Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.819
Filtrar
1.
Nat Commun ; 15(1): 7201, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169020

RESUMO

Photosynthesis converting solar energy to chemical energy is one of the most important chemical reactions on earth. In cyanobacteria, light energy is captured by antenna system phycobilisomes (PBSs) and transferred to photosynthetic reaction centers of photosystem II (PSII) and photosystem I (PSI). While most of the protein complexes involved in photosynthesis have been characterized by in vitro structural analyses, how these protein complexes function together in vivo is not well understood. Here we implemented STAgSPA, an in situ structural analysis strategy, to solve the native structure of PBS-PSII supercomplex from the cyanobacteria Arthrospira sp. FACHB439 at resolution of ~3.5 Å. The structure reveals coupling details among adjacent PBSs and PSII dimers, and the collaborative energy transfer mechanism mediated by multiple super-PBS in cyanobacteria. Our results provide insights into the diversity of photosynthesis-related systems between prokaryotic cyanobacteria and eukaryotic red algae but are also a methodological demonstration for high-resolution structural analysis in cellular or tissue samples.


Assuntos
Cianobactérias , Complexo de Proteína do Fotossistema II , Ficobilissomas , Ficobilissomas/metabolismo , Ficobilissomas/química , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/química , Cianobactérias/metabolismo , Fotossíntese , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/química , Transferência de Energia , Modelos Moleculares , Microscopia Crioeletrônica
2.
J Phys Chem B ; 128(33): 7941-7953, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39140159

RESUMO

The water-splitting capability of Photosystem II (PSII) of plants and green algae requires the system to balance efficient light harvesting along with effective photoprotection against excitation in excess of the photosynthetic capacity, particularly under the naturally fluctuating sunlight intensity. The comparatively flat energy landscape of the multicomponent structure, inferred from the spectra of the individual pigment-protein complexes and the rather narrow and featureless absorption spectrum, is well known. However, how the combination of the required functions emerges from the interactions among the multiple components of the PSII supercomplex (PSII-SC) cannot be inferred from the individual pigment-protein complexes. In this work, we investigate the energy transfer dynamics of the C2S2-type PSII-SC with a combined spectroscopic and modeling approach. Specifically, two-dimensional electronic-vibrational (2DEV) spectroscopy provides enhanced spectral resolution and the ability to map energy evolution in real space, while the quantum dynamical simulation allows complete kinetic modeling of the 210 chromophores. We demonstrate that additional pathways emerge within the supercomplex. In particular, we show that excitation energy can leave the vicinity of the charge separation components, the reaction center (RC), faster than it can transfer to it. This enables activatable quenching centers in the periphery of the PSII-SC to be effective in removing excessive energy in cases of overexcitation. Overall, we provide a quantitative description of how the seemingly contradictory functions of PSII-SC arise from the combination of its individual components. This provides a fundamental understanding that will allow further improvement of artificial solar energy devices and bioengineering processes for increasing crop yield.


Assuntos
Transferência de Energia , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Teoria Quântica , Cinética
3.
Luminescence ; 39(7): e4827, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39048529

RESUMO

Chemiluminescence resonance energy transfer (CRET) efficiency can be enhanced by confining CRET donors and acceptors within nanoscale spaces. However, this enhanced efficiency is often affected by uncertainties stemming from the random distribution of CRET donors and acceptors in such confined environments. In this study, a novel confined nanospace was created through the surfactant modification of carbon dots (CDs) exhibiting aggregation-induced emission (AIE) characteristics. Hydrophobic CRET donors could be effectively confined within this nanospace. The distance between the CRET donors and acceptors could be controlled by anchoring the AIE-CDs as the CRET acceptors, resulting in significantly improved CRET efficiency. Furthermore, this AIE-CDs-based CRET system was successfully applied to the detection of hydrogen peroxide (H2O2) in rainwater, showcasing its potential for practical applications.


Assuntos
Carbono , Peróxido de Hidrogênio , Luminescência , Pontos Quânticos , Tensoativos , Carbono/química , Tensoativos/química , Pontos Quânticos/química , Peróxido de Hidrogênio/química , Medições Luminescentes , Transferência Ressonante de Energia de Fluorescência , Transferência de Energia
4.
Anal Chem ; 96(31): 12593-12597, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39041729

RESUMO

In this Letter, a sensitive DNA sensing platform was developed using an indium-ion-coordinated 1,1,2,2-tetra(4-carboxylphenyl)ethylene (TPE) metal-organic gel (In-MOG) as an aggregation-induced electrochemiluminescence (AIECL) emitter and nanosurface energy transfer (NSET) as an efficient quenching strategy for detecting aflatoxin B1 (AFB1), the most dangerous food toxin. The coordination occurred in indium ions, and carboxyl groups restricted the internal rotation and vibration of TPE molecules, forcing them to release photons via radiative transitions. The quenchers of microfluidic-produced gold nanoparticles were embedded in a long-tailed triangular DNA structure, where the quenching phenomenon aligned with the theory of ECL-NSET under the overlap of spectra and appropriate donor-acceptor spacing. The proposed analytical method showed a sensitive ECL response to AFB1 in the wide concentration range of 0.50-200.00 ng/mL with a limit of detection of 0.17 ng/mL. Experimental results confirmed that constraining luminescent molecules using coordination and bonding to trigger the AIECL phenomenon was a promising method to prepare signal labels for the trace detection of food toxins.


Assuntos
Aflatoxina B1 , Técnicas Eletroquímicas , Transferência de Energia , Medições Luminescentes , Aflatoxina B1/análise , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Géis/química , Limite de Detecção
5.
J Phys Chem B ; 128(31): 7568-7576, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39058920

RESUMO

We construct and analyze disconnectivity graphs to provide the first graphical representation of the vibrational energy landscape of a protein, in this study ß2AR, a G-protein coupled receptor (GPCR), in active and inactive states. The graphs, which indicate the relative free energy of each residue and the minimum free energy barriers for energy transfer between them, reveal important composition, structural and dynamic properties that mediate the flow of energy. Prolines and glycines, which contribute to GPCR plasticity and function, are identified as bottlenecks to energy transport along the backbone from which alternative pathways for energy transport via nearby noncovalent contacts emerge, seen also in the analysis of first passage time (FPT) distributions presented here. Striking differences between the disconnectivity graphs and FPT distributions for the inactive and active states of ß2AR are found where structural and dynamic changes occur upon activation, contributing to allosteric regulation.


Assuntos
Termodinâmica , Vibração , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Transferência de Energia , Simulação de Dinâmica Molecular
6.
J Phys Chem B ; 128(31): 7467-7475, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39059418

RESUMO

Ultrafast spectroscopic techniques have been vital in studying excitation energy transfer (EET) in photosynthetic light harvesting complexes. In this paper, we simulate the pump-probe spectra of the B850 band of the light harvesting complex 2 (LH2) of purple bacteria, by using the hierarchical equation of motion method and the optical response function approach. The ground state bleach, stimulated emission, and excited state absorption components of the pump-probe spectra are analyzed in detail. The laser pulse-induced population dynamics are also simulated to help understand the main features of the pump-probe spectra and the EET process. It is shown that the excitation energy relaxation is an ultrafast process with multiple time scales. The first 40 fs of the pump-probe spectra is dominated by the relaxation of the k = ±1 states to both the k = 0 and higher energy states. Dynamics on a longer time scale around 200 fs reflects the relaxation of higher energy states to the k = 0 state.


Assuntos
Transferência de Energia , Complexos de Proteínas Captadores de Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Proteobactérias/química , Proteobactérias/metabolismo
7.
Luminescence ; 39(7): e4829, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39004775

RESUMO

A ratio luminescence probe was developed for detecting Staphylococcus aureus (S. aureus) based on luminescence energy transfer (LET) using double-wavelength emission (550 nm and 812 nm) upconversion nanoparticles (UCNPs) as donor, gold nanoparticles (AuNPs) as acceptor and the aptamer for S. aureus as the specific recognition and link unit. The LET process could cause luminescence quenching because of the spectral overlap between the acceptor and the donor at 550 nm. In the presence of S. aureus, S. aureus selectively combined with the aptamer, and the AuNPs left the surface of UCNPs, which weakened the quenching effect and restored the luminescence of UCNPs. Based on this, the ratio detection was realized by monitoring the change of the luminescence signal of the probe at 550 nm and taking the luminescence signal at 812 nm as the reference signal. Crucially, the probe has a fast reaction speed, with a reaction time of 25 min, and the detection of S. aureus is realized in the concentration range of 5.0 × 103-3.0 × 105 CFU/ml, with the detection limit of 106 CFU/ml. Therefore, the ratio probe has great potential for detecting of S. aureus in food because of its high sensitivity, fast speed and good selectivity.


Assuntos
Aptâmeros de Nucleotídeos , Transferência de Energia , Ouro , Luminescência , Medições Luminescentes , Nanopartículas Metálicas , Staphylococcus aureus , Staphylococcus aureus/isolamento & purificação , Ouro/química , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção
8.
Luminescence ; 39(7): e4836, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39023133

RESUMO

The near-infrared (NIR) down-conversion process for broadband sensitization has been studied in Eu2+-Nd3+ co-doped BaAl2O4. This material has a broad absorption band of 200-480 nm and can convert photons in the visible region into NIR photons. The NIR emission at 1064 nm, attributed to the Nd3+:4F3/2 → 4I11/2 transition, matches the bandgap of Si, allowing Si solar cells to utilize the solar spectrum better. The energy transfer (ET) process between Eu2+ and Nd3+ was demonstrated using photoluminescence spectra and luminescence decay curves, and Eu2+ may transfer energy to Nd3+ through the cooperative energy transfer (CET) to achieve the down-conversion process. The energy transfer efficiency (ETE) and theoretical quantum efficiency (QE) were 68.61% and 156.34%, respectively, when 4 mol% Nd3+ was introduced. The results indicate that BaAl2O4:Eu2+-Nd3+ can serve as a potential modulator of the solar spectrum and is expected to be applied to Si solar cells.


Assuntos
Európio , Raios Infravermelhos , Neodímio , Silício , Energia Solar , Európio/química , Silício/química , Neodímio/química , Luminescência , Transferência de Energia , Bário/química , Medições Luminescentes
9.
Biochemistry (Mosc) ; 89(6): 1133-1145, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38981706

RESUMO

Primary excitation energy transfer and charge separation in photosystem I (PSI) from the extremophile desert green alga Chlorella ohadii grown in low light were studied using broadband femtosecond pump-probe spectroscopy in the spectral range from 400 to 850 nm and in the time range from 50 fs to 500 ps. Photochemical reactions were induced by the excitation into the blue and red edges of the chlorophyll Qy absorption band and compared with similar processes in PSI from the cyanobacterium Synechocystis sp. PCC 6803. When PSI from C. ohadii was excited at 660 nm, the processes of energy redistribution in the light-harvesting antenna complex were observed within a time interval of up to 25 ps, while formation of the stable radical ion pair P700+A1- was kinetically heterogeneous with characteristic times of 25 and 120 ps. When PSI was excited into the red edge of the Qy band at 715 nm, primary charge separation reactions occurred within the time range of 7 ps in half of the complexes. In the remaining complexes, formation of the radical ion pair P700+A1- was limited by the energy transfer and occurred with a characteristic time of 70 ps. Similar photochemical reactions in PSI from Synechocystis 6803 were significantly faster: upon excitation at 680 nm, formation of the primary radical ion pairs occurred with a time of 3 ps in ~30% complexes. Excitation at 720 nm resulted in kinetically unresolvable ultrafast primary charge separation in 50% complexes, and subsequent formation of P700+A1- was observed within 25 ps. The photodynamics of PSI from C. ohadii was noticeably similar to the excitation energy transfer and charge separation in PSI from the microalga Chlamydomonas reinhardtii; however, the dynamics of energy transfer in C. ohadii PSI also included slower components.


Assuntos
Chlorella , Transferência de Energia , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/química , Chlorella/metabolismo , Synechocystis/metabolismo , Processos Fotoquímicos , Clorofila/metabolismo , Clorofila/química , Cinética
10.
Nat Chem Biol ; 20(7): 906-915, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38831036

RESUMO

Natural photosystems couple light harvesting to charge separation using a 'special pair' of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independently of the complexities of native photosynthetic proteins, and as a first step toward creating synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that hold two chlorophyll molecules in closely juxtaposed arrangements. X-ray crystallography confirmed that one designed protein binds two chlorophylls in the same orientation as native special pairs, whereas a second designed protein positions them in a previously unseen geometry. Spectroscopy revealed that the chlorophylls are excitonically coupled, and fluorescence lifetime imaging demonstrated energy transfer. The cryo-electron microscopy structure of a designed 24-chlorophyll octahedral nanocage with a special pair on each edge closely matched the design model. The results suggest that the de novo design of artificial photosynthetic systems is within reach of current computational methods.


Assuntos
Clorofila , Clorofila/química , Clorofila/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Fotossíntese , Transferência de Energia , Microscopia Crioeletrônica , Conformação Proteica , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo
11.
Photosynth Res ; 161(3): 191-201, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38907135

RESUMO

The ring-like peripheral light-harvesting complex 2 (LH2) expressed by many phototrophic purple bacteria is a popular model system in biological light-harvesting research due to its robustness, small size, and known crystal structure. Furthermore, the availability of structural variants with distinct electronic structures and optical properties has made this group of light harvesters an attractive testing ground for studies of structure-function relationships in biological systems. LH2 is one of several pigment-protein complexes for which a link between functionality and effects such as excitonic coherence and vibronic coupling has been proposed. While a direct connection has not yet been demonstrated, many such interactions are highly sensitive to resonance conditions, and a dependence of intra-complex dynamics on detailed electronic structure might be expected. To gauge the sensitivity of energy-level structure and relaxation dynamics to naturally occurring structural changes, we compare the photo-induced dynamics in two structurally distinct LH2 variants. Using polarization-controlled 2D electronic spectroscopy at cryogenic temperatures, we directly access information on dynamic and static disorder in the complexes. The simultaneous optimal spectral and temporal resolution of these experiments further allows us to characterize the ultrafast energy relaxation, including exciton transport within the complexes. Despite the variations in PPC molecular structure manifesting as clear differences in electronic structure and disorder, the energy-transport and-relaxation dynamics remain remarkably similar. This indicates that the light-harvesting functionality of purple bacteria within a single LH2 complex is highly robust to structural perturbations and likely does not rely on finely tuned electronic- or electron-vibrational resonance conditions.


Assuntos
Complexos de Proteínas Captadores de Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Rodopseudomonas/metabolismo , Transferência de Energia , Luz
12.
Sci Rep ; 14(1): 13877, 2024 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880795

RESUMO

Elucidating the energetic processes which govern photosynthesis, the engine of life on earth, are an essential goal both for fundamental research and for cutting-edge biotechnological applications. Fluorescent signal of photosynthetic markers has long been utilised in this endeavour. In this research we demonstrate the use of fluorescent noise analysis to reveal further layers of intricacy in photosynthetic energy transfer. While noise is a common tool analysing dynamics in physics and engineering, its application in biology has thus far been limited. Here, a distinct behaviour in photosynthetic pigments across various chemical and biological environments is measured. These changes seem to elucidate quantum effects governing the generation of oxidative radicals. Although our method offers insights, it is important to note that the interpretation should be further validated expertly to support as conclusive theory. This innovative method is simple, non-invasive, and immediate, making it a promising tool to uncover further, more complex energetic events in photosynthesis, with potential uses in environmental monitoring, agriculture, and food-tech.


Assuntos
Fotossíntese , Fluorescência , Transferência de Energia , Espectrometria de Fluorescência/métodos
13.
Nat Commun ; 15(1): 4900, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851775

RESUMO

Excitation energy transfer (EET) is a key photoinduced process in biological chromophoric assemblies. Here we investigate the factors which can drive EET into efficient ultrafast sub-ps regimes. We demonstrate how a coherent transport of electronic population could facilitate this in water solvated NADH coenzyme and uncover the role of an intermediate dark charge-transfer state. High temporal resolution ultrafast optical spectroscopy gives a 54±11 fs time constant for the EET process. Nonadiabatic quantum dynamical simulations computed through the time-evolution of multidimensional wavepackets suggest that the population transfer is mediated by photoexcited molecular vibrations due to strong coupling between the electronic states. The polar aqueous solvent environment leads to the active participation of a dark charge transfer state, accelerating the vibronically coherent EET process in favorably stacked conformers and solvent cavities. Our work demonstrates how the interplay of structural and environmental factors leads to diverse pathways for the EET process in flexible heterodimers and provides general insights relevant for coherent EET processes in stacked multichromophoric aggregates like DNA strands.


Assuntos
Transferência de Energia , NAD , NAD/química , NAD/metabolismo , Teoria Quântica , Água/química
14.
Nat Commun ; 15(1): 4999, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866834

RESUMO

Cryptophytes are ancestral photosynthetic organisms evolved from red algae through secondary endosymbiosis. They have developed alloxanthin-chlorophyll a/c2-binding proteins (ACPs) as light-harvesting complexes (LHCs). The distinctive properties of cryptophytes contribute to efficient oxygenic photosynthesis and underscore the evolutionary relationships of red-lineage plastids. Here we present the cryo-electron microscopy structure of the Photosystem II (PSII)-ACPII supercomplex from the cryptophyte Chroomonas placoidea. The structure includes a PSII dimer and twelve ACPII monomers forming four linear trimers. These trimers structurally resemble red algae LHCs and cryptophyte ACPI trimers that associate with Photosystem I (PSI), suggesting their close evolutionary links. We also determine a Chl a-binding subunit, Psb-γ, essential for stabilizing PSII-ACPII association. Furthermore, computational calculation provides insights into the excitation energy transfer pathways. Our study lays a solid structural foundation for understanding the light-energy capture and transfer in cryptophyte PSII-ACPII, evolutionary variations in PSII-LHCII, and the origin of red-lineage LHCIIs.


Assuntos
Microscopia Crioeletrônica , Criptófitas , Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Criptófitas/metabolismo , Fotossíntese , Modelos Moleculares , Transferência de Energia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/química , Clorofila A/metabolismo , Clorofila A/química
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124574, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838601

RESUMO

An electrochemiluminescence (ECL) biosensor based on ECL resonance energy transfer (ECL-RET) was designed to sensitively detect hepatitis B virus surface antigen (HBsAg). In this ECL-RET system, luminol was employed as ECL donor, and gold nanoparticles functionalized zirconium organoskeleton (UiO-66-NH2@Au) was prepared and served as ECL acceptor. The UiO-66-NH2@Au possessed an ultraviolet-visible (UV-vis) absorption between 400 nm and 500 nm, and the absorption spectra overlapped with the ECL spectrum of luminol. Furthermore, Graphene oxide-poly(aniline-luminol)-cobalt nanoparticles conjugates (GO-PALu-Co) was prepared to optimize the ECL behavior through the catalysis of Cobalt nanoparticles and served as a stable 3D porous film to load capture probe primary antibody (Ab1). Based on the ECL-RET biosensing method, the UiO-66-NH2@Au-labeled Ab2 and target HBsAg could pair with primary antibody Ab1 to form sandwich-type structure, and the ECL signal of GO-PALu-Co was quenched. Under optimized experimental conditions, the ECL-RET analytical method represented eminent analytical performance for HBsAg detection with a wide linear relationship from 2.2 × 10-13 to 2.2 × 10-5 mg/mL, and a detection limit of 9 × 10-14 mg/mL (S/N = 3), with spiked sample recoveries ranging from 97.27 % to 102.73 %. The constructed sensor has good stability, reproducibility, and specificity. It can be used to detect HBsAg in human serum and has the potential to be used for the sensitive detection of other disease biomarkers.


Assuntos
Técnicas Biossensoriais , Cobalto , Técnicas Eletroquímicas , Ouro , Grafite , Antígenos de Superfície da Hepatite B , Medições Luminescentes , Luminol , Luminol/química , Cobalto/química , Antígenos de Superfície da Hepatite B/análise , Antígenos de Superfície da Hepatite B/sangue , Ouro/química , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Humanos , Grafite/química , Técnicas Biossensoriais/métodos , Porosidade , Limite de Detecção , Nanopartículas Metálicas/química , Zircônio/química , Transferência de Energia
16.
J Phys Chem Lett ; 15(24): 6398-6408, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38861672

RESUMO

Natural light harvesting is exceptionally efficient thanks to the local energy funnel created within light-harvesting complexes (LHCs). To understand the design principles underlying energy transport in LHCs, ultrafast spectroscopy is often complemented by mutational studies that introduce perturbations into the excitonic structure of the natural complexes. However, such studies may fall short of identifying all excitation energy transfer (EET) pathways and their changes upon mutation. Here, we show that a synergistic combination of first-principles calculations and ultrafast spectroscopy can give unprecedented insight into the EET pathways occurring within LHCs. We measured the transient absorption spectra of the minor CP29 complex of plants and of two mutants, systematically mapping the kinetic components seen in experiments to the simulated exciton dynamics. With our combined strategy, we show that EET in CP29 is surprisingly robust to the changes in the exciton states induced by mutations, explaining the versatility of plant LHCs.


Assuntos
Transferência de Energia , Complexos de Proteínas Captadores de Luz , Mutação , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Cinética , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema II
17.
Food Chem ; 456: 140025, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38876068

RESUMO

The misuse of antibiotics may contaminate the environment and cause harm to human health. Therefore, rapid and accurate detection of antibiotics is essential. In this study, a novel electrochemiluminescence resonance energy transfer (ECL-RET) pair was designed using a new ECL emitter (CPM, Ce-TBAPy) as the donor and Co-MOF@AuPt as the acceptor. Moreover, a highly sensitive and specific "on-off-on" ECL aptasensor was constructed for detecting sulfadiazine (SDZ). The aptasensor exhibited a broad linear range (from 10.0 fg mL-1 to 100 ng mL-1) for the SDZ concentration, with limit of detection and limit of quantification values of 1.14 fg mL-1and 3.75 fg mL-1, respectively. The aptasensor achieved good results in spiking experiments with milk and egg samples, and successfully quantified SDZ in fish meal quality control sample. The prepared aptasensor presents great potential for food and environmental safety by detecting antibiotics.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Contaminação de Alimentos , Limite de Detecção , Medições Luminescentes , Leite , Sulfadiazina , Sulfadiazina/análise , Sulfadiazina/química , Leite/química , Aptâmeros de Nucleotídeos/química , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Contaminação de Alimentos/análise , Transferência de Energia , Ovos/análise , Antibacterianos/análise
18.
Anal Chim Acta ; 1315: 342822, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879216

RESUMO

In this study, a novel electrochemiluminescence (ECL) biosensor was developed to detect microRNA-21 (miRNA-21) with high sensitivity by leveraging the combined mechanisms of resonance energy transfer (RET) and surface plasmon coupling (SPC). Initially, the glassy carbon electrode (GCE) were coated with Cu-Zn-In-S quantum dots (CZIS QDs), known for their defect-related emission suitable for ECL sensing. Subsequently, a hairpin DNA H3 with gold nanoparticles (Au NPs) attached at the end was modified over the surface of the quantum dots. The Au NPs could effectively quench the ECL signals of CZIS QDs via RET. Further, a significant amount of report DNA was generated through the action of a 3D DNA walker. When the report DNA opened H3-Au NPs, the hairpin structure experienced a conformational change to a linear shape, increasing the gap between the CZIS QDs and the Au NPs. Consequently, the localized surface plasmon resonance ECL (LSPR-ECL) effect replaced ECL resonance energy transfer (ECL-RET). Moreover, the report DNA was released following the addition of H4-Au NPs, resulting in the formation of Au dimers and a surface plasma-coupled ECL (SPC-ECL) effect that enhanced the ECL intensity to 6.97-fold. The integration of new ECL-RET and SPC-ECL biosensor accurately quantified miRNA-21 concentrations from 10-8 M to 10-16 M with a limit of detection (LOD) of 0.08 fM, as well as successfully applied to validate human serum samples.


Assuntos
Técnicas Biossensoriais , DNA , Técnicas Eletroquímicas , Medições Luminescentes , MicroRNAs , Pontos Quânticos , Ressonância de Plasmônio de Superfície , MicroRNAs/análise , MicroRNAs/sangue , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , DNA/química , Pontos Quânticos/química , Ressonância de Plasmônio de Superfície/métodos , Medições Luminescentes/métodos , Ouro/química , Limite de Detecção , Transferência de Energia , Nanopartículas Metálicas/química
19.
J Phys Chem Lett ; 15(22): 5838-5847, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38788163

RESUMO

The light-harvesting complexes (LHCs) of diatoms, specifically fucoxanthin-Chl a/c binding proteins (FCPs), exhibit structural and functional diversity, as highlighted by recent structural studies of photosystem II-FCP (PSII-FCPII) supercomplexes from different diatom species. The excitation dynamics of PSII-FCPII supercomplexes isolated from the diatom Thalassiosira pseudonana was explored using time-resolved fluorescence spectroscopy and two-dimensional electronic spectroscopy at room temperature and 77 K. Energy transfer between FCPII and PSII occurred remarkably fast (<5 ps), emphasizing the efficiency of FCPII as a light-harvesting antenna. The presence of long-wavelength chlorophylls may further help concentrate excitations in the core complex and increase the efficiency of light harvesting. Structure-based calculations reveal remarkably strong excitonic couplings between chlorophylls in the FCP antenna and between FCP and the PSII core antenna that are the basis for the rapid energy transfer.


Assuntos
Diatomáceas , Transferência de Energia , Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Diatomáceas/química , Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Espectrometria de Fluorescência , Clorofila/química
20.
Bioelectrochemistry ; 159: 108729, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38772096

RESUMO

This study explores the principles of resonance energy transfer and adsorption modulation using composites of Cu2S-MPA/NGODs. These composites can efficiently control the quenching process of electrochemiluminescence (ECL). Mercaptopropionic acid (MPA) was added during the synthesis of Cu2S-MPA to enhance its attachment to nitrogen-doped graphene quantum dots (NGODs). The UV absorption peaks of NGODs coincided with the emission peaks of luminol ECL, enabling resonance energy transfer and enhancing the quenching capability of Cu2S-MPA. Meanwhile, there is another quenching strategy. When the readily reducible Cu+ ions underwent partial reduction to Cu when they were bound to NGODs. This weakened the electrocatalytic effect on reactive oxygen species (ROS) and had a detrimental impact on electron transfer. Under optimal conditions, the immunosensor ECL intensity decreased linearly with the logarithm of carcinoembryonic antigen (CEA) concentration in the range of 0.00001-40 ng/mL, with a detection limit of 0.269 fg/mL. The sensor was effectively utilized for the identification of CEA in actual serum samples.


Assuntos
Antígeno Carcinoembrionário , Cobre , Técnicas Eletroquímicas , Grafite , Medições Luminescentes , Pontos Quânticos , Cobre/química , Pontos Quânticos/química , Grafite/química , Antígeno Carcinoembrionário/sangue , Antígeno Carcinoembrionário/análise , Medições Luminescentes/métodos , Adsorção , Técnicas Eletroquímicas/métodos , Limite de Detecção , Ácido 3-Mercaptopropiônico/química , Humanos , Transferência de Energia , Técnicas Biossensoriais/métodos , Sulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA