Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Eur J Dermatol ; 34(4): 361-370, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39193672

RESUMO

Atopic dermatitis (AD) is associated with chronic inflammation and an altered skin barrier. Lipids of the stratum corneum of AD patients are known to differ substantially in composition from those of healthy subjects. A reconstructed human epidermis (RHE) model has been developed in vitro in order to mimic the characteristics of AD. In this study, using this model, we compared lipid profile modifications between control RHE and RHE treated with Th2 cytokines in order to mimic AD. We focused particularly on the lipid profile of the ceramide subclasses: non-hydroxy sphingosine (NS) and esterified ω-hydroxy sphingosine (EOS), which have been reported to be clearly modified in atopic skin. RHE lipids were extracted and analysed using high-performance liquid chromatography coupled to high-resolution mass spectrometry. The following lipid profile changes were observed in Th2-cytokine-treated RHE: (i) an increase in ceramide NS composed of an unsaturated fatty acid chain; (ii) an increase in saturated ceramide NS with small total carbon content (≤40 carbon atoms), whereas NS with a higher total carbon content (≥42 carbon atoms) was decreased; and (iii) a decrease in ceramide EOS. These results are in accordance with reported lipid profiles of human atopic skin in vivo. Moreover, the in vitro model represents a useful tool to better understand the pathogenesis of AD which may be used for future screening of new effective treatments.


Assuntos
Ceramidas , Citocinas , Dermatite Atópica , Epiderme , Células Th2 , Humanos , Ceramidas/metabolismo , Ceramidas/análise , Epiderme/metabolismo , Epiderme/efeitos dos fármacos , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Citocinas/metabolismo , Esfingosina/análogos & derivados , Interleucina-4/metabolismo , Modelos Biológicos , Interleucina-33/metabolismo , Linfopoietina do Estroma do Timo
2.
Int Immunopharmacol ; 139: 112706, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39032473

RESUMO

Emu oil is the oil extracted from the body fat of the Australian bird emu. Although previous studies have reported that emu oil has anti-inflammatory effects, the effect and mechanism of emu oil on the treatment of atopic dermatitis have not been reported. Here, 2, 4-dinitrofluorobenzene was used to induce atopic dermatitis-like appearance on the back skin of C57BL/6 mice. And then, the effect of emu oil in the atopic dermatitis treatment was evaluated. We found that emu oil reduced the transdermal water loss in the atopic dermatitis model. Additionally, the epidermal thickness treated with emu oil was significantly thinner. The number of mast cells and inflammatory cells were significantly decreased. The thymic stromal lymphopoietin (TSLP), which is secreted by keratinocyte, was decreased significantly after treatment. Moreover, the serum levels of cytokines TSLP, interleukin-4, interleukin-13, and immunoglobulin (Ig) E were decreased after emu oil treatment. Surprisingly, we found that the high level of Cdc42 expression in the atopic dermatitis, which was decreased after emu oil treatment. To detect the role of Cdc42 in atopic dermatitis, we constructed atopic dermatitis model in mice with sustained activation of Cdc42 signaling. Furthermore, we have confirmed that emu oil demonstrates anti-inflammatory effects in atopic dermatitis by inhibiting the expression of Cdc42 signaling in keratinocytes. In conclusion, we discovered a new role of Cdc42 in the development of atopic dermatitis, which mediated the therapeutic effect of emu oil on atopic dermatitis.


Assuntos
Anti-Inflamatórios , Citocinas , Dermatite Atópica , Modelos Animais de Doenças , Queratinócitos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP , Animais , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/imunologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Proteína cdc42 de Ligação ao GTP/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Linfopoietina do Estroma do Timo , Óleos/farmacologia , Óleos/uso terapêutico , Imunoglobulina E/sangue , Dinitrofluorbenzeno , Pele/efeitos dos fármacos , Pele/patologia , Pele/metabolismo , Humanos , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Mastócitos/metabolismo , Masculino
3.
Microvasc Res ; 155: 104714, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38960318

RESUMO

BACKGROUND: Systemic sclerosis (SSc) is a complex autoimmune connective-tissue disease, characterised by vasculopathy and fibrosis of the skin and internal organs. Activation of microvascular endothelial cells (ECs) causes the intimal hyperplasia that characterises the vascular remodelling in SSc. The most frequent complication of SSc is the development of digital ulcers (DUs). Thymic stromal lymphopoietin (TSLP) may trigger fibrosis and sustain vascular damage. Aim of this study was to evaluate the correlation between serum level of TSLP and DUs. METHODS: 75 consecutive SSc patients were enrolled and serum TSLP levels were measured. The presence of history of DUs (HDU) was evaluated. Recurrent new DUs were defined as the presence of at least 3 episodes of DUs in a 12-months follow up period. The risk of developing new DUs was calculated by applying the capillaroscopic skin ulcer risk index (CSURI). RESULTS: The median value of TSLP was higher in patients with HDU than patients without HDU [181.67 pg/ml (IQR 144.67; 265.66) vs 154.67 pg/ml (IQR 110.67; 171.33), p < 0.01]. The median value of TSLP was higher in patients with an increased CSURI index than patients without an increased CSURI [188 pg/ml (IQR 171.33; 246.33) vs 159.33 pg/ml (IQR 128.67; 218), p < 0.01]. Kaplan-Meier curves demonstrated that free survival from new DUs was significantly (p < 0.01) lower in SSc patients with increased TSLP serum levels. CONCLUSION: TSLP might have a key role in digital microvascular damage of SSc patients.


Assuntos
Biomarcadores , Citocinas , Dedos , Angioscopia Microscópica , Escleroderma Sistêmico , Úlcera Cutânea , Linfopoietina do Estroma do Timo , Humanos , Escleroderma Sistêmico/sangue , Escleroderma Sistêmico/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Citocinas/sangue , Úlcera Cutânea/patologia , Úlcera Cutânea/etiologia , Úlcera Cutânea/sangue , Adulto , Fatores de Risco , Biomarcadores/sangue , Dedos/irrigação sanguínea , Idoso , Microvasos/patologia , Microvasos/metabolismo , Fatores de Tempo , Regulação para Cima , Recidiva , Fibrose , Medição de Risco
4.
J Cell Mol Med ; 28(14): e18375, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39039796

RESUMO

Celastrol, a bioactive molecule extracted from the plant Tripterygium wilfordii Hook F., possesses anti-inflammatory, anti-obesity and anti-tumour properties. Despite its efficacy in improving erythema and scaling in psoriatic mice, the specific therapeutic mechanism of celastrol in atopic dermatitis (AD) remains unknown. This study aims to examine the role and mechanism of celastrol in AD using TNF-α-stimulated HaCaT cells and DNCB-induced Balb/c mice as in vitro and in vivo AD models, respectively. Celastrol was found to inhibit the increased epidermal thickness, reduce spleen and lymph node weights, attenuate inflammatory cell infiltration and mast cell degranulation and decrease thymic stromal lymphopoietin (TSLP) as well as various inflammatory factors (IL-4, IL-13, TNF-α, IL-5, IL-31, IL-33, IgE, TSLP, IL-17, IL-23, IL-1ß, CCL11 and CCL17) in AD mice. Additionally, celastrol inhibited Ezrin phosphorylation at Thr567, restored mitochondrial network structure, promoted translocation of Drp1 to the cytoplasm and reduced TNF-α-induced cellular reactive oxygen species (ROS), mitochondrial ROS (mtROS) and mitochondrial membrane potential (MMP) production. Interestingly, Mdivi-1 (a mitochondrial fission inhibitor) and Ezrin-specific siRNAs lowered inflammatory factor levels and restored mitochondrial reticular formation, as well as ROS, mtROS and MMP production. Co-immunoprecipitation revealed that Ezrin interacted with Drp1. Knocking down Ezrin reduced mitochondrial fission protein Drp1 phosphorylation and Fis1 expression while increasing the expression of fusion proteins Mfn1 and Mfn2. The regulation of mitochondrial fission and fusion by Ezrin was confirmed. Overall, celastrol may alleviate AD by regulating Ezrin-mediated mitochondrial fission and fusion, which may become a novel therapeutic reagent for alleviating AD.


Assuntos
Citocinas , Proteínas do Citoesqueleto , Dermatite Atópica , Camundongos Endogâmicos BALB C , Dinâmica Mitocondrial , Triterpenos Pentacíclicos , Triterpenos , Animais , Dinâmica Mitocondrial/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Dermatite Atópica/metabolismo , Humanos , Triterpenos/farmacologia , Camundongos , Citocinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Linfopoietina do Estroma do Timo , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células HaCaT , Fosforilação/efeitos dos fármacos
5.
Phytomedicine ; 132: 155899, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067192

RESUMO

BACKGROUND: Sanfeng Tongqiao Dripping Pills (SFTQ) has clinically demonstrated a promising therapeutic effect on allergic rhinitis (AR). However, the active ingredients and underlying mechanisms of SFTQ remain unclear. PURPOSE: Exploring the effects, mechanisms, and active ingredients of SFTQ in the treatment of AR is valuable. STUDY DESIGN: The mechanisms of SFTQ and its active ingredients in treating AR were investigated through in vivo and in vitro studies. METHODS: A HDM-induced AR model was established in BALB/c mice. The effects of SFTQ in treating AR were evaluated by AR-like symptoms, EOS count, and pathological changes in the nasal tissue in vivo. The effects of SFTQ active components on epithelial cells (ECs) were evaluated in Poly(I:C) and TNF-α co-stimulated human nasal ECs (RPMI-2650). Additionally, the effects of SFTQ active components on splenocytes proliferation and Th cell differentiation were assessed. A co-culture system of ECs and T lymphocytes was established to investigate the impact of Th2 cells on the structure and function of ECs. The effects of SFTQ ingredients on ECs, T lymphocytes, and the HDM-induced AR model were further confirmed through in vivo and in vivo studies, respectively. RESULTS: SFTQ significantly alleviated AR-like symptoms and pathological changes in the nasal tissue of AR mice. The treatment elevated the expression of Occludin and E-cadherin in the nasal epithelium and reduced the percentage of Th2 cells in cervical lymph nodes (CLN). Among the active compounds of SFTQ, L-Menthone and Pulegone notably downregulated IL-33 levels in activated ECs, while Hesperetin significantly decreased TSLP and IL-33 levels. In the co-culture system of ECs and Th2 cells, exposure to Baicalin, Wogonin, and Pulegone increased the TEER value of ECs, while notably inhibiting the production of TSLP and IL-33. Furthermore, in HDM-induced AR mice, treatments with Baicalin, Luteolin, and Hesperetin effectively inhibited AR-like symptoms. Additionally, Luteolin and Hesperetin significantly reduced the inflammatory cells infiltration and the population of Th2 cells in AR mice. CONCLUSION: SFTQ and its active ingredients effectively alleviated HDM-induced AR in mice by inhibiting Th2 cell differentiation and repairing the nasal epithelial barrier. Our study can provide a scientific basis for SFTQ to be used in clinical treatment of AR.


Assuntos
Diferenciação Celular , Medicamentos de Ervas Chinesas , Camundongos Endogâmicos BALB C , Mucosa Nasal , Pyroglyphidae , Rinite Alérgica , Células Th2 , Animais , Rinite Alérgica/tratamento farmacológico , Mucosa Nasal/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Células Th2/efeitos dos fármacos , Humanos , Camundongos , Modelos Animais de Doenças , Feminino , Células Epiteliais/efeitos dos fármacos , Ocludina/metabolismo , Citocinas/metabolismo , Linfopoietina do Estroma do Timo
6.
Lung ; 202(4): 449-457, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38995391

RESUMO

BACKGROUND: Gene expression can provide distinct information compared to clinical biomarkers in the context of longitudinal clinical outcomes in asthma patients. OBJECTIVE: This study examined the association between the gene expression levels of upstream (IL-25, IL-33, and TSLP) and downstream cytokines (IL-5, IL-4, and IL-13) in the T2 inflammatory pathway with a 12-month follow-up of exacerbation, lung function, and steroid use. METHODS: Transcriptomic sequencing analysis was performed on peripheral blood mononuclear cells from 279 adult asthmatics. Survival analysis and linear mixed-effect models were used to investigate potential differences between the high-level and low-level gene expression groups and the clinical outcomes. Analysis was performed separately for the upstream, downstream, and all 6 cytokines. RESULTS: In general, T2 inflammatory cytokine gene expression showed a weak correlation with blood eosinophil counts (all r < 0.1) and clinical outcomes. Among moderate-to-severe eosinophilic asthma (MSEA) patients, individuals with elevated levels of downstream cytokines were at increased risk of time-to-first exacerbation (p = 0.044) and a greater increase of inhaled corticosteroid use over time (p = 0.002) compared to those with lower gene expression. There was no association between baseline T2 inflammatory cytokine gene expression and the longitudinal changes in lung function over time among MSEA patients. CONCLUSION: These findings suggest that, among MSEA patients, the gene expression levels of downstream cytokines in the T2 inflammatory pathway may serve as indicators for endotyping asthma.


Assuntos
Asma , Citocinas , Interleucina-13 , Interleucina-4 , Leucócitos Mononucleares , Transcriptoma , Humanos , Asma/genética , Asma/sangue , Asma/imunologia , Asma/tratamento farmacológico , Masculino , Feminino , Leucócitos Mononucleares/metabolismo , Adulto , Pessoa de Meia-Idade , Citocinas/genética , Citocinas/sangue , Estudos Longitudinais , Interleucina-4/genética , Interleucina-4/sangue , Interleucina-13/genética , Interleucina-13/sangue , Eosinófilos , Linfopoietina do Estroma do Timo , Interleucina-5/genética , Interleucina-5/sangue , Interleucina-33/genética , Interleucina-33/sangue , Interleucina-17/genética , Interleucina-17/sangue , Corticosteroides/uso terapêutico , Perfilação da Expressão Gênica/métodos , Progressão da Doença , Índice de Gravidade de Doença
8.
EMBO Mol Med ; 16(7): 1630-1656, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38877290

RESUMO

Thymic stromal lymphopoietin (TSLP) is a key player in atopic diseases, which has sparked great interest in therapeutically targeting TSLP. Yet, no small-molecule TSLP inhibitors exist due to the challenges of disrupting the protein-protein interaction between TSLP and its receptor. Here, we report the development of small-molecule TSLP receptor inhibitors using virtual screening and docking of >1,000,000 compounds followed by iterative chemical synthesis. BP79 emerged as our lead compound that effectively abrogates TSLP-triggered cytokines at low micromolar concentrations. For in-depth analysis, we developed a human atopic disease drug discovery platform using multi-organ chips. Here, topical application of BP79 onto atopic skin models that were co-cultivated with lung models and Th2 cells effectively suppressed immune cell infiltration and IL-13, IL-4, TSLP, and periostin secretion, while upregulating skin barrier proteins. RNA-Seq analysis corroborate these findings and indicate protective downstream effects on the lungs. To the best of our knowledge, this represents the first report of a potent putative small molecule TSLPR inhibitor which has the potential to expand the therapeutic and preventive options in atopic diseases.


Assuntos
Citocinas , Receptores de Citocinas , Linfopoietina do Estroma do Timo , Humanos , Citocinas/metabolismo , Receptores de Citocinas/metabolismo , Receptores de Citocinas/antagonistas & inibidores , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Células Th2/imunologia , Células Th2/efeitos dos fármacos , Células Th2/metabolismo , Animais , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Ligação Proteica/efeitos dos fármacos , Interleucina-4/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Simulação de Acoplamento Molecular
10.
Inflamm Res ; 73(9): 1425-1434, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38907743

RESUMO

BACKGROUND: In recent years, there has been a growing interest in the utilization of biologic therapies for the management of asthma. Both TSLP and IgE are important immune molecules in the development of asthma, and they are involved in the occurrence and regulation of inflammatory response. METHODS: A comprehensive search of PubMed and Web of Science was conducted to gather information on anti-TSLP antibody and anti-IgE antibody. RESULTS: This investigation elucidates the distinct mechanistic roles of Thymic Stromal Lymphopoietin (TSLP) and Immunoglobulin E (IgE) in the pathogenesis of asthma, with a particular emphasis on delineating the therapeutic mechanisms and pharmacological properties of monoclonal antibodies targeting IgE and TSLP. Through a meticulous examination of clinical trials involving paradigmatic agents such as omalizumab and tezepelumab, we offer valuable insights into the potential treatment modalities for diseases with shared immunopathogenic pathways involving IgE and TSLP. CONCLUSION: The overarching objective of this comprehensive study is to delve into the latest advancements in asthma therapeutics and to provide guidance for future investigations in this domain.


Assuntos
Antiasmáticos , Anticorpos Monoclonais , Asma , Citocinas , Imunoglobulina E , Linfopoietina do Estroma do Timo , Asma/tratamento farmacológico , Asma/imunologia , Humanos , Imunoglobulina E/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Anticorpos Monoclonais/uso terapêutico , Animais , Antiasmáticos/uso terapêutico , Antiasmáticos/farmacologia , Omalizumab/uso terapêutico
11.
Clin Transl Sci ; 17(6): e13864, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924698

RESUMO

Lunsekimig is a novel, bispecific NANOBODY® molecule that inhibits both thymic stromal lymphopoietin (TSLP) and interleukin (IL)-13, two key mediators of asthma pathophysiology. In this first-in-human study, we evaluated the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and immunogenicity of lunsekimig in healthy adult participants. Participants received single ascending doses (SAD) of lunsekimig (10-400 mg intravenous [IV] or 400 mg subcutaneous [SC]) (SAD part) or multiple ascending doses (MAD part) of lunsekimig (100 or 200 mg, every 2 weeks [Q2W] for three SC doses), or placebo. Overall, 48 participants were randomized 3:1 in the SAD part and 4:1 in the MAD part for lunsekimig or placebo. The primary endpoint was safety and tolerability. The secondary endpoints included PK, antidrug antibodies (ADAs) and total target measurement. Lunsekimig was well tolerated and common treatment-emergent adverse events were COVID-19, nasopharyngitis, injection site reactions, and headache. Lunsekimig showed dose-proportional increases in exposure and linear elimination. Mean t1/2z of lunsekimig was around 10 days across all IV and SC doses of the SAD and MAD parts of the study. Increases in the serum concentration of total TSLP and IL-13 for lunsekimig versus placebo indicated target engagement. ADA of low titers were detected in four (11.1%) participants who received lunsekimig in the SAD, and seven (43.8%) in the MAD. In conclusion, lunsekimig was well tolerated in healthy participants with a linear PK profile up to single 400 mg IV and SC dose and multiple doses of 100 and 200 mg SC Q2W, with low immunogenicity.


Assuntos
Citocinas , Voluntários Saudáveis , Interleucina-13 , Anticorpos de Domínio Único , Linfopoietina do Estroma do Timo , Humanos , Adulto , Masculino , Feminino , Interleucina-13/antagonistas & inibidores , Interleucina-13/imunologia , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/efeitos adversos , Pessoa de Meia-Idade , Citocinas/imunologia , Citocinas/sangue , Adulto Jovem , Injeções Subcutâneas , Método Duplo-Cego , Relação Dose-Resposta a Droga , Esquema de Medicação
12.
Anal Chem ; 96(25): 10116-10120, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38858219

RESUMO

In this letter, a sensitive microfluidic immunosensor chip was developed using tetrakis(4-aminophenyl)ethene (TPE)-derived covalent organic frameworks (T-COF) as aggregation-induced electrochemiluminescence (AIECL) emitters and nanobodies as efficient immune recognition units for the detection of thymic stromal lymphopoietin (TSLP), a novel target of asthma. The internal rotation and vibration of TPE molecules were constrained within the framework structure, forcing nonradiative relaxation to convert into pronounced radiative transitions. A camel-derived nanobody exhibited superior specificity, higher residual activity and epitope recognition postcuring compared to monoclonal antibodies. Benefiting from the affinity between silver ions (Ag+) and cytosine (C), a double-stranded DNA (dsDNA) embedded with Ag+ was modified onto the surface of TSLP. A positive correlation was obtained between the TSLP concentration (1.00 pg/mL to 4.00 ng/mL) and ECL intensity, as Ag+ was confirmed to be an excellent accelerator of the generation of free radical species. We propose that utilizing COF to constrain luminescent molecules and trigger the AIECL phenomenon is another promising method for preparing signal tags to detect low-abundance disease-related markers.


Assuntos
Citocinas , Técnicas Eletroquímicas , Medições Luminescentes , Estilbenos , Linfopoietina do Estroma do Timo , Citocinas/análise , Citocinas/metabolismo , Estilbenos/química , Humanos , Estruturas Metalorgânicas/química , Técnicas Biossensoriais , Imunoensaio/métodos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Técnicas Analíticas Microfluídicas/instrumentação
13.
Int Immunopharmacol ; 138: 112552, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38917521

RESUMO

Atopic dermatitis (AD) is a prevalent inflammatory skin condition characterized by a multifaceted pathogenesis, which encompasses immune system signaling dysregulation, compromised skin barrier function, and genetic influencers. Sacha inchi (Plukenetia volubilis L.) oil (SIO) has demonstrated potent anti-inflammatory and antioxidant properties, however, the mechanism underlying the beneficial effects of SIO on AD remains unclear. This study aims to investigate the anti-AD effect of SIO and its possible molecular mechanism in mice with AD. The results demonstrated that SIO significantly reduced the degree of skin lesions and scratching, and improved the skin thickness and mast cell infiltration in AD mice. Furthermore, SIO significantly reduced the levels of immunoglobulin E, histamine and thymic stromal lymphopoietin in serum of AD mice. Additionally, it inhibited the expression of tumor necrosis factor-γ, interferon-γ, interleukin-2, interleukin-4, interleukin 1ß and other inflammatory cytokines in the lesions skin of mice. The Western blotting analysis revealed that SIO exhibited an upregulatory effect on the protein expression of filaggrin and loricrin, while concurrently exerting inhibitory effects on the protein expression and phosphorylation levels of P38, ERK, NF-κB, and IκBα within their respective signaling pathways. Consequently, it can be inferred that SIO exerts a significant anti-atopic dermatitis effect by modulating the P38, ERK, NF-κB, and IκBα signaling pathways. This study contributes to expand the research and development potential of SIO, and provides novel insights and potential therapeutic strategies for AD treatment.


Assuntos
Anti-Inflamatórios , Citocinas , Dermatite Atópica , Proteínas Filagrinas , Imunoglobulina E , Mastócitos , Pele , Animais , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Citocinas/metabolismo , Proteínas Filagrinas/metabolismo , Pele/patologia , Pele/efeitos dos fármacos , Pele/metabolismo , Imunoglobulina E/sangue , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Camundongos , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Óleos de Plantas/uso terapêutico , Óleos de Plantas/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Linfopoietina do Estroma do Timo , Histamina/metabolismo , Histamina/sangue , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Humanos , Feminino
14.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892164

RESUMO

Thymic stromal lymphopoietin (TSLP), is a protein belonging to a class of epithelial cytokines commonly called alarmins, which also includes IL-25 and IL-33. Functionally, TSLP is a key player in the immune response to environmental insults, initiating a number of downstream inflammatory pathways. TSLP performs its role by binding to a high-affinity heteromeric complex composed of the thymic stromal lymphopoietin receptor (TSLPR) chain and IL-7Rα. In recent years, the important role of proinflammatory cytokines in the etiopathogenesis of various chronic diseases such as asthma, chronic rhinosinusitis with nasal polyposis (CRSwNP), chronic obstructive pulmonary diseases (COPDs), and chronic spontaneous urticaria has been studied. Although alarmins have been found to be mainly implicated in the mechanisms of type 2 inflammation, studies on monoclonal antibodies against TSLP demonstrate partial efficacy even in patients whose inflammation is not definable as T2 and the so-called low T2. Tezepelumab is a human anti-TSLP antibody that prevents TSLP-TSLPR interactions. Several clinical trials are evaluating the safety and efficacy of Tezepelumab in various inflammatory disorders. In this review, we will highlight major recent advances in understanding the functional role of TSLP, its involvement in Th2-related diseases, and its suitability as a target for biological therapies.


Assuntos
Anticorpos Monoclonais Humanizados , Citocinas , Linfopoietina do Estroma do Timo , Humanos , Citocinas/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Animais , Receptores de Citocinas/metabolismo , Receptores de Citocinas/antagonistas & inibidores , Terapia de Alvo Molecular , Doenças Respiratórias/tratamento farmacológico , Doenças Respiratórias/metabolismo , Asma/tratamento farmacológico , Asma/metabolismo
15.
Arch Dermatol Res ; 316(7): 348, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849562

RESUMO

This study investigates the mechanism through which paeoniflorin inhibits TSLP expression to regulate dendritic cell activation in corticosteroid-dependent dermatitis treatment. Utilizing databases like TCMSP, we identified paeoniflorin's components, targets, and constructed networks. Molecular docking and gene enrichment analysis helped pinpoint key targets and pathways affected by paeoniflorin. In vitro and in vivo models were used to study CD80, CD86, cytokines, T-cell activation, skin lesions, histopathological changes, TSLP, CD80, and CD86 expression. Our study revealed paeoniflorin's active constituent targeting IL-6 in corticosteroid-dependent dermatitis. In vitro experiments demonstrated reduced TSLP expression, CD80, CD86, and cytokine secretion post-paeoniflorin treatment. In vivo, paeoniflorin significantly decreased skin lesion severity, cytokine levels, TSLP, CD80, and CD86 expression. The study highlights paeoniflorin's efficacy in inhibiting TSLP expression and suppressing dendritic cell activation in corticosteroid-dependent dermatitis, suggesting its potential as a therapeutic intervention. Additionally, it offers insights into the complex molecular mechanisms underlying paeoniflorin's anti-inflammatory properties in treating corticosteroid-dependent dermatitis.


Assuntos
Citocinas , Células Dendríticas , Glucosídeos , Monoterpenos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Animais , Citocinas/metabolismo , Monoterpenos/farmacologia , Monoterpenos/uso terapêutico , Humanos , Camundongos , Dermatite/tratamento farmacológico , Dermatite/imunologia , Dermatite/metabolismo , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Pele/patologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Masculino , Linfopoietina do Estroma do Timo , Ativação Linfocitária/efeitos dos fármacos
16.
Balkan Med J ; 41(3): 174-185, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700313

RESUMO

Background: Psoriasis is a chronic inflammatory skin disease that has no cure. While the specific cause of psoriasis is unknown, interactions between immune cells and inflammatory cytokines are believed to be important in its pathogenesis. Thymic stromal lymphopoietin (TSLP) is a cytokine produced by epithelial cells that profoundly affects dendritic cells (DCs) and is involved in allergy and inflammatory diseases. In some studies, its expression is higher in the skin of psoriasis patients, whereas it is increased in treated psoriasis patients when compared with untreated patients in others. Aims: To investigate the role of TSLP in the pathogenesis of psoriasis. Study Design: In vitro and in vivo study. Methods: To investigate the effect of TSLP on psoriasis in vivo, a mouse psoriasis model and shRNA targeting TSLP to reduce its expression were used. Mouse primary bone marrow dendritic cells (BMDCs) were cultured in vitro and used to investigate the signaling pathways activated by TSLP. Results: We found that reducing TSLP expression in psoriasis skin alleviated disease severity. TSLP activated the Janus kinase (JAK)/SYK pathway in psoriatic skin. In vitro studies with BMDCs demonstrated that TSLP increased DC maturation through the JAK/SYK pathway and activated DCs-secreted cytokines that stimulated CD4+ T cells to develop into T helper 17 (Th17) cells by activating STAT3 signaling. The JAK/SYK pathway inhibitor reduced the effect of TSLP on activating BMDCs and promoting Th17 differentiation by CD4+ T cells. Conclusion: These findings indicated that TSLP exerted its immune-modulating effect in psoriasis through the JAK/SYK pathway.


Assuntos
Citocinas , Células Dendríticas , Psoríase , Células Th17 , Linfopoietina do Estroma do Timo , Animais , Humanos , Camundongos , Citocinas/metabolismo , Citocinas/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Janus Quinases , Transdução de Sinais/efeitos dos fármacos , Quinase Syk , Células Th17/efeitos dos fármacos , Células Th17/imunologia
17.
Gut Microbes ; 16(1): 2347025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38693666

RESUMO

Helicobacter pylori (H. pylori) causes a diversity of gastric diseases. The host immune response evoked by H. pylori infection is complicated and can influence the development and progression of diseases. We have reported that the Group 2 innate lymphocytes (ILC2) were promoted and took part in building type-2 immunity in H. pylori infection-related gastric diseases. Therefore, in the present study, we aim to clarify how H. pylori infection induces the activation of ILC2. It was found that macrophages were necessary for activating ILC2 in H. pylori infection. Mechanistically, H. pylori infection up-regulated the expression of indoleamine 2,3-dioxygenase (IDO) in macrophages to induce M2 polarization, and the latter secreted the alarmin cytokine Thymic Stromal Lymphopoietin (TSLP) to arouse ILC2.


Assuntos
Citocinas , Infecções por Helicobacter , Helicobacter pylori , Imunidade Inata , Macrófagos , Helicobacter pylori/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Animais , Camundongos , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Linfopoietina do Estroma do Timo , Linfócitos/imunologia , Humanos
18.
Immunology ; 172(4): 653-668, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38786548

RESUMO

The mechanisms underlying the development of steroid resistance in asthma remain unclear. To establish whether as well as the mechanisms by which the activation of Janus kinases (JAKs) is involved in the development of steroid resistance in asthma, murine steroid-resistant models of the proliferation of group 2 innate lymphoid cells (ILC2s) in vitro and asthmatic airway inflammation in vivo were analysed. ILC2s in the lungs of BALB/c mice were sorted and then incubated with IL-33, thymic stromal lymphopoietin (TSLP), and/or IL-7 with or without dexamethasone (10 nM), the pan-JAK inhibitor, delgocitinib (1-10 000 nM), and/or the Bcl-xL inhibitor, navitoclax (1-100 nM), followed by the detection of viable and apoptotic cells. The anti-apoptotic factor, Bcl-xL was detected in ILC2s by flow cytometry. As a steroid-resistant asthma model, ovalbumin (OVA)-sensitized BALB/c mice were intratracheally challenged with OVA at a high dose of 500 µg four times. Dexamethasone (1 mg/kg, i.p.), delgocitinib (3-30 mg/kg, p.o.), or navitoclax (30 mg/kg, p.o.) was administered during the challenges. Cellular infiltration into the lungs was analysed by flow cytometry. Airway remodelling was histologically evaluated. The following results were obtained. (1) Cell proliferation concomitant with a decrease in apoptotic cells was induced when ILC2s were cultured with TSLP and/or IL-7, and was potently inhibited by dexamethasone. In contrast, when the culture with TSLP and IL-7 was performed in the presence of IL-33, the proliferative response exhibited steroid resistance. Steroid-resistant ILC2 proliferation was suppressed by delgocitinib in a concentration-dependent manner. (2) The culture with IL-33, TSLP, and IL-7 induced the overexpression of Bcl-xL, which was clearly inhibited by delgocitinib, but not by dexamethasone. When ILC2s were treated with navitoclax, insensitivity to dexamethasone was significantly cancelled. (3) The development of airway remodelling and the infiltration of ILC2s into the lungs in the asthma model were not suppressed by dexamethasone, but were dose-dependently inhibited by delgocitinib. Combination treatment with dexamethasone and either delgocitinib or navitoclax synergistically suppressed these responses. Therefore, JAKs appear to play significant roles in the induction of steroid resistance by up-regulating Bcl-xL in ILC2s. The inhibition of JAKs and Bcl-xL has potential as pharmacotherapy for steroid-resistant asthma, particularly that mediated by ILC2s.


Assuntos
Asma , Dexametasona , Resistência a Medicamentos , Imunidade Inata , Janus Quinases , Linfócitos , Camundongos Endogâmicos BALB C , Proteína bcl-X , Animais , Asma/tratamento farmacológico , Asma/imunologia , Asma/metabolismo , Proteína bcl-X/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/efeitos dos fármacos , Camundongos , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Imunidade Inata/efeitos dos fármacos , Janus Quinases/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Feminino , Citocinas/metabolismo , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Interleucina-33/metabolismo , Linfopoietina do Estroma do Timo , Sulfonamidas/farmacologia
19.
Eur J Intern Med ; 125: 28-31, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762432

RESUMO

Chronic obstructive pulmonary disease (COPD) is a main global epidemic increasing as population age and affecting approximately 10% of subjects over 45 years. COPD is a heterogeneous inflammatory disease with several endo-phenotypes and clinical presentations. Although neutrophilic inflammation is canonically considered a hallmark of COPD, eosinophilic inflammation can also be present in a subgroup of patients. Several other immune cells and cytokines play a key role in orchestrating and perpetuating the inflammatory pathways in COPD, making them attractive targets for treating this disorder. Recent studies have started to evaluate the possible role of type 2 (T2) inflammation and epithelial-derived alarmins (TSLP and IL-33) in COPD. Two phase III randomized clinical trials (RCTs) showed a modest reduction in exacerbations in COPD patients with eosinophilic phenotype treated with mepolizumab (anti-IL-5) or benralizumab (anti-IL-5Rα). A phase III RCT showed a 30% reduction in exacerbations in COPD patients with ≥ 300 eosinophils/µL treated with dupilumab (anti-IL-4Rα). These results suggest that blocking a single cytokine (e.g., IL-5) or its main target (i.e., IL-5Rα) is less promising than blocking a wider spectrum of cytokines (i.e., IL-4 and IL-13) in COPD. TSLP and IL-33 are upstream regulators of T2-high and T2-low immune responses in airway inflammation. Several ongoing RCTs are evaluating the efficacy and safety of anti-TSLP (tezepelumab), anti-IL-33 (itepekimab, tozorakimab), and anti-ST2 (astegolimab) in patients with COPD, who experience exacerbations. In conclusion, targeting T2 inflammation or epithelial-derived alarmins might represent a step forward in precision medicine for the treatment of a subset of COPD.


Assuntos
Citocinas , Medicina de Precisão , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Citocinas/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Alarminas , Interleucina-33 , Ensaios Clínicos Fase III como Assunto , Interleucina-5/antagonistas & inibidores , Linfopoietina do Estroma do Timo
20.
Sci Rep ; 14(1): 8098, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582943

RESUMO

Prurigo nodularis (PN) is a chronic inflammatory skin disease that is associated with variability in peripheral blood eosinophil levels and response to T-helper 2 targeted therapies (Th2). Our objective was to determine whether circulating immune profiles with respect to type 2 inflammation differ by race and peripheral blood eosinophil count. Plasma from 56 PN patients and 13 matched healthy controls was assayed for 54 inflammatory biomarkers. We compared biomarker levels between PN and HCs, among PN patients based on absolute eosinophil count, and across racial groups in PN. Eleven biomarkers were elevated in PN versus HCs including interleukin (IL)-12/IL-23p40, tumor necrosis factor-alpha (TNF-α), Thymic stromal lymphopoietin (TSLP), and macrophage-derived chemokine (MDC/CCL22). Additionally, PN patients with AEC > 0.3 K cells/µL had higher Th2 markers (eotaxin, eotaxin-3, TSLP, MCP-4/CCL13), and African American PN patients had lower eosinophils, eotaxin, and eotaxin-3 versus Caucasian and Asian PN patients (p < 0.05 for all). Dupilumab responders had higher AEC (p < 0.01), were more likely to be Caucasian (p = 0.02) or Asian (p = 0.05) compared to African Americans, and more often had a history of atopy (p = 0.08). This study suggests that blood AEC > 0.3 K and Asian and Caucasian races are associated with Th2 skewed circulating immune profiles and response to Th2 targeted therapies.


Assuntos
Citocinas , Prurigo , Humanos , Quimiocina CCL26 , Prurigo/tratamento farmacológico , Linfopoietina do Estroma do Timo , Inflamação , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA