Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 72: 128864, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35738349

RESUMO

To further the development of boron heterocyclic compounds that are useful to medicinal chemistry, we demonstrate how the class of compounds known as the diazaborines can be elaborated to produce an exceptionally close structural mimic of a natural estrogen. After building progressively closer models, a benzyloxy-substituted formylphenylboronic acid was ultimately condensed with a hydroxymethylated ß-hydrazinocyclopentenone to give, after debenzylation, an isosteric mimic (diazaborine 1) of the naturally-occurring estrogen equilenin and the prototype of a new class of boron heterocycle estrogen mimics. X-ray crystallography revealed the prototype to be planar, with a transmolecular interoxygen distance virtually identical to that found in equilenin and with a strong hydrogen-bond-donating hydroxyl group. From this it can be anticipated that members of this unique class of boron heterocycle estrogen mimics will be found to possess useful biological properties. Furthermore, the prototype was found to fluoresce in the deep blue region of the visible spectrum, and so the development of members serving as light-emitting probes in biochemical and biological studies can also be anticipated.


Assuntos
Boro , Equilenina , Boro/química , Compostos de Boro/química , Cristalografia por Raios X , Estrogênios/farmacologia
2.
Environ Pollut ; 239: 281-288, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29660500

RESUMO

In this study, we determined the concentration of equine estrogens, such as equilin (Eq) and equilenin (Eqn), in the river water collected from nine research stations in Hokkaido, Japan. The LC-MS/MS analysis revealed that Eq concentrations were 2.7 ±â€¯6.7, 0.22 ±â€¯0.12, and 1.2 ±â€¯0.64 ng/L in Sep 2015, Feb 2016, and Jul 2016, respectively. Eqn had concentration levels similar to those of Eq. Comparison of the concentrations at nine research stations showed that seasonal variation was observed in the detected Eq and Eqn concentration levels. This study was the first to show the occurrences and seasonal variation of Eq and Eqn in the river water of Japan. We further investigated the reproductive and transgenerational effects of Eq in Japanese medaka (Oryzias latipes) exposed to 10, 100, and 1000 ng/L for 21 days and assessed the transcriptional profiles of the estrogen-responsive genes in the livers of both sexes. The reproduction assay demonstrated that 1000 ng/L of Eq adversely affected the reproduction (i.e. fecundity) in the F0 generation and that the hatching of F1 generation fertilized eggs was reduced in the 100 and 1000 ng/L treatment groups. Our qRT-PCR assay revealed that the mRNA expression levels of hepatic vitellogenin 1 and 2, choriogenin L and H, and estrogen receptor α were significantly up-regulated in males exposed to 100 and/or 1000 ng/L of Eq. In contrast, the transcriptional levels of several genes, such as pregnane X receptor and cytochrome P450 3A, were down-regulated in the livers of males after the 21-d exposure. These results suggest that Eq has endocrine-disrupting potential such as reproductive and transgenerational effects by the modulation of hepatic estrogen-responsive genes expression on medaka.


Assuntos
Disruptores Endócrinos/análise , Monitoramento Ambiental , Equilenina/análise , Equilina/análise , Oryzias/fisiologia , Poluentes Químicos da Água/análise , Animais , Clima , Disruptores Endócrinos/metabolismo , Sistema Endócrino/efeitos dos fármacos , Equilenina/metabolismo , Equilina/metabolismo , Receptor alfa de Estrogênio , Estrogênios/metabolismo , Feminino , Fertilidade/efeitos dos fármacos , Água Doce , Expressão Gênica , Cavalos , Japão , Fígado/metabolismo , Masculino , Oryzias/metabolismo , Receptor de Pregnano X , Receptores de Esteroides , Reprodução/efeitos dos fármacos , Rios , Estações do Ano , Vitelogeninas/metabolismo , Poluentes Químicos da Água/metabolismo
3.
Mol Cells ; 38(5): 409-15, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25947291

RESUMO

Low-barrier hydrogen bonds (LBHBs) have been proposed to have important influences on the enormous reaction rate increases achieved by many enzymes. Δ(5)-3-ketosteroid isomerase (KSI) catalyzes the allylic isomerization of Δ(5)-3-ketosteroid to its conjugated Δ(4)-isomers at a rate that approaches the diffusion limit. Tyr14, a catalytic residue of KSI, has been hypothesized to form an LBHB with the oxyanion of a dienolate steroid intermediate generated during the catalysis. The unusual chemical shift of a proton at 16.8 ppm in the nuclear magnetic resonance spectrum has been attributed to an LBHB between Tyr14 Oη and C3-O of equilenin, an intermediate analogue, in the active site of D38N KSI. This shift in the spectrum was not observed in Y30F/Y55F/D38N and Y30F/Y55F/Y115F/D38N mutant KSIs when each mutant was complexed with equilenin, suggesting that Tyr14 could not form LBHB with the intermediate analogue in these mutant KSIs. The crystal structure of Y30F/Y55F/Y115F/D38N-equilenin complex revealed that the distance between Tyr14 Oη and C3-O of the bound steroid was within a direct hydrogen bond. The conversion of LBHB to an ordinary hydrogen bond in the mutant KSI reduced the binding affinity for the steroid inhibitors by a factor of 8.1-11. In addition, the absence of LBHB reduced the catalytic activity by only a factor of 1.7-2. These results suggest that the amount of stabilization energy of the reaction intermediate provided by LBHB is small compared with that provided by an ordinary hydrogen bond in KSI.


Assuntos
Equilenina/metabolismo , Pseudomonas putida/enzimologia , Esteroide Isomerases/química , Esteroide Isomerases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Equilenina/química , Ligação de Hidrogênio , Modelos Moleculares , Mutação , Ligação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Pseudomonas putida/genética , Esteroide Isomerases/metabolismo , Especificidade por Substrato
4.
J Appl Toxicol ; 35(9): 1040-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25611945

RESUMO

Although several previous studies have demonstrated the presence of equine estrogens in the aquatic environment, limited data are currently available on the endocrine-disrupting potentials in fish and the risks they pose to aquatic organisms. To investigate the interactions of major equine estrogens equilin (Eq) and equilenin (Eqn), as well as their metabolites 17α-dihydroequilin, 17ß-dihydroequilin, 17α-dihydroequilenin and 17ß-dihydroequilenin, with the estrogen receptor α (ERα) of medaka (Oryzias latipes), a three-dimensional model of the ligand-binding domain (LBD) of ERα was built in silico, and docking simulations were performed. The docking simulation analysis indicated that the interaction of 17ß-dihydroequilenin with the ERα LBD is the most potent, followed by those of 17α-dihydroequilin and 17ß-dihydroequilin, whereas those of Eq and Eqn were least potent. We further analyzed gene expression profiles in the livers of male medaka exposed to Eq and Eqn. A DNA microarray representing 6000 genes revealed that 24-h exposure to Eq and Eqn (100 ng/L) upregulated the expression of 6 and 34 genes in the livers of males, respectively. Genes upregulated by Eq included the estrogenic biomarker genes vitellogenins and choriogenins, suggesting the estrogenic potential of Eq. In contrast, Eqn exposure upregulated several cancer-related genes, such as mediator complex subunit 16 and RAS oncogene family members, suggesting a carcinogenic potential for Eqn. These results suggest that equine estrogens may have not only endocrine-disrupting potentials via the ERα signaling pathway but also carcinogenic potency in male medaka.


Assuntos
Disruptores Endócrinos/toxicidade , Equilenina/toxicidade , Equilina/toxicidade , Fígado/efeitos dos fármacos , Oryzias/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Disruptores Endócrinos/metabolismo , Equilenina/metabolismo , Equilina/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Ligantes , Fígado/metabolismo , Masculino , Simulação de Acoplamento Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo
5.
Yao Xue Xue Bao ; 49(4): 507-12, 2014 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-24974469

RESUMO

The fragmentation pathways of five estrogens (estradiol, estrone, equilin sulfate, 17 a-dihydroequilin sulfate and equilenin sulfate) have been studied with high resolution and high mass accuracy using electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF/MS) in the negative ion mode. Molecular weights were obtained from [M-H](-) ions in the product ion spectra. The results indicate that the five structurally similar estrogens have similar fragmentation pathways. Using their stable isotope forms as internal reference compounds, the accurate mass and composition of the fragment ions were determined. During collision-induced dissociation (CID), cleavage is initiated by loss of oxygen atoms from carbon-17, after which D and C rings cleave sequentially and rearrange to finally form stable conjugate structures with highly abundant characteristic fragment ions at m/z 183 (accompanied by m/z 181), m/z 169 and m/z 145 (accompanied by m/z 143). Understanding these characteristic fragmentation pathways of estrogens will be helpful in identifying the structures of steroid hormones in general.


Assuntos
Fracionamento Químico/métodos , Estrogênios/química , Equilenina/química , Equilina/análogos & derivados , Equilina/química , Estradiol/química , Estrona/química , Íons , Espectrometria de Massas por Ionização por Electrospray
6.
Acta Pharmaceutica Sinica ; (12): 507-512, 2014.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-245054

RESUMO

The fragmentation pathways of five estrogens (estradiol, estrone, equilin sulfate, 17 a-dihydroequilin sulfate and equilenin sulfate) have been studied with high resolution and high mass accuracy using electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF/MS) in the negative ion mode. Molecular weights were obtained from [M-H](-) ions in the product ion spectra. The results indicate that the five structurally similar estrogens have similar fragmentation pathways. Using their stable isotope forms as internal reference compounds, the accurate mass and composition of the fragment ions were determined. During collision-induced dissociation (CID), cleavage is initiated by loss of oxygen atoms from carbon-17, after which D and C rings cleave sequentially and rearrange to finally form stable conjugate structures with highly abundant characteristic fragment ions at m/z 183 (accompanied by m/z 181), m/z 169 and m/z 145 (accompanied by m/z 143). Understanding these characteristic fragmentation pathways of estrogens will be helpful in identifying the structures of steroid hormones in general.


Assuntos
Fracionamento Químico , Métodos , Equilenina , Química , Equilina , Química , Estradiol , Química , Estrogênios , Química , Estrona , Química , Íons , Espectrometria de Massas por Ionização por Electrospray
7.
Chem Biol Interact ; 196(1-2): 1-10, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-22290292

RESUMO

o-Quinone forming estrogens and selective estrogen receptor modulators (SERMs) have been associated with carcinogenesis. LY2066948, a novel SERM in development by Eli Lilly for the treatment of uterine fibroids and myomas, has structural similarity to the equine estrogen equilenin present in hormone replacement formulations; both contain a naphthol group susceptible to oxidative metabolism to o-quinones. LY2066948 was synthesized and assayed for antiestrogenic activity, and in cell culture was confirmed to be a more potent antiestrogen than the prototypical SERM, 4-hydroxytamoxifen. Oxidation of LY2066948 with 2-iodoxybenzoic acid gave an o-quinone (t(1/2)=3.9 ± 0.1h) which like 4-hydroxyequilenin-o-quinone (t(1/2)=2.5 ± 0.2 h) was observed to be exceptionally long-lived with the potential to cause cytotoxicity and/or genotoxicity. In model reactions with tyrosinase, the catechol metabolites of LY2066948 and equilenin were products; interestingly, in the presence of ascorbate to inhibit autoxidation, these catechols were formed quantitatively. Tyrosinase incubations in the presence of GSH gave the expected GSH conjugates resulting from trapping of the o-quinones, which were characterized by LC-MS/MS. Incubations of LY2066948 or equilenin with rat liver microsomes also gave detectable o-quinone trapped GSH conjugates; however, as observed with other SERMs, oxidative metabolism of LY2066948 mainly occurred on the amino side chain to yield the N-dealkylated metabolite. CYP1B1 is believed to be responsible for extra-hepatic generation of genotoxic estrogen quinones and o-quinone GSH conjugates were detected in equilenin incubations. However, in corresponding incubations with CYP1B1 supersomes, no o-quinone GSH conjugates of LY2066948 were detected. These studies suggest that although the naphthol group is susceptible to oxidative metabolism to long-lived o-quinones, the formation of these quinones by cytochrome P450 can be attenuated by the chemistry of the remainder of the molecule as in the case of LY2066948.


Assuntos
Equilenina/análogos & derivados , Naftalenos/química , Piperidinas/química , Quinonas/química , Moduladores Seletivos de Receptor Estrogênico/química , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP1B1 , Citocromo P-450 CYP3A/metabolismo , Relação Dose-Resposta a Droga , Equilenina/química , Equilenina/metabolismo , Feminino , Meia-Vida , Concentração Inibidora 50 , Cinética , Espectroscopia de Ressonância Magnética , Microssomos Hepáticos , Naftalenos/metabolismo , Naftalenos/farmacologia , Oxirredução , Piperidinas/metabolismo , Piperidinas/farmacologia , Quinonas/metabolismo , Quinonas/farmacologia , Ratos , Ratos Sprague-Dawley , Moduladores Seletivos de Receptor Estrogênico/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Espectrometria de Massas em Tandem
8.
Chem Res Toxicol ; 24(12): 2153-66, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-21910479

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are suspect human lung carcinogens and can be metabolically activated to remote quinones, for example, benzo[a]pyrene-1,6-dione (B[a]P-1,6-dione) and B[a]P-3,6-dione by the action of either P450 monooxygenase or peroxidases, and to non-K region o-quinones, for example B[a]P-7,8-dione, by the action of aldo keto reductases (AKRs). B[a]P-7,8-dione also structurally resembles 4-hydroxyequilenin o-quinone. These three classes of quinones can redox cycle, generate reactive oxygen species (ROS), and produce the mutagenic lesion 8-oxo-dGuo and may contribute to PAH- and estrogen-induced carcinogenesis. We compared the ability of a complete panel of human recombinant AKRs to catalyze the reduction of PAH o-quinones in the phenanthrene, chrysene, pyrene, and anthracene series. The specific activities for NADPH-dependent quinone reduction were often 100-1000 times greater than the ability of the same AKR isoform to oxidize the cognate PAH-trans-dihydrodiol. However, the AKR with the highest quinone reductase activity for a particular PAH o-quinone was not always identical to the AKR isoform with the highest dihydrodiol dehydrogenase activity for the respective PAH-trans-dihydrodiol. Discrete AKRs also catalyzed the reduction of B[a]P-1,6-dione, B[a]P-3,6-dione, and 4-hydroxyequilenin o-quinone. Concurrent measurements of oxygen consumption, superoxide anion, and hydrogen peroxide formation established that ROS were produced as a result of the redox cycling. When compared with human recombinant NAD(P)H:quinone oxidoreductase (NQO1) and carbonyl reductases (CBR1 and CBR3), NQO1 was a superior catalyst of these reactions followed by AKRs and last CBR1 and CBR3. In A549 cells, two-electron reduction of PAH o-quinones causes intracellular ROS formation. ROS formation was unaffected by the addition of dicumarol, suggesting that NQO1 is not responsible for the two-electron reduction observed and does not offer protection against ROS formation from PAH o-quinones.


Assuntos
Oxirredutases do Álcool/metabolismo , Equilenina/análogos & derivados , NAD(P)H Desidrogenase (Quinona)/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Quinonas/metabolismo , Oxirredutases do Álcool/genética , Aldeído Redutase , Aldo-Ceto Redutases , Benzopirenos/química , Benzopirenos/toxicidade , Biocatálise , Linhagem Celular Tumoral , Equilenina/química , Equilenina/metabolismo , Equilenina/toxicidade , Humanos , Isomerismo , NAD(P)H Desidrogenase (Quinona)/genética , Oxirredução/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Quinonas/química , Quinonas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
10.
Chem Res Toxicol ; 23(8): 1374-83, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20540524

RESUMO

4-Hydroxyequilenin (4-OHEN) is a major phase I metabolite of the equine estrogens present in widely prescribed hormone replacement formulations. 4-OHEN is autoxidized to an electrophilic o-quinone that has been shown to redox cycle, generating ROS, and to covalently modify proteins and DNA and thus potentially to act as a chemical carcinogen. To establish the ability of 4-OHEN to act as a hormonal carcinogen at the estrogen receptor (ER), estrogen responsive gene expression and proliferation were studied in ER(+) breast cancer cells. Recruitment by 4-OHEN of ER to estrogen responsive elements (ERE) of DNA in MCF-7 cells was also studied and observed. 4-OHEN was a potent estrogen, with additional weak activity associated with binding to the arylhydrocarbon receptor (AhR). The potency of 4-OHEN toward classical ERalpha mediated activity was unexpected given the reported rapid autoxidation and trapping of the resultant quinone by GSH. Addition of thiols to cell cultures did not attenuate the estrogenic activity of 4-OHEN, and preformed thiol conjugates added to cell incubations only marginally reduced ERE-luciferase induction. On reaction of the 4OHEN-GSH conjugate with NADPH, 4-OHEN was observed to be regenerated at a rate dependent upon NADPH concentration, indicating that intracellular nonenzymatic and enzymatic regeneration of 4-OHEN accounts for the observed estrogenic activity of 4-OHEN. 4-OHEN is therefore capable of inducing chemical and hormonal pathways that may contribute to estrogen-dependent carcinogenesis, and trapping by cellular thiols does not provide a mechanism of termination of these pathways.


Assuntos
Equilenina/análogos & derivados , Glutationa/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , DNA de Neoplasias/efeitos dos fármacos , Equilenina/química , Equilenina/metabolismo , Equilenina/farmacologia , Glutationa/química , Cavalos , Humanos , Ligantes , NADP/química , NADP/metabolismo , Receptores de Estrogênio/agonistas , Receptores de Estrogênio/metabolismo , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Células Tumorais Cultivadas
11.
Chem Res Toxicol ; 23(8): 1365-73, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20509668

RESUMO

Metabolic activation of estrogens to catechols and further oxidation to highly reactive o-quinones generates DNA damage including apurinic/apyrimidinic (AP) sites. 4-Hydroxyequilenin (4-OHEN) is the major catechol metabolite of equine estrogens present in estrogen replacement formulations, known to cause DNA strand breaks, oxidized bases, and stable and depurinating adducts. However, the direct formation of AP sites by 4-OHEN has not been characterized. In the present study, the induction of AP sites in vitro by 4-OHEN and the endogenous catechol estrogen metabolite, 4-hydroxyestrone (4-OHE), was examined by an aldehyde reactive probe assay. Both 4-OHEN and 4-OHE can significantly enhance the levels of AP sites in calf thymus DNA in the presence of the redox cycling agents, copper ion and NADPH. The B-ring unsaturated catechol 4-OHEN induced AP sites without added copper, whereas 4-OHE required copper. AP sites were also generated much more rapidly by 4-OHEN. For both catechol estrogens, the levels of AP sites correlated linearly with 8-oxo-dG levels, implying that depuriniation resulted from reactive oxygen species (ROS) rather than depurination of estrogen-DNA adducts. ROS modulators such as catalase, which scavenges hydrogen peroxide and a Cu(I) chelator, blocked the formation of AP sites. In MCF-7 breast cancer cells, 4-OHEN significantly enhanced the formation of AP sites with added NADH. In contrast, no significant induction of AP sites was detected in 4-OHE-treated cells. The greater redox activity of the equine catechol estrogen produces rapid oxidative DNA damage via ROS, which is enhanced by redox cycling agents and interestingly by NADPH-dependent quinone oxidoreductase.


Assuntos
Dano ao DNA , Desoxiguanosina/análogos & derivados , Equilenina/análogos & derivados , Estrogênios de Catecol/metabolismo , Cavalos , Espécies Reativas de Oxigênio/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Animais , Bovinos , Linhagem Celular Tumoral , Quelantes/farmacologia , Cobre/química , Cobre/metabolismo , DNA/metabolismo , DNA de Neoplasias/metabolismo , Desoxiguanosina/metabolismo , Equilenina/química , Equilenina/metabolismo , Estrogênios de Catecol/química , Estrogênios de Catecol/farmacologia , Sequestradores de Radicais Livres/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Hidroxiestronas/química , Hidroxiestronas/metabolismo , Estrutura Molecular , NADP/química , NADP/metabolismo , Oxirredução/efeitos dos fármacos , Relação Estrutura-Atividade
12.
J Am Chem Soc ; 132(18): 6474-80, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20397697

RESUMO

A light-activated reaction analog has been developed to mimic the catalytic reaction cycle of Delta(5)-3-ketosteroid isomerase to probe the functionally relevant protein solvation response to the catalytic charge transfer. Delta(5)-3-ketosteroid isomerase from Pseudomonas putida catalyzes a C-H bond cleavage and formation through an enolate intermediate. Conversion of the ketone substrate to the enolate intermediate is simulated by a photoacid bound to the active site oxyanion hole. In the ground state, the photoacid electrostatically resembles the enolate intermediate while the low pK(a) excited state resembles the ketone starting material. Time-resolved fluorescence experiments with photoacids coumarin 183 and equilenin show the active site of Delta(5)-3-ketosteroid isomerase to be largely unperturbed by the light-activated reaction. The small solvation response for the photoacid at the active site as compared with a simple solvent suggests the active site does not significantly change its electrostatic environment during the catalytic cycle. Instead, the reaction takes place in an electrostatically preorganized environment.


Assuntos
Domínio Catalítico , Isomerases/química , Isomerases/metabolismo , Cetosteroides/metabolismo , Solventes/química , Biocatálise , Cumarínicos/metabolismo , Equilenina/metabolismo , Luz , Modelos Moleculares , Pseudomonas putida/enzimologia , Espectrometria de Fluorescência
13.
Nucleic Acids Res ; 38(12): e133, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20406772

RESUMO

Estrogen-DNA adducts are potential biomarkers for assessing the risk and development of estrogen-associated cancers. 4-Hydroxyequilenin (4-OHEN) and 4-hydroxyequilin (4-OHEQ), the metabolites of equine estrogens present in common hormone replacement therapy (HRT) formulations, are capable of producing bulky 4-OHEN-DNA adducts. Although the formation of 4-OHEN-DNA adducts has been reported, their quantitative detection in mammalian cells has not been done. To quantify such DNA adducts, we generated a novel monoclonal antibody (4OHEN-1) specific for 4-OHEN-DNA adducts. The primary epitope recognized is one type of stereoisomers of 4-OHEN-dA adducts and of 4-OHEN-dC adducts in DNA. An immunoassay with 4OHEN-1 revealed a linear dose-response between known amounts of 4-OHEN-DNA adducts and the antibody binding to those adducts, with a detection limit of approximately five adducts/10(8) bases in 1 microg DNA sample. In human breast cancer cells, the quantitative immunoassay revealed that 4-OHEN produces five times more 4-OHEN-DNA adducts than does 4-OHEQ. Moreover, in a mouse model for HRT, oral administration of Premarin increased the levels of 4-OHEN-DNA adducts in various tissues, including the uterus and ovaries, in a time-dependent manner. Thus, we succeeded in establishing a novel immunoassay for quantitative detection of 4-OHEN-DNA adducts in mammalian cells.


Assuntos
Anticorpos Monoclonais/imunologia , Adutos de DNA/imunologia , Ensaio de Imunoadsorção Enzimática , Envelhecimento , Animais , Especificidade de Anticorpos , Linhagem Celular Tumoral , Adutos de DNA/análise , Adutos de DNA/química , Equilenina/análogos & derivados , Equilenina/química , Equilenina/metabolismo , Equilina/análogos & derivados , Equilina/química , Equilina/metabolismo , Estrogênios Conjugados (USP)/administração & dosagem , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C
14.
Proc Natl Acad Sci U S A ; 107(5): 1960-5, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20080683

RESUMO

The catalytic importance of enzyme active-site interactions is frequently assessed by mutating specific residues and measuring the resulting rate reductions. This approach has been used in bacterial ketosteroid isomerase to probe the energetic importance of active-site hydrogen bonds donated to the dienolate reaction intermediate. The conservative Tyr16Phe mutation impairs catalysis by 10(5)-fold, far larger than the effects of hydrogen bond mutations in other enzymes. However, the less-conservative Tyr16Ser mutation, which also perturbs the Tyr16 hydrogen bond, results in a less-severe 10(2)-fold rate reduction. To understand the paradoxical effects of these mutations and clarify the energetic importance of the Tyr16 hydrogen bond, we have determined the 1.6-A resolution x-ray structure of the intermediate analogue, equilenin, bound to the Tyr16Ser mutant and measured the rate effects of mutating Tyr16 to Ser, Thr, Ala, and Gly. The nearly identical 200-fold rate reductions of these mutations, together with the 6.4-A distance observed between the Ser16 hydroxyl and equilenin oxygens in the x-ray structure, strongly suggest that the more moderate rate effect of this mutant is not due to maintenance of a hydrogen bond from Ser at position 16. These results, additional spectroscopic observations, and prior structural studies suggest that the Tyr16Phe mutation results in unfavorable interactions with the dienolate intermediate beyond loss of a hydrogen bond, thereby exaggerating the apparent energetic benefit of the Tyr16 hydrogen bond relative to the solution reaction. These results underscore the complex energetics of hydrogen bonding interactions and site-directed mutagenesis experiments.


Assuntos
Esteroide Isomerases/química , Esteroide Isomerases/genética , Substituição de Aminoácidos , Domínio Catalítico/genética , Comamonas testosteroni/enzimologia , Comamonas testosteroni/genética , Cristalografia por Raios X , Equilenina/química , Equilenina/metabolismo , Ligação de Hidrogênio , Cetosteroides/química , Cetosteroides/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Esteroide Isomerases/metabolismo
15.
J Comput Biol ; 16(11): 1577-91, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19958084

RESUMO

The functional prediction of proteins is one of the most challenging problems in modern biology. An established computational technique involves the identification of three-dimensional local similarities in proteins. In this article, we present a novel method to quickly identify promising binding sites. Our aim is to efficiently detect putative binding sites without explicitly aligning them. Using the theory of Spherical Harmonics, a candidate binding site is modeled as a Binding Ball. The Binding Ball signature, offered by the Spherical Fourier coefficients, can be efficiently used for a fast detection of putative regions. Our contribution includes the Binding Ball modeling and the definition of a scoring function that does not require aligning candidate regions. Our scoring function can be computed efficiently using a property of Spherical Fourier transform (SFT) that avoids the evaluation of all alignments. Experiments on different ligands show good discrimination power when searching for known binding sites. Moreover, we prove that this method can save up to 40% in time compared with traditional approaches.


Assuntos
Análise de Fourier , Proteínas/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Bases de Dados de Proteínas , Equilenina/metabolismo , Ligantes , Modelos Moleculares , Fatores de Tempo
16.
Biochemistry ; 48(30): 7098-109, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19527068

RESUMO

The equine estrogens equilin (EQ) and equilenin (EN) are the active components in the widely prescribed hormone replacement therapy formulation Premarin. Metabolic activation of EQ and EN generates the catechol 4-hydroxyequilenin (4-OHEN) that autoxidizes to the reactive o-quinone form in aerated aqueous solutions. The o-quinones react predominantly with C, and to a lesser extent with A and G, to form premutagenic cyclic covalent DNA adducts in vitro and in vivo. To obtain insights into the structural properties of these biologically important DNA lesions, we have synthesized site-specifically modified oligonucleotides containing the stereoisomeric 1'S,2'R,3'R-4-OHEN-C3 and 1'R,2'S,3'S-4-OHEN-C4 adducts derived from the reaction of 4-OHEN with the C in the oligonucleotide 5'-GGTAGCGATGG in aqueous solution. A combined NMR and computational approach was utilized to determine the conformational characteristics of the two major 4-OHEN-C3 and 4-OHEN-C4 stereoisomeric adducts formed in this oligonucleotide hybridized with its complementary strand. In both cases, the modified C adopts an anti glycosidic bond conformation; the equilenin distal ring protrudes into the minor groove while its two proximal hydroxyl groups are exposed on the major groove side of the DNA duplex. The bulky 4-OHEN-C adduct distorts the duplex within the central GC*G portion, but Watson-Crick pairing is maintained adjacent to C* in both stereoisomeric adducts. For the 4-OHEN-C3 adduct, the equilenin rings are oriented toward the 5'-end of the modified strand, while in 4-OHEN-C4 the equilenin is 3'-directed. Correspondingly, the distortions of the double-helical structures are more pronounced on the 5'- or the 3'-side of the lesion, respectively. These differences in stereoisomeric adduct conformations may play a role in the processing of these lesions in cellular environments.


Assuntos
Citidina/química , Adutos de DNA/química , Equilenina/análogos & derivados , Equilina/química , Congêneres do Estradiol/química , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Animais , Sequência de Bases , Citidina/metabolismo , Dano ao DNA , Equilenina/química , Equilenina/metabolismo , Equilina/metabolismo , Cavalos , Humanos , Conformação Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Estereoisomerismo
18.
Chem Res Toxicol ; 22(6): 1129-36, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19368368

RESUMO

Estrogen-DNA adducts are potential biomarkers for assessing cancer risk and progression in estrogen-dependent cancer. 4-Hydroxyequilenin (4-OHEN), the major catechol metabolite of equine estrogens present in hormone replacement therapy formulations, autoxidizes to a reactive o-quinone that subsequently causes DNA damage. The formation of stable stereoisomeric cyclic 4-OHEN-DNA adducts has been reported in vitro and in vivo, but their removal by DNA repair processes in cells has not been determined. Such studies have been hampered by low yields of cyclic adducts and poor reproducibility when treating cells in culture with 4-OHEN. These problems are attributed in part to the instability of 4-OHEN in aerobic, aqueous media. We show herein that low yields and reproducibility can be overcome by 4-OHEN diacetate as a novel, cell-permeable 4-OHEN precursor, in combination with a sensitive LC-MS/MS method developed for detecting adducts in human breast cancer cells. This method involves isolation of cellular DNA, DNA digestion to deoxynucleosides, followed by the addition of an isotope-labeled internal standard (4-OHEN-(15)N(5)-dG adduct) prior to analysis by LC-MS/MS. A concentration-dependent increase in adduct levels was observed in MCF-7 cells after exposure to 4-OHEN diacetate. The chemical stabilities of the adducts were also investigated to confirm that adducts were stable under assay conditions. In conclusion, this newly developed LC-MS/MS method allows detection and relative quantification of 4-OHEN-DNA adducts in human breast cancer cells, which could be adapted for adduct detection in human samples.


Assuntos
Neoplasias da Mama/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Adutos de DNA/análise , Equilenina/análogos & derivados , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Adutos de DNA/química , Dano ao DNA , Equilenina/química , Feminino , Humanos , Concentração de Íons de Hidrogênio , Oxirredução , Estereoisomerismo , Suínos , Temperatura , Células Tumorais Cultivadas
19.
J Biol Chem ; 284(13): 8633-42, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19158089

RESUMO

Exposure to estrogens increases the risk of breast and endometrial cancer. It is proposed that the estrogen receptor (ER) may contribute to estrogen carcinogenesis by transduction of the hormonal signal and as a "Trojan horse" concentrating genotoxic estrogen metabolites in the nucleus to complex with DNA, enhancing DNA damage. 4-Hydroxyequilenin (4-OHEN), the major catechol metabolite of equine estrogens present in estrogen replacement formulations, autoxidizes to a redox-cycling quinone that has been shown to cause DNA damage. 4-OHEN was found to be an estrogen of nanomolar potency in cell culture using a luciferase reporter assay and, using a chromatin immunoprecipitation assay, was found to activate ERalpha binding to estrogen-responsive genes in MCF-7 cells. DNA damage was measured in cells by comparing ERalpha(+) versus ERalpha(-) cells and 4-OHEN versus menadione, a reactive oxygen species (ROS)-generating, but non-estrogenic, quinone. 4-OHEN selectively induced DNA damage in ERalpha(+) cells, whereas menadione-induced damage was not dependent on cellular ER status. The rate of 4-OHEN-induced DNA damage was significantly enhanced in ERalpha(+) cells, whereas ER status had no effect on the rate of menadione-induced damage. Imaging of ROS induced by 4-OHEN showed accumulation selective for the nucleus of ERalpha(+) cells within 5 min, whereas in ERalpha(-) or menadione-treated cells, no selectivity was observed. These data support ERalpha acting as a Trojan horse concentrating 4-OHEN in the nucleus to accelerate the rate of ROS generation and thereby amplify DNA damage. The Trojan horse mechanism may be of general importance beyond estrogen genotoxins.


Assuntos
Núcleo Celular/metabolismo , Dano ao DNA/efeitos dos fármacos , Equilenina/análogos & derivados , Receptor alfa de Estrogênio/metabolismo , Estrogênios de Catecol/farmacologia , Mutagênicos/farmacologia , Animais , Linhagem Celular Tumoral , Equilenina/metabolismo , Equilenina/farmacologia , Estrogênios de Catecol/metabolismo , Feminino , Cavalos , Humanos , Mutagênicos/metabolismo , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio , Vitamina K 3/farmacologia , Vitaminas/farmacologia , Xenopus laevis
20.
Chem Res Toxicol ; 21(9): 1739-48, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18680315

RESUMO

Estrogen components of some hormone replacement formulations have been implicated in the initiation of breast cancer. Some of these formulations contain equine estrogens such as equilin and equilenin that are metabolized to the genotoxic catechol 4-hydroxyequilenin (4-OHEN). Auto-oxidation generates the o-quinone form that reacts with dC and dA in oligodeoxynucleotides to form unusual stable cyclic bulky adducts, with four different stereoisomers identified for each base adduct. The dC and dA adducts have the same unsaturated bicyclo[3.3.1]nonane type linkage site with identical stereochemical characteristics. Stereochemical effects may play an important part in the biological consequences of the formation of 4-OHEN-DNA adducts, and the assignment of the absolute configurations of the stereoisomeric 4-OHEN-dC and -dA adducts is therefore needed to understand structure-function relationships. We used density functional theory (DFT) to compute the specific optical rotations and electronic circular dichroism (ECD) spectra of the four 4-OHEN-C stereoisomers, and the results were compared with experimentally measured optical rotatory dispersion (ORD) and ECD spectra. The predicted ORD curves for the four stereoisomeric base adducts reproduced the shapes and signs of experimental spectra in the transparent spectral region. The stereochemistry of the C3' atom was determined by comparison of the calculated and experimental ORD and ECD spectra, and the stereochemistry of C2' was determined by mass spectrometric methods. Combining the ORD and mass spectrometry data, the absolute configurations of the four 4-OHEN-C and the stereochemically identical -dC adducts have been identified. The molecular architecture of the linkage site at the 4-OHEN-C/A and 4-OHEN-dC/dA is identical, and it is shown that the deoxyribose group does not substantially contribute to the optical activities. The absolute configurations of the 4-OHEN-dA adducts were thus deduced by comparing the experimental ORD with computed ORD values of 4-OHEN-A adducts.


Assuntos
Adenina/análise , Simulação por Computador , Citosina/análise , Adutos de DNA/análise , Equilenina/análogos & derivados , Modelos Químicos , Teoria Quântica , Dicroísmo Circular , Equilenina/análise , Espectrometria de Massas , Modelos Moleculares , Conformação Molecular , Dispersão Óptica Rotatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA