Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.535
Filtrar
1.
Anal Chem ; 96(33): 13734-13741, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39114879

RESUMO

A one-step, enzyme-free, and highly sensitive digital microRNA (miRNA) assay is rationally devised based on flow cytometric counting of target miRNA-clicked nanobead dimers via a facile mix-and-read manner. In this strategy, highly efficient miRNA-sandwiched click chemical ligation of two DNA probes may remarkably stabilize and boost the dimer formation between two kinds of fluorescence-coded nanobeads, and the number of as-produced bead dimers will be target dose-responsive, particularly when the trace number of miRNA is much less than that of employed nanobeads. Finally, each fluorescence-coded bead dimer can be easily identified and digitally counted by a powerful flow cytometer (FCM) and accordingly, the amount of target miRNA can be accurately quantified in a digital way. This new digital miRNA assay can be accomplished with a facile mix-and-read operation just by simply mixing the target miRNA with two kinds of preprepared DNA probe-functionalized nanobeads, which do not require any nucleic acid amplification, purification, and complex operation procedures. In spite of the extremely simple one-step operation, benefiting from the low-background but high target-mediated click ligation efficiency, and the powerfully digital statistical capability of FCM, this strategy achieves high sensitivity with a quite low detection limit of 5.2 fM target miRNA as well as high specificity and good generality for miRNA analysis, pioneering a new direction for fabricating digital bioassays.


Assuntos
Citometria de Fluxo , MicroRNAs , MicroRNAs/análise , MicroRNAs/genética , Citometria de Fluxo/métodos , Humanos , Dimerização , Química Click , Sondas de DNA/química , Sondas de DNA/genética
2.
Molecules ; 29(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125028

RESUMO

The presented work aimed to explore the potential of oleanolic acid dimers (OADs): their cytostatic and antioxidant activities, molecular docking, pharmacokinetics, and ADMETox profile. The cytostatic properties of oleanolic acid (1) and its 14 synthesised dimers (2a-2n) were evaluated against 10 tumour types and expressed as IC50 values. Molecular docking was performed with the CB-Dock2 server. Antioxidant properties were evaluated with the CUPRAC method. ADMETox properties were evaluated with the ADMETlab Manual (2.0) database. The results indicate that the obtained OADs can be effective cytostatic agents, for which the IC50 not exceeded 10.00 for many tested cancer cell lines. All OADs were much more active against all cell lines than the mother compound (1). All dimers can inhibit the interaction between the 1MP8 protein and cellular proteins with the best results for compounds 2f and 2g with unsaturated bonds within the linker. An additional advantage of the tested OADs was a high level of antioxidant activity, with Trolox equivalent for OADs 2c, 2d, 2g-2j, 2l, and 2m of approximately 0.04 mg/mL, and beneficial pharmacokinetics and ADMETox properties. The differences in the DPPH and CUPRAC assay results obtained for OADs may indicate that these compounds may be effective antioxidants against different radicals.


Assuntos
Antioxidantes , Simulação de Acoplamento Molecular , Ácido Oleanólico , Antioxidantes/química , Antioxidantes/farmacologia , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/análogos & derivados , Humanos , Linhagem Celular Tumoral , Dimerização , Antineoplásicos/farmacologia , Antineoplásicos/química , Estrutura Molecular
3.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125638

RESUMO

The oxidation of tetraselenatetracene (TSeT) by tetracyanoquinodimethane in the presence of dysprosium(III) tris(hexafluoroacetylacetonate), DyIII(hfac)3, produces black crystals of {TSeT1.5}●+[DyIII(hfac)4]- (1) salt, which combines conducting and magnetic sublattices. It contains one-dimensional stacks composed of partially oxidized TSeT molecules (formal averaged charge is +2/3). Dimers and monomers can be outlined within these stacks with charge and spin density redistribution. The spin triplet state of the dimers is populated above 128 K with an estimated singlet-triplet energy gap of 542 K, whereas spins localized on the monomers show paramagnetic behavior. A semiconducting behavior is observed for 1 with the activation energy of 91 meV (measured by the four-probe technique for an oriented single crystal). The DyIII ions coordinate four hfac- anions in [DyIII(hfac)4]-, providing D2d symmetry. Slow magnetic relaxation is observed for DyIII under an applied static magnetic field of 1000 Oe, and 1 is a single-ion magnet (SIM) with spin reversal barrier Ueff = 40.2 K and magnetic hysteresis at 2 K. Contributions from DyIII and TSeT●+ paramagnetic species are seen in EPR. The DyIII ion rarely manifests EPR signals, but such signal is observed in 1. It appears due to narrowing below 30 K and has g4 = 6.1871 and g5 = 2.1778 at 5.4 K.


Assuntos
Disprósio , Semicondutores , Disprósio/química , Ânions/química , Dimerização , Modelos Moleculares , Fenômenos Magnéticos , Magnetismo
4.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125845

RESUMO

The benzene dimer (BD) is an archetypal model of π∙∙∙π and C-H∙∙∙π noncovalent interactions as they occur in its cofacial and perpendicular arrangements, respectively. The enthalpic stabilization of the related BD structures has been debated for a long time and is revisited here. The revisit is based on results of computations that apply the coupled-cluster theory with singles, doubles and perturbative triples [CCSD(T)] together with large basis sets and extrapolate results to the complete basis set (CBS) limit in order to accurately characterize the three most important stationary points of the intermolecular interaction energy (ΔE) surface of the BD, which correspond to the tilted T-shaped (TT), fully symmetric T-shaped (FT) and slipped-parallel (SP) structures. In the optimal geometries obtained by searching extensive sets of the CCSD(T)/CBS ΔE data of the TT, FT and SP arrangements, the resulting ΔE values were -11.84, -11.34 and -11.21 kJ/mol, respectively. The intrinsic strength of the intermolecular bonding in these configurations was evaluated by analyzing the distance dependence of the CCSD(T)/CBS ΔE data over wide ranges of intermonomer separations. In this way, regions of the relative distances that favor BD structures with either π∙∙∙π or C-H∙∙∙π interactions were found and discussed in a broader context.


Assuntos
Benzeno , Dimerização , Benzeno/química , Termodinâmica , Modelos Moleculares , Teoria Quântica , Ligação de Hidrogênio
5.
J Phys Chem B ; 128(32): 7750-7760, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39105720

RESUMO

Performing spectroscopic measurements on biomolecules labeled with fluorescent probes is a powerful approach to locating the molecular behavior and dynamics of large systems at specific sites within their local environments. The indocarbocyanine dye Cy3 has emerged as one of the most commonly used chromophores. The incorporation of Cy3 dimers into DNA enhances experimental resolution owing to the spectral characteristics influenced by the geometric orientation of excitonically coupled monomeric units. Various theoretical models and simulations have been utilized to aid in the interpretation of the experimental spectra. In this study, we employ all-atom molecular dynamics simulations to study the structural dynamics of Cy3 dimers internally linked to the dsDNA backbone. We used quantum mechanical calculations to derive insights from both the linear absorption spectra and the circular dichroism data. Furthermore, we explore potential limitations within a commonly used force field for cyanine dyes. The molecular dynamics simulations suggest the presence of four possible Cy3 dimeric populations. The spectral simulations on the four populations show one of them to agree better with the experimental signatures, suggesting it to be the dominant population. The relative orientation of Cy3 in this population compares very well with previous predictions from the Holstein-Frenkel Hamiltonian model.


Assuntos
Carbocianinas , DNA , Dimerização , Simulação de Dinâmica Molecular , Teoria Quântica , Carbocianinas/química , DNA/química
6.
J Am Chem Soc ; 146(32): 22675-22688, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39088029

RESUMO

Redox-responsive homodimer prodrug nanoassemblies (RHPNs) have emerged as a significant technology for overcoming chemotherapeutical limitations due to their high drug-loading capacity, low excipient-associated toxicity, and straightforward preparation method. Previous studies indicated that α-position disulfide bond bridged RHPNs exhibited rapid drug release rates but unsatisfactory assembly stability. In contrast, γ-disulfide bond bridged RHPNs showed better assembly stability but low drug release rates. Therefore, designing chemical linkages that ensure both stable assembly and rapid drug release remains challenging. To address this paradox of stable assembly and rapid drug release in RHPNs, we developed carbon-spaced double-disulfide bond (CSDD)-bridged RHPNs (CSDD-RHPNs) with two carbon-spaces. Pilot studies showed that CSDD-RHPNs with two carbon-spaces exhibited enhanced assembly stability, reduction-responsive drug release, and improved selective toxicity compared to α-/γ-position single disulfide bond bridged RHPNs. Based on these findings, CSDD-RHPNs with four and six carbon-spaces were designed to further investigate the properties of CSDD-RHPNs. These CSDD-RHPNs exhibited excellent assembly ability, safety, and prolonged circulation. Particularly, CSDD-RHPNs with two carbon-spaces displayed the best antitumor efficacy on 4T1 and B16-F10 tumor-bearing mice. CSDD chemical linkages offer novel perspectives on the rational design of RHPNs, potentially overcoming the design limitations regarding contradictory assembly ability and drug release rate.


Assuntos
Carbono , Dissulfetos , Pró-Fármacos , Dissulfetos/química , Pró-Fármacos/química , Animais , Camundongos , Carbono/química , Humanos , Liberação Controlada de Fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Linhagem Celular Tumoral , Nanoestruturas/química , Dimerização , Doxorrubicina/química , Doxorrubicina/farmacologia
7.
J Phys Chem B ; 128(28): 6786-6796, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38959128

RESUMO

The ultrafast high-energy nonadiabatic excited-state dynamics of the benzylidenedimethylimidazolinone chromophore dimer has been investigated using an electronic structure method coupled with on-the-fly quantitative wave function analysis to gain insight into the photophysics of hot excitons in biological systems. The dynamical simulation provides a rationalization of the behavior of the exciton in a dimer after the photoabsorption of light to higher-energy states. The results suggest that hot exciton localization within the manifold of excited states is caused by the hindrance of torsional rotation due to imidazolinone (I) or phenolate (P) bonds i.e., ΦI- or ΦP-dihedral rotation, in the monomeric units of a dimer. This hindrance arises due to weak π-π stacking interaction in the dimer, resulting in an energetically uphill excited-state barrier for ΦI- and ΦP-twisted rotation, impeding the isomerization process in the chromophore. Thus, this study highlights the potential impact of the weak π-π interaction in regulating the photodynamics of the green fluorescent protein chromophore derivatives.


Assuntos
Proteínas de Fluorescência Verde , Proteínas de Fluorescência Verde/química , Dimerização , Imidazolinas/química , Teoria da Densidade Funcional
8.
Phytochemistry ; 226: 114216, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38972444

RESUMO

Artemisia annua L. ("Qinghao" in Chinese) is a famous traditional Chinese medicinal herb and has been used to treat malaria and various tumors. Our preliminary screening indicated that the EtOAc extract of A. annua manifested activity against HepG2, Huh7, and SK-Hep-1 cell lines with inhibitory ratios of 53.2%, 52.1%, and 59.6% at 200 µg/mL, respectively. Bioassay-guided isolation of A. annua afforded 14 unusual cadinane-involved sesquiterpenoid dimers, artemannuins A‒N (1-14), of which the structures were elucidated by extensive spectral analyses, ECD calculations, and single-crystal X-ray diffraction. Structurally, these compounds were classified into five different types based on the coupled modes of two monomeric sesquiterpenoids. Among them, compounds 1-9 represented the first examples of sesquiterpenoid dimers formed via the C-3‒C-3' single bond of two 5(4 â†’ 3)-abeo-cadinane sesquiterpenoid monomers, while compounds 13 and 14 were dimers fused by cadinane and humulane sesquiterpenoids via an ester bond. Methylated derivatives of 1, 4, 6, and 8 showed antihepatoma activity against HepG2, Huh7, and SK-Hep-1 cell lines with IC50 values ranging from 30.5 to 57.2 µM.


Assuntos
Artemisia annua , Sesquiterpenos Policíclicos , Sesquiterpenos , Humanos , Artemisia annua/química , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/isolamento & purificação , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , Estrutura Molecular , Dimerização , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral
9.
Biomed Pharmacother ; 177: 117087, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964178

RESUMO

Thirteen previously undescribed lindenane sesquiterpenoid dimers (LSDs), named chlorahololides G-S (1-13), were isolated from the whole plants of Chloranthus holostegius var. shimianensis, along with ten known analogues (14-23). The structures and absolute configurations of compounds 1-13 were elucidated through comprehensive spectroscopic analysis, NMR and electronic circular dichroism (ECD) calculations, and X-ray single-crystal diffraction. Chlorahololide G (1) represents the first instance of LSDs formed via a C-15-C-9' carbon-carbon single bond, whose plausible biosynthetic pathway was also proposed. Chlorahololides I and J (3 and 4) were deduced to be rare 8,9-seco and 9-deoxy LSDs with C-11-C-7' carbon-carbon bond, respectively. The inhibitory activity against NLRP3 inflammasome activation was evaluated for all isolates, with six compounds (5, 7, 8, 17, 22, and 23) exhibiting significant effects, and IC50 values ranging from 2.99 to 8.73 µM. Additionally, a preliminary structure-activity relationship analysis regarding their inhibition of NLRP3 inflammasome activation was summarized. Compound 17 exhibited dose-dependent inhibition of nigericin-induced pyroptosis in J774A.1 cells. Molecular docking studies suggested a strong interaction between compound 17 and NLRP3.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sesquiterpenos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Inflamassomos/metabolismo , Inflamassomos/antagonistas & inibidores , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/química , Animais , Camundongos , Simulação de Acoplamento Molecular , Dimerização , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
10.
Org Lett ; 26(29): 6203-6208, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39004824

RESUMO

Isoxerophilusins A (1) and B (2), two unprecedented diterpene heterodimers biogenetically from ent-atisanes and abietanes, were isolated from the rhizomes of Isodon xerophilus. Their structures were determined by extensive spectroscopic analysis and single-crystal X-ray diffraction. Selective esterification of 1 generated 11 new derivatives. All derivatives showed excellent α-glucosidase inhibitory activity in comparison to acarbose. Compounds 12 and 13 demonstrated significant inhibition against α-glucosidase with IC50 values of 4.92 and 3.83 µM, respectively.


Assuntos
Diterpenos , Inibidores de Glicosídeo Hidrolases , Isodon , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Diterpenos/química , Diterpenos/farmacologia , Diterpenos/isolamento & purificação , alfa-Glucosidases/metabolismo , Estrutura Molecular , Isodon/química , Dimerização , Cristalografia por Raios X , Relação Estrutura-Atividade , Rizoma/química
11.
Bioconjug Chem ; 35(8): 1182-1189, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38982626

RESUMO

Fluorogenic dimers with polarity-sensitive folding are powerful probes for live-cell bioimaging. They switch on their fluorescence only after interacting with their targets, thus leading to a high signal-to-noise ratio in wash-free bioimaging. We previously reported the first near-infrared fluorogenic dimers derived from cyanine 5.5 dyes for the optical detection of G protein-coupled receptors. Owing to their hydrophobic character, these dimers are prone to form nonspecific interactions with proteins such as albumin and with the lipid bilayer of the cell membrane resulting in a residual background fluorescence in complex biological media. Herein, we report the rational design of new fluorogenic dimers derived from cyanine 5. By modulating the chemical structure of the cyanine units, we discovered that the two asymmetric cyanine 5.25 dyes were able to form intramolecular H-aggregates and self-quenched in aqueous media. Moreover, the resulting original dimeric probes enabled a significant reduction of the nonspecific interactions with bovine serum albumin and lipid bilayers compared with the first generation of cyanine 5.5 dimers. Finally, the optimized asymmetric fluorogenic dimer was grafted to carbetocin for the specific imaging of the oxytocin receptor under no-wash conditions directly in cell culture media, notably improving the signal-to-background ratio compared with the previous generation of cyanine 5.5 dimers.


Assuntos
Carbocianinas , Corantes Fluorescentes , Bicamadas Lipídicas , Receptores Acoplados a Proteínas G , Soroalbumina Bovina , Carbocianinas/química , Corantes Fluorescentes/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Humanos , Soroalbumina Bovina/química , Animais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Dimerização , Bovinos , Desenho de Fármacos
12.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000101

RESUMO

The present work aimed to obtain a set of oleanolic acid derivatives with a high level of cytotoxic and antioxidant activities and a low level of toxicity by applying an economical method. Oleanolic acid was alkylated with α,ω-dihalogenoalkane/α,ω-dihalogenoalkene to obtain 14 derivatives of dimer structure. All of the newly obtained compounds were subjected to QSAR computational analysis to evaluate the probability of the occurrence of different types of pharmacological activities depending on the structure of the analysed compound. All dimers were tested for cytotoxicity activity and antioxidant potential. The cytotoxicity was tested on the SKBR-3, SKOV-3, PC-3, and U-87 cancer cell lines with the application of the MTT assay. The HDF cell line was applied to evaluate the tested compounds' Selectivity Index. The antioxidant test was performed with a DPPH assay. Almost all triterpene dimers showed a high level of cytotoxic activity towards selected cancer cell lines, with an IC50 value below 10 µM. The synthesised derivatives of oleanolic acid exhibited varying degrees of antioxidant activity, surpassing that of the natural compound in several instances. Employing the DPPH assay, compounds 2a, 2b, and 2f emerged as promising candidates, demonstrating significantly higher Trolox equivalents and highlighting their potential for pharmaceutical and nutraceutical applications. Joining two oleanolic acid residues through their C-17 carboxyl group using α,ω-dihalogenoalkanes/α,ω-dihalogenoalkenes resulted in the synthesis of highly potent cytotoxic agents with favourable SIs and high levels of antioxidant activity.


Assuntos
Antineoplásicos , Antioxidantes , Ácido Oleanólico , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/análogos & derivados , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Desenho de Fármacos , Relação Quantitativa Estrutura-Atividade , Dimerização , Sobrevivência Celular/efeitos dos fármacos
13.
ACS Sens ; 9(7): 3581-3593, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38958530

RESUMO

Near-infrared (NIR) heptamethine cyanine (HCy) dyes are promising photothermal transducers for image-guided cancer treatment owing to their prominent photophysical properties and high photothermal conversion ability. However, HCy photothermal transducers usually have poor photostability due to degradation induced by the self-generated reactive oxygen species. Herein, a novel mitochondria-targeting dimeric HCy dye, named dimeric oBHCy, is rationally designed, exhibiting strong near-infrared II (NIR-II) fluorescence emission, high photothermal conversion efficiency (PCE), and excellent photostability. The large π-conjugation and drastic intramolecular motion of the diphenol rotor in the dimeric oBHCy enhance the nonradiative energy dissipation and suppress the intersystem crossing process, thereby achieving a high PCE (49.2%) and improved photostability. Impressively, dimeric oBHCy can precisely target mitochondria and induce mitochondrial damage upon NIR light irradiation. Under the guidance of in vivo NIR-II fluorescence imaging, efficient NIR light-activated photothermal therapy of 4T1 breast tumors is accomplished with a tumor inhibitory rate of 96% following a single injection of the dimeric oBHCy. This work offers an innovative strategy for designing cyanine photothermal transducers with integrated NIR-II fluorescence and photothermal properties for efficient cancer theranostics.


Assuntos
Carbocianinas , Raios Infravermelhos , Mitocôndrias , Imagem Óptica , Fototerapia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Carbocianinas/química , Animais , Camundongos , Humanos , Fototerapia/métodos , Corantes Fluorescentes/química , Feminino , Camundongos Endogâmicos BALB C , Terapia Fototérmica/métodos , Linhagem Celular Tumoral , Dimerização
14.
J Nat Prod ; 87(7): 1754-1762, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38982404

RESUMO

Sesquiterpene dimers are mainly found in the Asteraceae family. However, conflicting reports on the structures of these compounds can be found in the literature. Herein, we describe ten sesquiterpene dimers isolated from the flowers of Inula japonica, including configurational revisions of japonicone H (1-1), japonicone D (2-1), inulanolide A (4-1), japonicone X (5-1), and inulanolide F (5-2) to compounds 1, 2, 4, and 5, respectively. Five new related metabolites (3 and 6-9) are also described. Application of GIAO NMR/DP4+ analyses and ECD/OR calculations enabled us to revise the absolute configurations of an additional 13 sesquiterpene dimers isolated from plants of the genus Inula. Compounds 1, 2, 4, and 6 exhibited inhibition of nitric oxide production in lipopolysaccharide activated RAW264.7 macrophages with IC50 values of 4.07-10.00 µM.


Assuntos
Flores , Inula , Óxido Nítrico , Sesquiterpenos , Flores/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Inula/química , Camundongos , Animais , Células RAW 264.7 , Estrutura Molecular , Óxido Nítrico/biossíntese , Óxido Nítrico/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Dimerização
15.
J Agric Food Chem ; 72(29): 16263-16275, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38953591

RESUMO

Six new phenylpropanoid glycosides (1-6), two new phenylethanol glycosides (7 and 8), one new phenylmethanol glycoside (9), three new phenylpropanoid dimers (10-12), two new phenylpropanoid-flavan-3-ol heterodimers (13 and 14), and six known relevant compounds (15-20) were isolated and identified from the well-liked edible and medicinal substance (the bark of Cinnamomum cassia (L.) J.Presl). The structures of these isolates were determined by using spectroscopic analyses, chemical methods, and quantum chemical calculations. Notably, compounds 4-9 were rare apiuronyl-containing glycosides, and compounds 13 and 14 were heterodimers of phenylpropanoids and flavan-3-ols linked through C-9″-C-8 bonds. The antioxidant and α-glucosidase inhibitory activities of all isolates were evaluated. Compounds 10 and 12 exhibited DPPH radical scavenging capacities with IC50 values of 20.1 and 13.0 µM, respectively (vitamin C IC50 value of 14.3 µM). In the ORAC experiment, all these compounds exhibited different levels of capacity for scavenging free radicals, and compound 10 displayed extraordinary free radical scavenging capacity with the ORAC value of 6.42 ± 0.01 µM TE/µM (EGCG ORAC value of 1.54 ± 0.02 µM TE/µM). Compound 12 also showed significant α-glucosidase inhibitory activity with an IC50 of 56.3 µM (acarbose IC50 of 519.4 µM).


Assuntos
Antioxidantes , Cinnamomum aromaticum , Inibidores de Glicosídeo Hidrolases , Glicosídeos , Casca de Planta , Extratos Vegetais , Casca de Planta/química , Glicosídeos/química , Glicosídeos/farmacologia , Cinnamomum aromaticum/química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Dimerização
16.
J Am Chem Soc ; 146(28): 18916-18926, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38951503

RESUMO

Kinetic proofreading is used throughout natural systems to enhance the specificity of molecular recognition. At its most basic level, kinetic proofreading uses a supply of chemical fuel to drive a recognition interaction out of equilibrium, allowing a single free-energy difference between correct and incorrect targets to be exploited two or more times. Despite its importance in biology, there has been little effort to incorporate kinetic proofreading into synthetic systems in which molecular recognition is important, such as nucleic acid nanotechnology. In this article, we introduce a DNA strand displacement-based kinetic proofreading motif, showing that the consumption of a DNA-based fuel can be used to enhance molecular recognition during a templated dimerization reaction. We then show that kinetic proofreading can enhance the specificity with which a probe discriminates single nucleotide mutations, both in terms of the initial rate with which the probe reacts and the long-time behavior.


Assuntos
DNA , Cinética , DNA/química , Dimerização
17.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891971

RESUMO

π-π stacking are omnipresent interactions, crucial in many areas of chemistry, and often studied using quantum chemical methods. Here, we report a simple and computationally efficient method of estimating the binding energies of stacked polycyclic aromatic hydrocarbons based on steered molecular dynamics. This method leverages the force field parameters for accurate calculation. The presented results show good agreement with those obtained through DFT at the ωB97X-D3/cc-pVQZ level of theory. It is demonstrated that this force field-driven SMD method can be applied to other aromatic molecules, allowing insight into the complexity of the stacking interactions and, more importantly, reporting π-π stacking energy values with reasonable precision.


Assuntos
Simulação de Dinâmica Molecular , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/química , Termodinâmica , Dimerização , Teoria Quântica
18.
Angew Chem Int Ed Engl ; 63(34): e202407307, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38868977

RESUMO

Small organic photothermal agents (PTAs) with absorption bands located in the second near-infrared (NIR-II, 1000-1700 nm) window are highly desirable for effectively combating deep-seated tumors. However, the rarely reported NIR-II absorbing PTAs still suffer from a low molar extinction coefficient (MEC, ϵ), inadequate chemostability and photostability, as well as the high light power density required during the therapeutic process. Herein, we developed a series of boron difluoride bridged azafulvene dimer acceptor-integrated small organic PTAs. The B-N coordination bonds in the π-conjugated azafulvene dimer backbone endow it the strong electron-withdrawing ability, facilitating the vigorous donor-acceptor-donor (D-A-D) structure PTAs with NIR-II absorption. Notably, the PTA namely OTTBF shows high MEC (7.21×104 M-1 cm-1), ultrahigh chemo- and photo-stability. After encapsulated into water-dispersible nanoparticles, OTTBF NPs can achieve remarkable photothermal conversion effect under 1064 nm irradiation with a light density as low as 0.7 W cm-2, which is the lowest reported NIR-II light power used in PTT process as we know. Furthermore, OTTBF NPs have been successfully applied for in vitro and in vivo deep-seated cancer treatments under 1064 nm laser. This study provides an insight into the future exploration of versatile D-A-D structured NIR-II absorption organic PTAs for biomedical applications.


Assuntos
Compostos de Boro , Lasers , Terapia Fototérmica , Compostos de Boro/química , Camundongos , Animais , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Dimerização , Estrutura Molecular , Linhagem Celular Tumoral , Compostos Aza/química , Ensaios de Seleção de Medicamentos Antitumorais , Sobrevivência Celular/efeitos dos fármacos , Raios Infravermelhos , Proliferação de Células/efeitos dos fármacos
19.
J Am Chem Soc ; 146(26): 17964-17973, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888555

RESUMO

Double electron-electron resonance (DEER) EPR is a powerful tool in structural biology, providing distances between pairs of spin labels. When the sample consists of a mixture of oligomeric species (e.g., monomer and dimer), the question arises as to how to assign the peaks in the DEER-derived probability distance distribution to the individual species. Here, we propose incorporating an EPR longitudinal electron relaxation (T1) inversion recovery experiment within a DEER pulse sequence to resolve this problem. The apparent T1 between dipolar coupled electron spins measured from the inversion recovery time (τinv) dependence of the peak intensities in the T1-edited DEER-derived probability P(r) distance distribution will be affected by the number of nitroxide labels attached to the biomolecule of interest, for example, two for a monomer and four for a dimer. We show that global fitting of all the T1-edited DEER echo curves, recorded over a range of τinv values, permits the deconvolution of distances between spin labels originating from monomeric (longer T1) and dimeric (shorter T1) species. This is especially useful when the trapping of spin labels in different conformational states during freezing gives rise to complex P(r) distance distributions. The utility of this approach is demonstrated for two systems, the ß1 adrenergic receptor and a construct of the huntingtin exon-1 protein fused to the immunoglobulin domain of protein G, both of which exist in a monomer-dimer equilibrium.


Assuntos
Marcadores de Spin , Espectroscopia de Ressonância de Spin Eletrônica , Multimerização Proteica , Dimerização
20.
Protein Sci ; 33(7): e5080, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38896002

RESUMO

The Gag-Pol polyprotein in human immunodeficiency virus type I (HIV-1) encodes enzymes that are essential for virus replication: protease (PR), reverse transcriptase (RT), and integrase (IN). The mature forms of PR, RT and IN are homodimer, heterodimer and tetramer, respectively. The precise mechanism underlying the formation of dimer or tetramer is not yet understood. Here, to gain insight into the dimerization of PR and RT in the precursor, we prepared a model precursor, PR-RT, incorporating an inactivating mutation at the PR active site, D25A, and including two residues in the p6* region, fused to a SUMO-tag, at the N-terminus of the PR region. We also prepared two mutants of PR-RT containing a dimer dissociation mutation either in the PR region, PR(T26A)-RT, or in the RT region, PR-RT(W401A). Size exclusion chromatography showed both monomer and dimer fractions in PR-RT and PR(T26A)-RT, but only monomer in PR-RT(W401A). SEC experiments of PR-RT in the presence of protease inhibitor, darunavir, significantly enhanced the dimerization. Additionally, SEC results suggest an estimated PR-RT dimer dissociation constant that is higher than that of the mature RT heterodimer, p66/p51, but slightly lower than the premature RT homodimer, p66/p66. Reverse transcriptase assays and RT maturation assays were performed as tools to assess the effects of the PR dimer-interface on these functions. Our results consistently indicate that the RT dimer-interface plays a crucial role in the dimerization in PR-RT, whereas the PR dimer-interface has a lesser role.


Assuntos
Protease de HIV , Transcriptase Reversa do HIV , HIV-1 , Multimerização Proteica , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , Transcriptase Reversa do HIV/genética , Protease de HIV/química , Protease de HIV/genética , Protease de HIV/metabolismo , HIV-1/enzimologia , HIV-1/genética , HIV-1/química , Humanos , Modelos Moleculares , Dimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA