Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.015
Filtrar
1.
Sci Total Environ ; 950: 175236, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39098413

RESUMO

Previous field observations from 2018 to 2019 revealed that paralytic shellfish poisoning (PSP) caused by the blooms of toxic dinoflagellate Alexandrium species occurred under low concentrations of dissolved inorganic nitrogen (DIN) and high concentrations of dissolved organic nitrogen (DON) and humic-like fluorescent dissolved organic matter (FDOMH) in Jinhae-Masan Bay, Korea. In this study, we obtained more data for DIN, DON, FDOMH, and Alexandrium cell density from 2020 to 2023 to further validate environmental conditions for the PSP outbreak. We also measured total hydrolyzed amino acids (THAA) to determine the bioavailability of DON fueling the PSP outbreak. Over the 6-year observations, there was a consistent pattern of low DIN concentrations and high DON and FDOMH concentrations during the PSP outbreak periods. The Alexandrium cell densities, together with the PSP toxin concentrations, increased rapidly under this environmental condition. The PSP outbreak occurs when a large amount of DIN originating from the stream waters near the upstream sites is transformed into DON by biological production before entering the PSP outbreak area. The produced DON is characterized by high bioavailability based on the various AA-derived indices (enantiomeric ratio, degradation index, non-protein AA mole%, and nitrogen-normalized AA yield). In addition, the intensities of PSP outbreaks are mainly dependent on the conversion stage of DIN to DON and enhanced FDOMH. We found that the strong PSP outbreak occurred consistently under a low level of DIN (<1.0 µM) and high levels of DON (>9.0 µM) and FDOMH (>1.5 R.U.). Thus, our results suggest that the monitoring data of environmental conditions can be used to predict the PSP outbreak in the coastal oceans.


Assuntos
Baías , Dinoflagellida , Monitoramento Ambiental , Intoxicação por Frutos do Mar , República da Coreia/epidemiologia , Intoxicação por Frutos do Mar/epidemiologia , Proliferação Nociva de Algas , Surtos de Doenças , Nitrogênio/análise , Toxinas Marinhas/análise
2.
Sci Total Environ ; 950: 175201, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39102952

RESUMO

The disparities in harmful algal blooms dynamics are largely attributed to variations in cyanobacteria populations within aquatic ecosystems. However, cyanobacteria-cyanophage interactions and their role in shaping cyanobacterial populations has been previously underappreciated. To address this knowledge gap, we isolated and sequenced 42 cyanophages from diverse water sources in China, with the majority (n = 35) originating from freshwater sources. We designated these sequences as the "Novel Cyanophage Genome sequence Collection" (NCGC). NCGC displayed notable genetic variations, with 95 % (40/42) of the sequences representing previously unidentified taxonomic ranks. By integrating NCGC with public data of cyanophages and cyanobacteria, we found evidence for more frequent historical cyanobacteria-cyanophage interactions in freshwater ecosystems. This was evidenced by a higher prevalence of prophage integrase-related genes in freshwater cyanophages (37.97 %) than marine cyanophages (7.42 %). In addition, freshwater cyanophages could infect a broader range of cyanobacteria orders (n = 4) than marine ones (n = 0). Correspondingly, freshwater cyanobacteria harbored more defense systems per million base pairs in their genomes, indicating more frequent phage infections. Evolutionary and cyanophage epidemiological studies suggest that interactions between cyanobacteria and cyanophages in freshwater and marine ecosystems are interconnected, and that brackish water can act as a transitional zone for freshwater and marine cyanophages. In conclusion, our research significantly expands the genetic information database of cyanophage, offering a wider selection of cyanophages to control harmful cyanobacterial blooms. Additionally, we represent a pioneering large-scale and comprehensive analysis of cyanobacteria and cyanophage sequencing data, and it provides theoretical guidance for the application of cyanophages in different environments.


Assuntos
Bacteriófagos , Cianobactérias , Ecossistema , Água Doce , Água do Mar , Cianobactérias/virologia , Cianobactérias/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Água Doce/virologia , China , Água do Mar/virologia , Água do Mar/microbiologia , Genoma Viral , Genômica , Proliferação Nociva de Algas
3.
Environ Int ; 190: 108934, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39106632

RESUMO

Harmful Algal Blooms (HABs) are outbreaks of aquatic toxic microalgae emerging as a global problem driven by nutrient enrichment, global climate change and invasive species. We uniquely describe a HAB of unprecedented duration, extent and magnitude during 2023 in Lough Neagh; the UK and Ireland's largest freshwater lake, using an unparalleled combination of satellite imagery, nutrient analysis, 16S rRNA gene sequencing and cyanotoxin profiling. The causative agent Microcystis aeruginosa accounted for over a third of DNA in water samples though common bacterioplankton species also bloomed. Water phosphate levels were hypertrophic and drove local algal biomass. The HAB pervaded the entire ecosystem with algal mats accumulating around jetties, marinas and lock gates. Over 80 % of bacterial DNA isolated from algal mat samples consisted of species associated with wildfowl or livestock faeces and human-effluent wastewater including 13 potential pathogens that can cause serious human illness including: E. coli, Salmonella, Enterobacter and Clostridium among others. Ten microcystins, nodularin and two anabaenopeptin toxins were confirmed as present (with a further microcystin and four anabaenopeptins suspected), with MC-RR and -LR in high concentrations at some locations (1,137-18,493 µg/L) with MC-LR exceeding World Health Organisation (WHO) recreational exposure guidelines in all algal mats sampled. This is the first detection of anabaenopeptins in any waterbody on the island of Ireland. Notwithstanding the ecological impacts, this HAB represented an environmental and public health risk, curtailing recreational activities in-and-around the lake and damaging local businesses. Reducing agricultural runoff and discharge from human-effluent wastewater treatment to manage nutrient loading, and the public health risk, should be the top priority of stakeholders, especially government. Key recommendations include Nature-based Solutions that avoid conflict with the productivity and profitability of the farming sector enhancing sustainability. We hope this stimulates real-world action to resolve the problems besetting this internationally important ecosystem.


Assuntos
Proliferação Nociva de Algas , Lagos , Microcistinas , Lagos/microbiologia , Lagos/química , Irlanda , Microcistinas/análise , Reino Unido , Humanos , Saúde Pública , Monitoramento Ambiental , Microcystis , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação
4.
Mar Pollut Bull ; 206: 116781, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096867

RESUMO

Effective management of Harmful Algal Blooms (HABs) requires understanding factors influencing their occurrence. This study explores these dynamics in the Pengxi River, a tributary of the Three Gorges Reservoir, focusing on nutrient stratification and algal blooms. We hypothesized that nutrient levels in eutrophic waters with stable stratification correlate with HAB magnitude and that disruption of stratification triggers blooms due to nutrient shifts. A 38-day sampling campaign in Gaoyang Lake (April 16-May 23, 2022) revealed that consistent weather between April 26 and May 16 led to a surface density layer, restricting nutrient transfer and causing a bloom with 173.0 µg L-1 Chl-a on May 1. After a heavy rain on May 18, a peak bloom on May 20, dominated by Ceratium hirundinella, showed 533 µg L-1 Chl-a. There was a significant negative correlation between Cyanobacteria and C. hirundinella biomasses (r = -0.296, P < 0.01), highlighting nutrient availability and physical stability's roles in regulating HABs.


Assuntos
Cianobactérias , Monitoramento Ambiental , Proliferação Nociva de Algas , Lagos , Lagos/química , China , Rios/química , Biomassa , Eutrofização
5.
Toxins (Basel) ; 16(8)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39195767

RESUMO

Cyanobacterial blooms are increasingly common during winters, especially when they are mild. The goal of this study was to determine the summer and winter phytoplankton community structure, cyanotoxin presence, and toxigenicity in a eutrophic lake susceptible to cyanobacterial blooms throughout the year, using classical microscopy, an analysis of toxic cyanometabolites, and an analysis of genes involved in biosynthesis of cyanotoxins. We also assessed whether cyanobacterial diversity in the studied lake has changed compared to what was reported in previous reports conducted several years ago. Moreover, the bloom-forming cyanobacterial strains were isolated from the lake and screened for cyanotoxin presence and toxigenicity. Cyanobacteria were the main component of the phytoplankton community in both sampling times, and, in particular, Oscillatoriales were predominant in both summer (Planktothrix/Limnothrix) and winter (Limnothrix) sampling. Compared to the winter community, the summer community was denser; richer in species; and contained alien and invasive Nostocales, including Sphaerospermopsis aphanizomenoides, Raphidiopsis raciborskii, and Raphidiopsis mediterranea. In both sampling times, the blooms contained toxigenic species with genetic determinants for the production of cylindrospermopsin and microcystins. Toxicological screening revealed the presence of microcystins in the lake in summer but no cyanotoxins in the winter period of sampling. However, several cyanobacterial strains isolated from the lake during winter and summer produced anabaenopeptins and microcystins. This study indicates that summer and winter blooms of cyanobacteria in the temperate zone can differ in biomass, structure, and toxicity, and that the toxic hazards associated with cyanobacterial blooms may potentially exist during winter.


Assuntos
Cianobactérias , Lagos , Fitoplâncton , Estações do Ano , Lagos/microbiologia , Fitoplâncton/efeitos dos fármacos , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , Cianobactérias/crescimento & desenvolvimento , Toxinas Bacterianas/toxicidade , Eutrofização , Microcistinas/toxicidade , Monitoramento Ambiental , Proliferação Nociva de Algas
6.
Science ; 385(6706): 247, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39024429

RESUMO

The toxic organisms, which cause paralytic shellfish poisoning, are moving northward with climate change.


Assuntos
Proliferação Nociva de Algas , Intoxicação por Frutos do Mar , Animais , Mudança Climática , Água do Mar , Intoxicação por Frutos do Mar/prevenção & controle , Oceano Pacífico , Regiões Árticas
7.
Sci Total Environ ; 946: 174352, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38969108

RESUMO

Marine plastic debris (MPD) is a potential threat to marine ecosystems, but its function as a vector for the transportation of harmful microalgae and its impact on the habitats of other marine organisms are uncertain. To address this gap in knowledge, we performed month-long experiments in 30 L microcosms that contained plates made of six different plastic polymers (polypropylene [PP], low-density polyethylene [LDPE], high-density polyethylene [HDPE], polyvinyl chloride [PVC], polyethylene terephthalate [PET], and polystyrene [PS]), and examined the time course of changes in planktonic and periphytic microalgae. There were no significant differences in the composition of periphytic microalgae or biomass among the different plastic polymers (p > 0.05). Nutrient depletion decreased the abundance of planktonic microalgae, but increased the biomass of attached periphytic microalgae (p < 0.05). In particular, analysis of the plastic plates showed that the abundance of benthic species that are responsible for harmful algal blooms (HABs), such as Amphidinium operculatum and Coolia monotis, significantly increased over time (days 21-28; p < 0.05). Our findings demonstrated that periphyton species, including benthic microalgae that cause HABs, can easily attach to different types of plastic and potentially spread to different regions and negatively impact these ecosystems. These observations have important implications for understanding the potential role of MPD in the spread of microalgae, including HABs, which pose a significant threat to marine ecosystems.


Assuntos
Biomassa , Microalgas , Plásticos , Plásticos/análise , Proliferação Nociva de Algas , Poluentes Químicos da Água/análise , Nutrientes/análise , Monitoramento Ambiental , Ecossistema
8.
J Hazard Mater ; 477: 135152, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39047554

RESUMO

Raphidiopsis raciborskii (R. raciborskii) forms harmful cyanobacterial blooms globally, and poses a great threat to the safety of drinking water and public health. There is a great need to develop eco-friendly biological alternative measures to mitigate mass blooms of R. raciborskii. However, previous rare studies on algicidal microorganisms against R. raciborskii restricted this aim. Recently, an algicidal bacterium Streptomyces sp. HY (designated HY) was identified with flavones producing ability, and could remove up to 98.73 % of R. raciborskii biomass within 48 h by directly attacking the cyanobacterium and release of algicidal substances (i.e., flavonoids) with a inoculum ratio of 5 %. Algicidal rate of HY was enhanced by 88.05 %, 89.33 % under dark and light, and full-light conditions respectively, when compared with the dark condition. Its algicidal substances were stable in a broad range of temperature (-80-55 °C) and pH (3-11) conditions, and all treated groups exhibited ≈ 100 % algicidal rate at day 3. HY treatment disrupted the photosynthesis system and triggered serious oxidative stress resulting in severe morphological injury. Thereby, HY treatment significantly affected expression levels of several essential genes (i.e., psbA, psaB, rbcL, ftsZ, recA, grpE), and simultaneously inhibited the biosynthesis and release of cylindrospermopsin. Yet, HY treatment didn't show any toxicity to zebrafish test embryos. Such results indicate that HY is a promising algicidal candidate strain to control global R. raciborskii blooms, and holds great promises for an effective biological measure to sustain water safety.


Assuntos
Proliferação Nociva de Algas , Streptomyces , Peixe-Zebra , Streptomyces/metabolismo , Proliferação Nociva de Algas/efeitos dos fármacos , Animais , Floculação , Flavonoides/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Flavonas/toxicidade , Flavonas/farmacologia , Flavonas/química , Cianobactérias
9.
Bioresour Technol ; 408: 131155, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053595

RESUMO

Previous studies have predominantly explored the response mechanisms of constructed wetlands (CWs) to singular disturbances. In practical applications, CWs are frequently subject to multiple disturbances, resulting in complex interference mechanisms. Therefore, this study aims to select harmful algal blooms and microalga ZM-5 as disturbances to investigate the response mechanisms of CWs. Results revealed a dynamic pattern in COD removal efficiency of CWs, with fluctuations at 39.0 ± 6.2 % and 80.1 ± 4.7 % during the disturbances, followed by a recovery to approximately 65.7 ± 3.2 %. Additionally, the CWs exhibited a capacity for self-recovery and enhanced stability by selectively promoting specific microbial communities through the regulation of the genes responsible for indole-3-acetic acid (IAA) and vitamin production. Importantly, this study underscored the establishment of a resilient microbial community structure within CWs following multiple disturbances, characterized by a more interconnected microbial network. These findings shed light on the adaptive mechanisms of CWs in the face of complex environmental challenges.


Assuntos
Áreas Alagadas , Microalgas/metabolismo , Interações Microbianas , Análise da Demanda Biológica de Oxigênio , Proliferação Nociva de Algas , Ácidos Indolacéticos/metabolismo , Biodegradação Ambiental
10.
Plant Physiol Biochem ; 214: 108948, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39043057

RESUMO

The eutrophication of water, such as excessive nitrogen and phosphorus, are closely associated with the outbreak of red tide. However, the response of dissolved inorganic phosphorus (DIP) to red tide remained unclear in water. In this study, three species of diatoms capable of causing red tides were cultured in simulated seawater with different concentrations of DIP. The changes of biomass, chlorophyll a concentration and the carbon stable isotope composition of microalgae, the DIP concentration and pH of the culture medium were compared among the experimental groups. In addition, correlation verification was used to test the correlation between the change of DIP concentration and other indicators. The results showed that in the experimental period, the DIP concentration of each experimental group decreased significantly first, and the concentration dropped to less than 40% of the initial level. After that, the pH of the medium, the biomass, chlorophyll a concentration and carbon stable isotope composition of the microalgae showed varying degrees of increase, and then stabilized or decreased. These also marked the outbreak of red tide. Moreover, the correlation test showed that there was a correlation between them and the change of DIP concentration. Therefore, by exploring the relationship between the change of DIP concentration in water and the occurrence of red tide, this study provides a possible direction for the current prediction of red tide, and provides a basis for further investigation of the occurrence mechanism of red tide.


Assuntos
Biomassa , Clorofila A , Fósforo , Fósforo/metabolismo , Fósforo/análise , Clorofila A/metabolismo , Concentração de Íons de Hidrogênio , Diatomáceas/metabolismo , Proliferação Nociva de Algas , Água do Mar/química , Clorofila/metabolismo , Água , Isótopos de Carbono/análise , Microalgas/metabolismo
11.
Sci Total Environ ; 948: 174690, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38992351

RESUMO

Harmful algal blooms (HABs) or higher levels of de facto water reuse (DFR) can increase the levels of certain contaminants at drinking water intakes. Therefore, the goal of this study was to use multi-class supervised machine learning (SML) classification with data collected from six online instruments measuring fourteen total water quality parameters to detect cyanobacteria (corresponding to approximately 950 cells/mL, 2900 cells/mL, and 8600 cells/mL) or DFR (0.5, 1 and 2 % of wastewater effluent) events in the raw water entering an intake. Among 56 screened models from the caret package in R, four (mda, LogitBoost, bagFDAGCV, and xgbTree) were selected for optimization. mda had the greatest testing set accuracy, 98.09 %, after optimization with 7 false alerts. Some of the most important water parameters for the different models were phycocyanin-like fluorescence, UVA254, and pH. SML could detect algae blending events (estimated <9000 cells/mL) due in part to the phycocyanin-like fluorescence sensor. UVA254 helped identify higher concentrations of DFR. These results show that multi-class SML classification could be used at drinking water intakes in conjunction with online instrumentation to detect and differentiate HABs and DFR events. This could be used to create alert systems for the water utilities at the intake, rather than the finished water, so any adjustment to the treatment process could be implemented.


Assuntos
Cianobactérias , Água Potável , Monitoramento Ambiental , Aprendizado de Máquina , Água Potável/microbiologia , Monitoramento Ambiental/métodos , Proliferação Nociva de Algas , Qualidade da Água , Purificação da Água
12.
Sci Total Environ ; 948: 174767, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39004369

RESUMO

Harmful dinoflagellates and their resulting blooms pose a threat to marine life and human health. However, to date, global maps of marine life often overlook harmful microorganisms. As harmful algal blooms (HABs) increase in frequency, severity, and extent, understanding the distribution of harmful dinoflagellates and their drivers is crucial for their management. We used MaxEnt, random forest, and ensemble models to map the habitats of the representative HABs species in the genus Alexandrium, including A. catenella, A. minutum, and A. pacificum. Since species occurrence records used in previous studies were solely morphology-based, potentially leading to misidentifications, we corrected these species' distribution records using molecular criteria. The results showed that the key environmental drivers included the distance to the coastline, bathymetry, sea surface temperature (SST), and dissolved oxygen. Alexandrium catenella thrives in temperate to cold zones and is driven by low SST and high oxygen levels. Alexandrium pacificum mainly inhabits the Temperate Northern Pacific and prefers warmer SST and lower oxygen levels. Alexandrium minutum thrives universally and adapts widely to SST and oxygen. By analyzing the habitat suitability of locations with recorded HAB occurrences, we found that high habitat suitability could serve as a reference indicator for bloom risk. Therefore, we have proposed a qualitative method to spatially assess the harmful algae risk according to the habitat suitability. On the global risk map, coastal temperate seas, such as the Mediterranean, Northwest Pacific, and Southern Australia, faced higher risks. Although HABs currently have restricted geographic distributions, our study found these harmful algae possess high environmental tolerance and can thrive across diverse habitats. HAB impacts could increase if climate changes or ocean conditions became more favorable. Marine transportation may also spread the harmful algae to new unaffected ecosystems. This study has pioneered the assessment of harmful algal risk based on habitat suitability.


Assuntos
Dinoflagellida , Ecossistema , Proliferação Nociva de Algas , Dinoflagellida/fisiologia , Microalgas , Monitoramento Ambiental/métodos , Medição de Risco
13.
Sci Total Environ ; 948: 174902, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39053551

RESUMO

Understanding local hydraulic conditions is imperative to coastal harmful algal bloom (HAB) monitoring. The research summarized herein describes how the locations and tidal phases selected for coastal hazard sampling can influence measurement results used to guide management decisions for HABs. Our study was conducted in Frenchman Bay, Maine, known for its complex deglaciated coastline, strong tidal influence, and shellfishing activities that are susceptible to problematic HABs such as those produced by some species (spp.) of the diatom genus Pseudo-nitzschia. In-situ measurements of current velocity, density, and turbulence collected over a semidiurnal tidal cycle and a companion numerical model simulation of the study area provide concurrent evidence of two adjacent counter-rotating sub-mesoscale eddies (2-4 km diameter) that persist in the depth-averaged residual circulation. The eddies are generated in the wake of several islands in an area with abrupt bathymetric gradients, both legacy conditions partly derived from deglaciation ∼15 kya. Increased concentrations of Pseudo-nitzschia spp. measured during the semidiurnal survey follow a trend of elevated turbulent dissipation rates near the water surface, indicating that surface sampling alone might not adequately indicate species abundance. Additional measurements of Pseudo-nitzschia spp. from two years of weekly sampling in the region show that algal cell abundance is highest where residual eddies form. These findings provide incentive to examine current practices of HAB monitoring and management by linking coastal geomorphology to hydraulic conditions influencing HAB sampling outcomes, coastal morphometric features to material accumulation hotspots, and millennial time scales to modern hydraulic conditions.


Assuntos
Diatomáceas , Monitoramento Ambiental , Estuários , Proliferação Nociva de Algas , Hidrodinâmica , Diatomáceas/fisiologia , Monitoramento Ambiental/métodos , Maine , Movimentos da Água
14.
J Hazard Mater ; 476: 135079, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959835

RESUMO

Dinoflagellates Prorocentrum donghaiense and Karlodinium veneficum are the dominant species of harmful algal blooms in the East China Sea. The role of their allelopathy on the succession of marine phytoplankton populations is a subject of ongoing debate, particularly concerning the formation of blooms. To explore the allelopathy of K. veneficum on P. donghaiense, an investigation was conducted into photosynthetic performance (including PSII functional activities, photosynthetic electron transport chain, energy flux, photosynthetic different genes and photosynthetic performance) and photosynthetic damage-induced oxidative stress (MDA, SOD, and CAT activity). The growth of P. donghaiense was strongly restrained during the initial four days (1-6 folds, CK/CP), but the cells gradually resumed activity at low filtrate concentrations from the eighth day. On the fourth day of the strongest inhibition, allelochemicals reduced representative photosynthetic performance parameters PI and ΦPSII, disrupted related processes of photosynthesis, and elevated the levels of MDA content in P. donghaiense. Simultaneously, P. donghaiense repairs these impairments by up-regulating the expression of 13 photosynthetic genes, modifying photosynthetic processes, and activating antioxidant enzyme activities from the eighth day onward. Overall, this study provides an in-depth overview of allelopathic photosynthetic damage, the relationship between genes and photosynthesis, and the causes of oxidative damage induced by photosynthesis. ENVIRONMENTAL IMPLICATIONS: As a typical HAB species, Karlodinium veneficum is associated with numerous fish poisoning events, which have negative impacts on aquatic ecosystems and human health. Allelochemicals produced by K. veneficum can provide a competitive advantage by interfering with the survival, reproduction and growth of competing species. This study primarily investigated the effects of K. veneficum allelochemicals on the photosynthesis and photosynthetic genes of Prorocentrum donghaiense. Grasping the mechanism of allelochemicals inhibiting microalgae is helpful to better understand the succession process of algal blooms and provide a new scientific basis for effective prevention and control of harmful algal blooms.


Assuntos
Alelopatia , Dinoflagellida , Proliferação Nociva de Algas , Fotossíntese , Dinoflagellida/efeitos dos fármacos , Dinoflagellida/metabolismo , Fotossíntese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Feromônios , China
15.
Ecotoxicol Environ Saf ; 282: 116690, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981394

RESUMO

Heterosigma akashiwo is a harmful algal bloom species that causes significant detrimental effects on marine ecosystems worldwide. The algicidal bacterium Pseudalteromonas sp. LD-B1 has demonstrated potential effectiveness in mitigating these blooms. However, the molecular mechanisms underlying LD-B1's inhibitory effects on H. akashiwo remain poorly understood. In this study, we employed the comprehensive methodology, including morphological observation, assessment of photosynthetic efficiency (Fv/Fm), and transcriptomic analysis, to investigate the response of H. akashiwo to LD-B1. Exposure to LD-B1 resulted in a rapid decline of H. akashiwo's Fv/Fm ratio, with cells transitioning to a rounded shape within 2 hours, subsequently undergoing structural collapse and cytoplasmic leakage. Transcriptomic data revealed sustained downregulation of photosynthetic genes, indicating impaired functionality of the photosynthetic system. Additionally, genes related to the respiratory electron transfer chain and antioxidant defenses were consistently downregulated, suggesting prolonged oxidative stress beyond the cellular antioxidative capacity. Notably, upregulation of autophagy-related genes was observed, indicating autophagic responses in the algal cells. This study elucidates the molecular basis of LD-B1's algicidal effects on H. akashiwo, advancing our understanding of algicidal mechanisms and contributing to the development of effective strategies for controlling harmful algal blooms.


Assuntos
Proliferação Nociva de Algas , Fotossíntese , Fotossíntese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Dinoflagellida/fisiologia , Estramenópilas , Autofagia/efeitos dos fármacos
16.
Environ Toxicol Chem ; 43(9): 1936-1949, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38967263

RESUMO

Harmful algal blooms (HABs) are a persistent and increasing problem globally, yet we still have limited knowledge about how they affect wildlife. Although semi-aquatic and aquatic amphibians and reptiles have experienced large declines and occupy environments where HABs are increasingly problematic, their vulnerability to HABs remains unclear. To inform monitoring, management, and future research, we conducted a literature review, synthesized the studies, and report on the mortality events describing effects of cyanotoxins from HABs on freshwater herpetofauna. Our review identified 37 unique studies and 71 endpoints (no-observed-effect and lowest-observed-effect concentrations) involving 11 amphibian and 3 reptile species worldwide. Responses varied widely among studies, species, and exposure concentrations used in experiments. Concentrations causing lethal and sublethal effects in laboratory experiments were generally 1 to 100 µg/L, which contains the mean value of reported HAB events but is 70 times less than the maximum cyanotoxin concentrations reported in the environment. However, one species of amphibian was tolerant to concentrations of 10,000 µg/L, demonstrating potentially immense differences in sensitivities. Most studies focused on microcystin-LR (MC-LR), which can increase systemic inflammation and harm the digestive system, reproductive organs, liver, kidneys, and development. The few studies on other cyanotoxins illustrated that effects resembled those of MC-LR at similar concentrations, but more research is needed to describe effects of other cyanotoxins and mixtures of cyanotoxins that commonly occur in the environment. All experimental studies were on larval and adult amphibians; there were no such studies on reptiles. Experimental work with reptiles and adult amphibians is needed to clarify thresholds of tolerance. Only nine mortality events were reported, mostly for reptiles. Given that amphibians likely decay faster than reptiles, which have tissues that resist decomposition, mass amphibian mortality events from HABs have likely been under-reported. We propose that future efforts should be focused on seven major areas, to enhance our understanding of effects and monitoring of HABs on herpetofauna that fill important roles in freshwater and terrestrial environments. Environ Toxicol Chem 2024;43:1936-1949. Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Anfíbios , Proliferação Nociva de Algas , Répteis , Animais , Microcistinas/toxicidade , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Toxinas Marinhas/toxicidade
17.
J Phycol ; 60(4): 1001-1020, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38995628

RESUMO

Climate change and global warming have led to more frequent harmful algal blooms in the last decade. Among these blooms, Heterosigma akashiwo, a golden-brown phytoflagellate, is one of the 40 species with a high potential to form harmful blooms, leading to significant fish mortality. Climate change leads to rising atmospheric and ocean temperatures. These changes, along with altered rainfall patterns and meltwater input, can cause fluctuations in ocean salinity. Elevated atmospheric carbon dioxide (CO2) levels increase water acidity as oceans absorb CO2. This study investigated the effects of temperature, salinity, and CO2 levels on lipid production, hemolytic activity, and toxicity of H. akashiwo using the design of experiment approach, which can be used to investigate the effect of two or more factors on the same response simultaneously in a precise manner with fewer experiments and materials but in a larger region of the factor space. The lipid content was measured using a high-throughput Nile Red method, and the highest level of lipid content was detected at 25°C, a salinity of 30, and a CO2 concentration of 400 ppm. Hemolytic activity was assessed using rabbit blood erythrocytes in a 96-well plate, and the optimal conditions for achieving the highest hemolytic activity were determined at 15°C, a salinity of 10, and a CO2 concentration of 400 ppm. As the chemical structure of the toxin is not known, we used the toxicity against the cell line RTgill-W1 as the cell toxicity proxy. The maximum toxicity was identified at 15°C, a salinity of 10, and a CO2 level of 700 ppm.


Assuntos
Dióxido de Carbono , Salinidade , Temperatura , Animais , Estramenópilas/química , Hemólise , Mudança Climática , Coelhos , Proliferação Nociva de Algas , Peixes
18.
Harmful Algae ; 137: 102645, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39003019

RESUMO

Dinoflagellates within the genus Karenia are well known for their potential to cause harmful algal blooms and induce detrimental ecological consequences. In this study, five Karenia species, Karenia longicanalis, Karenia papilionacea, Karenia mikimotoi, Karenia selliformis, and a new species, Karenia hui sp. nov., were isolated from Chinese coastal waters. The new species exhibits the typical characteristics of the genus Karenia, including a linear apical groove and butanoyl-oxyfucoxanthin as the major accessory pigment. It is distinguished from the other Karenia species by a wide-open sulcal intrusion onto the epicone, a conical epicone with an apical crest formed by the rim of the apical groove, and a hunchbacked hypocone. It is most closely related to Karenia cristata, with a genetic divergence of 3.16 % (22 bp out of 883 bp of LSU rDNA). Acute toxicity tests indicated that the five Karenia species from China are all toxic to marine medaka Oryzias melastigma. Karenia selliformis and K. hui were very toxic to O. melastigma, resulting in 100 % mortality within 4 h and 24 h, respectively. Further analysis by high-performance liquid chromatography revealed that four species, K. selliformis, K. longicanalis, K. papilionacea and K. mikimotoi were capable of producing Gymnodimine-A (GYM-A). The highest GYM-A content was in K. selliformis (strain HK-43), in which the value was 889 fg/cell. No GYM-A was detected in the new species K. hui, however and its toxin remains unknown. Below we provide a comprehensive report of the morphology, phylogeny, pigment composition, and toxicity profiles of Karenia species along the Chinese coast. These findings contribute new insights for monitoring of Karenia species, with important toxicological and ecological implications.


Assuntos
Dinoflagellida , Filogenia , Animais , China , Dinoflagellida/classificação , Dinoflagellida/genética , Dinoflagellida/fisiologia , Proliferação Nociva de Algas
19.
Harmful Algae ; 137: 102679, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39003024

RESUMO

Algal blooms can threaten human health if cyanotoxins such as microcystin are produced by cyanobacteria. Regularly monitoring microcystin concentrations in recreational waters to inform management action is a tool for protecting public health; however, monitoring cyanotoxins is resource- and time-intensive. Statistical models that identify waterbodies likely to produce microcystin can help guide monitoring efforts, but variability in bloom severity and cyanotoxin production among lakes and years makes prediction challenging. We evaluated the skill of a statistical classification model developed from water quality surveys in one season with low temporal replication but broad spatial coverage to predict if microcystin is likely to be detected in a lake in subsequent years. We used summertime monitoring data from 128 lakes in Iowa (USA) sampled between 2017 and 2021 to build and evaluate a predictive model of microcystin detection as a function of lake physical and chemical attributes, watershed characteristics, zooplankton abundance, and weather. The model built from 2017 data identified pH, total nutrient concentrations, and ecogeographic variables as the best predictors of microcystin detection in this population of lakes. We then applied the 2017 classification model to data collected in subsequent years and found that model skill declined but remained effective at predicting microcystin detection (area under the curve, AUC ≥ 0.7). We assessed if classification skill could be improved by assimilating the previous years' monitoring data into the model, but model skill was only minimally enhanced. Overall, the classification model remained reliable under varying climatic conditions. Finally, we tested if early season observations could be combined with a trained model to provide early warning for late summer microcystin detection, but model skill was low in all years and below the AUC threshold for two years. The results of these modeling exercises support the application of correlative analyses built on single-season sampling data to monitoring decision-making, but similar investigations are needed in other regions to build further evidence for this approach in management application.


Assuntos
Monitoramento Ambiental , Lagos , Microcistinas , Modelos Estatísticos , Microcistinas/análise , Lagos/química , Monitoramento Ambiental/métodos , Iowa , Cianobactérias , Clima , Estações do Ano , Proliferação Nociva de Algas , Qualidade da Água
20.
Harmful Algae ; 137: 102681, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39003025

RESUMO

In May-June 2019, the microalga Chrysochromulina leadbeateri caused a massive fish-killing event in several fjords in Northern Norway, resulting in the largest direct impact ever on aquaculture in northern Europe due to toxic algae. Motivated by the fact that no algal toxins have previously been described from C. leadbeateri, we set out to investigate the chemical nature and toxicity of secondary metabolites in extracts of two strains (UIO 393, UIO 394) isolated from the 2019 bloom, as well as one older strain (UIO 035) isolated during a bloom in Northern Norway in 1991. Initial LC-DAD-MS/MS-based molecular networking analysis of the crude MeOH extracts of the cultivated strains showed that their profiles of small organic molecules, including a large number of known lipids, were very similar, suggesting that the same class of toxin(s) were likely the causative agents of the two harmful algal bloom (HAB) events. Next, bioassay-guided fractionation using the RTgill-W1 cell line and metabolomics analysis pointed to a major compound affording [M + H]+ ions at m/z 1399.8333 as a possible toxin, corresponding to a compound with the formula C67H127ClO27. Moreover, our study unveiled a series of minor analogues exhibiting distinct patterns of chlorination and sulfation, together defining a new family of compounds, which we propose to name leadbeaterins. Remarkably, these suspected toxins were detected in situ in samples collected during the 2019 bloom close to Tromsø, thereby consistent with a role in fish kills. The elemental compositions of the putative C. leadbeateri ichthyotoxins strongly indicate them to be long linear polyhydroxylated polyketides, structurally similar to sterolysins reported from a number of dinoflagellates.


Assuntos
Proliferação Nociva de Algas , Toxinas Marinhas , Noruega , Toxinas Marinhas/toxicidade , Toxinas Marinhas/química , Toxinas Marinhas/análise , Estuários , Animais , Espectrometria de Massas em Tandem , Haptófitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA