic agents. Four different types of fourth-generation lysine-citric acid based dendrimer have been synthesized in this work: PE-MC-Lys-CA-PEG, TMP-MC-Lys-CA-PEG, PE-MS-Lys-CA-PEG, and TMP-MS-Lys-CA-PEG. The antibacterial drug cefotaxime (CFTX) was further conjugated to these dendrimers. The dendrimer and drug-dendrimer conjugate structures were characterized with the help of FTIR,1H-NMR, and 13C-NMR spectroscopy. Zeta sizer, AFM, and HR-TEM techniques were used to investigate the particle size, surface topography, and structural characteristics of drug-dendrimer conjugates. In vitro drug release was then investigated using dialysis method. Various kinetic drug release models were examined to evaluate the type of kinetic drug release mechanism of the formulations. Cytotoxicity study revealed that the dendrimers encapsulated with CFTX exhibited 2-3% toxicity against healthy epithelial cells, indicating their safe use. Plain dendrimers show 10-15% hemolytic toxicity against red blood cells (RBC), and the toxicity was reduced to 2-3% when CFTX was conjugated to the same dendrimers. The 3rd and 4th generation synthesized drug-dendrimer conjugates exhibit a significantly effective zone of inhibition (ZOI) against both Gram-positive and Gram-negative bacteria. For Gram-positive bacteria, the lower concentration of 0.1 mg/mL showed more than 98% inhibition of drug-dendrimer conjugate samples against B. subtilis and more than 50% inhibition against S. aureus using 0.2 mg/mL, respectively. Moreover, samples with concentrations of 0.5 and 1.0 mg/mL exhibited more than 50% inhibition against S. typhimurium and E. coli, respectively.


Assuntos
Antibacterianos , Ácido Cítrico , Dendrímeros , Portadores de Fármacos , Liberação Controlada de Fármacos , Hemólise , Lisina , Polietilenoglicóis , Dendrímeros/química , Lisina/química , Polietilenoglicóis/química , Portadores de Fármacos/química , Antibacterianos/farmacologia , Antibacterianos/química , Ácido Cítrico/química , Humanos , Hemólise/efeitos dos fármacos , Cefotaxima/química , Cefotaxima/farmacologia , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Tamanho da Partícula , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Nanopartículas/química
15.
Adv Sci (Weinh) ; 11(30): e2401935, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837626

RESUMO

Lipidic nanocarriers are a broad class of lipid-based vectors with proven potential for packaging and delivering emerging nucleic acid therapeutics. An important early step in the clinical development cycle is large-scale screening of diverse formulation libraries to assess particle quality and payload delivery efficiency. Due to the size of the screening space, this process can be both costly and time-consuming. To address this, computational models capable of predicting clinically relevant physio-chemical properties of dendrimer-lipid nanocarriers, along with their mRNA payload delivery efficiency in human cells are developed. The models are then deployed on a large theoretical nanocarrier pool consisting of over 4.5 million formulations. Top predictions are synthesised for validation using cell-based assays, leading to the discovery of a high quality, high performing, candidate. The methods reported here enable rapid, high-throughput, in silico pre-screening for high-quality candidates, and have great potential to reduce the cost and time required to bring mRNA therapies to the clinic.


Assuntos
Simulação por Computador , RNA Mensageiro , RNA Mensageiro/genética , Humanos , Nanopartículas/química , Lipídeos/química , Dendrímeros/química , Portadores de Fármacos/química
16.
J Am Chem Soc ; 146(25): 17240-17249, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38865148

RESUMO

Antibiotic-resistant pathogens have been declared by the WHO as one of the major public health threats facing humanity. For that reason, there is an urgent need for materials with inherent antibacterial activity able to replace the use of antibiotics, and in this context, hydrogels have emerged as a promising strategy. Herein, we introduce the next generation of cationic hydrogels with antibacterial activity and high versatility that can be cured on demand in less than 20 s using thiol-ene click chemistry (TEC) in aqueous conditions. The approach capitalizes on a two-component system: (i) telechelic polyester-based dendritic-linear-dendritic (DLDs) block copolymers of different generations heterofunctionalized with allyl and ammonium groups, as well as (ii) polyethylene glycol (PEG) cross-linkers functionalized with thiol groups. These hydrogels resulted in highly tunable materials where the antibacterial performance can be adjusted by modifying the cross-linking density. Off-stoichiometric hydrogels showed narrow antibacterial activity directed toward Gram-negative bacteria. The presence of pending allyls opens up many possibilities for functionalization with biologically interesting molecules. As a proof-of-concept, hydrophilic cysteamine hydrochloride as well as N-hexyl-4-mercaptobutanamide, as an example of a thiol with a hydrophobic alkyl chain, generated three-component networks. In the case of cysteamine derivatives, a broader antibacterial activity was noted than the two-component networks, inhibiting the growth of Gram-positive bacteria. Additionally, these systems presented high versatility, with storage modulus values ranging from 270 to 7024 Pa and different stability profiles ranging from 1 to 56 days in swelling experiments. Good biocompatibility toward skin cells as well as strong adhesion to multiple surfaces place these hydrogels as interesting alternatives to conventional antibiotics.


Assuntos
Antibacterianos , Hidrogéis , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Dendrímeros/química , Dendrímeros/farmacologia , Testes de Sensibilidade Microbiana , Adesivos/química , Adesivos/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polímeros/química , Polímeros/farmacologia , Humanos , Estrutura Molecular , Química Click
17.
Theranostics ; 14(8): 3221-3245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855177

RESUMO

The availability of non-invasive drug delivery systems capable of efficiently transporting bioactive molecules across the blood-brain barrier to specific cells at the injury site in the brain is currently limited. Delivering drugs to neurons presents an even more formidable challenge due to their lower numbers and less phagocytic nature compared to other brain cells. Additionally, the diverse types of neurons, each performing specific functions, necessitate precise targeting of those implicated in the disease. Moreover, the complex synthetic design of drug delivery systems often hinders their clinical translation. The production of nanomaterials at an industrial scale with high reproducibility and purity is particularly challenging. However, overcoming this challenge is possible by designing nanomaterials through a straightforward, facile, and easily reproducible synthetic process. Methods: In this study, we have developed a third-generation 2-deoxy-glucose functionalized mixed layer dendrimer (2DG-D) utilizing biocompatible and cost-effective materials via a highly facile convergent approach, employing copper-catalyzed click chemistry. We further evaluated the systemic neuronal targeting and biodistribution of 2DG-D, and brain delivery of a neuroprotective agent pioglitazone (Pio) in a pediatric traumatic brain injury (TBI) model. Results: The 2DG-D exhibits favorable characteristics including high water solubility, biocompatibility, biological stability, nanoscale size, and a substantial number of end groups suitable for drug conjugation. Upon systemic administration in a pediatric mouse model of traumatic brain injury (TBI), the 2DG-D localizes in neurons at the injured brain site, clears rapidly from off-target locations, effectively delivers Pio, ameliorates neuroinflammation, and improves behavioral outcomes. Conclusions: The promising in vivo results coupled with a convenient synthetic approach for the construction of 2DG-D makes it a potential nanoplatform for addressing brain diseases.


Assuntos
Dendrímeros , Desoxiglucose , Sistemas de Liberação de Medicamentos , Neurônios , Animais , Dendrímeros/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Desoxiglucose/farmacologia , Desoxiglucose/farmacocinética , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Camundongos , Pioglitazona/farmacologia , Pioglitazona/administração & dosagem , Pioglitazona/farmacocinética , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encefalopatias/tratamento farmacológico , Humanos , Modelos Animais de Doenças , Distribuição Tecidual , Masculino
18.
Nano Lett ; 24(27): 8311-8319, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38935481

RESUMO

Developing ultrasensitive lateral flow immunoassays (LFIAs) has garnered significant attention in the field of point-of-care testing. In this study, a trimetallic dendritic nanozyme (Pd@Pt-Ru) was synthesized through Ru deposition on a Pd@Pt core and utilized to enhancing the sensitivity of LFIAs. Pd@Pt-Ru exhibited a Km value of 5.23 mM for detecting H2O2, which indicates an H2O2 affinity comparable with that of horseradish peroxidase. The Ru surface layer reduces the activation energy barrier, which increases the maximum reaction rate. As a proof of concept, the proposed Pd@Pt-Ru nanozyme was incorporated into LFIAs (A-Pd@Pt-Ru-LFIAs) for detecting human chorionic gonadotropin (hCG). Compared with conventional gold nanoparticle (AuNP)-LFIAs, A-Pd@Pt-Ru-LFIAs demonstrated 250-fold increased sensitivity, thereby enabling a visible detection limit as low as 0.1 IU/L. True positive and negative rates both reached 100%, which renders the proposed Pd@Pt-Ru nanozyme suitable for detecting hCG in clinical samples.


Assuntos
Gonadotropina Coriônica , Peróxido de Hidrogênio , Limite de Detecção , Nanopartículas Metálicas , Paládio , Platina , Rutênio , Paládio/química , Platina/química , Imunoensaio/métodos , Humanos , Rutênio/química , Gonadotropina Coriônica/análise , Nanopartículas Metálicas/química , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Ouro/química , Dendrímeros/química , Técnicas Biossensoriais/métodos , Peroxidase/química , Catálise
19.
Biomolecules ; 14(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38927024

RESUMO

Hydrogels are three-dimensional crosslinked functional materials with water-absorbing and swelling properties. Many hydrogels can store a variety of small functional molecules to structurally and functionally mimic the natural extracellular matrix; hence, they have been extensively studied for biomedical applications. Polyamidoamine (PAMAM) dendrimers have an ethylenediamine core and a large number of peripheral amino groups, which can be used to engineer various polymer hydrogels. In this review, an update on the progress of using PAMAM dendrimers for multifunctional hydrogel design was given. The synthesis of these hydrogels, which includes click chemistry reactions, aza-Michael addition, Schiff base reactions, amidation reactions, enzymatic reactions, and radical polymerization, together with research progress in terms of their application in the fields of drug delivery, tissue engineering, drug-free tumor therapy, and other related fields, was discussed in detail. Furthermore, the biomedical applications of PAMAM-engineered nano-hydrogels, which combine the advantages of dendrimers, hydrogels, and nanoparticles, were also summarized. This review will help researchers to design and develop more functional hydrogel materials based on PAMAM dendrimers.


Assuntos
Dendrímeros , Hidrogéis , Poliaminas , Engenharia Tecidual , Hidrogéis/química , Hidrogéis/síntese química , Dendrímeros/química , Humanos , Engenharia Tecidual/métodos , Poliaminas/química , Sistemas de Liberação de Medicamentos , Animais , Química Click/métodos , Materiais Biocompatíveis/química
20.
Int J Pharm ; 661: 124389, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38942185

RESUMO

We have recently witnessed that considerable progresses have been made in the rapid detection and appropriate treatments of COVID-19, but still this virus remains one of the main targets of world research. Based on the knowledge of the complex mechanism of viral infection we designed peptide-dendrimer inhibitors of SARS-CoV-2with the aim to block cell infection through interfering with the host-pathogen interactions. We used two different strategies: i) the first one aims at hindering the virus anchorage to the human cell; ii) the second -strategy points to interfere with the mechanism of virus-cell membrane fusion. We propose the use of different nanosized carriers, formed by several carbosilane dendritic wedges to deliver two different peptides designed to inhibit host interaction or virus entry. The antiviral activity of the peptide-dendrimers, as well as of free peptides and free dendrimers was evaluated through the use of SARS-CoV-2 pseudotyped lentivirus. The results obtained show that peptides designed to block host-pathogen interaction represent a valuable strategy for viral inhibition.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Dendrímeros , Peptídeos , SARS-CoV-2 , Dendrímeros/química , Dendrímeros/farmacologia , Humanos , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Peptídeos/química , Peptídeos/farmacologia , Internalização do Vírus/efeitos dos fármacos , Desenho de Fármacos , COVID-19/virologia , Silanos/química , Silanos/farmacologia , Interações Hospedeiro-Patógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA