Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.711
Filtrar
1.
Org Biomol Chem ; 22(34): 6981-6987, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39118527

RESUMO

Glyoxal (GL) is a reactive α-dicarbonyl compound generated from glycated proteins in the Maillard reaction. It has attracted particular attention over the past few years because of its possible clinical significance in chronic and age-related diseases. In this work, a reaction-based red emission fluorescent probe GL1 has been synthesized successfully by grafting an alkyl group onto an amino group to regulate its selectivity for GL. Under physiological conditions, the fluorescence intensity of GL1 at 640 nm obviously increased with the increase of GL concentration, and it exhibited high selectivity for GL over other reactive carbonyl compounds, as well as a lower detection limit (0.021 µM) and a larger Stokes shift (112 nm). At the same time, GL1 can selectively accumulate in mitochondria and can be used to detect exogenous and endogenous GL in living cells with low cytotoxicity.


Assuntos
Corantes Fluorescentes , Glioxal , Fenilenodiaminas , Glioxal/química , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Fenilenodiaminas/química , Fenilenodiaminas/síntese química , Carbocianinas/química , Células HeLa , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular , Imagem Óptica , Mitocôndrias/metabolismo
2.
Sci Rep ; 14(1): 19877, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191890

RESUMO

Osteoarthritis (OA) is a common joint disease associated with the aging of the population, and it reduces the quality of life of patients. It is characterized by the destruction of articular cartilage and the secretion of inflammatory cytokines. Owing to the unclear pathogenesis of OA, current treatment methods have significant limitations. Oxidative stress has been revealed to play an important role in the development of OA. Our experiments indicated that the levels of GSH decreased and the level of MDA increased in chondrocytes, which induced ferroptosis in chondrocytes in OA. We also revealed that ferroptosis was the main mechanism of cartilage destruction caused by the addition of the ferroptosis activator erastin and the ferroptosis inhibitor ferrostatin-1. NOX1 is the main modulator of oxidative stress by increasing the generation of reactive oxidative species (ROS). We suppressed the expression of NOX1 in chondrocytes through cell transfection. The expression of collagen II and MMP13, and the secretion of IL-1ß and TNF-α were reversed. An increase in the mitochondrial membrane potential and a decrease in the level of intracellular ROS indicate an improvement in oxidative damage. Additionally, we determined the effect of the Nrf2/HO-1 pathway on NOX1-mediated chondrocyte injury. We found that NOX1 inhibited the expression of Nrf2/HO-1, but the activation of Nrf2 improved the oxidative damage to chondrocytes in vivo and vitro. This study revealed that NOX1-mediated oxidative stress induces chondrocyte ferroptosis by inhibiting the Nrf2/HO-1 pathway. Our findings contribute to revealing the pathogenesis of OA, providing targets for drug design and optimizing the clinical treatment of OA.


Assuntos
Condrócitos , Ferroptose , Heme Oxigenase-1 , NADPH Oxidase 1 , Fator 2 Relacionado a NF-E2 , Osteoartrite , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais , Condrócitos/metabolismo , Ferroptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Animais , NADPH Oxidase 1/metabolismo , NADPH Oxidase 1/genética , Heme Oxigenase-1/metabolismo , Camundongos , Osteoartrite/metabolismo , Osteoartrite/patologia , Espécies Reativas de Oxigênio/metabolismo , Cicloexilaminas/farmacologia , Masculino , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Humanos , Proteínas de Membrana , Fenilenodiaminas
3.
Cell Death Dis ; 15(8): 600, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160159

RESUMO

Crizotinib carries an FDA hepatotoxicity warning, yet analysis of the FAERS database suggests that the severity of its hepatotoxicity risks, including progression to hepatitis and liver failure, might be underreported. However, the underlying mechanism remains poorly understood, and effective intervention strategies are lacking. Here, mRNA-sequencing analysis, along with KEGG and GO analyses, revealed that DEGs linked to Crizotinib-induced hepatotoxicity predominantly associate with the ferroptosis pathway which was identified as the principal mechanism behind Crizotinib-induced hepatocyte death. Furthermore, we found that ferroptosis inhibitors, namely Ferrostatin-1 and Deferoxamine mesylate, significantly reduced Crizotinib-induced hepatotoxicity and ferroptosis in both in vivo and in vitro settings. We have also discovered that overexpression of AAV8-mediated Nrf2 could mitigate Crizotinib-induced hepatotoxicity and ferroptosis in vivo by restoring the imbalance in glutathione metabolism, iron homeostasis, and lipid peroxidation. Additionally, both Stat1 deficiency and the Stat1 inhibitor NSC118218 were found to reduce Crizotinib-induced ferroptosis. Mechanistically, Crizotinib induces the phosphorylation of Stat1 at Ser727 but not Tyr701, promoting the transcriptional inhibition of Nrf2 expression after its entry into the nucleus to promote ferroptosis. Meanwhile, we found that MgIG and GA protected against hepatotoxicity to counteract ferroptosis without affecting or compromising the anti-cancer activity of Crizotinib, with a mechanism potentially related to the Stat1/Nrf2 pathway. Overall, our findings identify that the phosphorylation activation of Stat1 Ser727, rather than Tyr701, promotes ferroptosis through transcriptional inhibition of Nrf2, and highlight MgIG and GA as potential therapeutic approaches to enhance the safety of Crizotinib-based cancer therapy.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Crizotinibe , Ferroptose , Fator 2 Relacionado a NF-E2 , Fator de Transcrição STAT1 , Ferroptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Animais , Crizotinibe/farmacologia , Crizotinibe/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Fenilenodiaminas/farmacologia , Camundongos Endogâmicos C57BL , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
4.
Int J Nanomedicine ; 19: 8253-8270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39157734

RESUMO

Background: Myocardial infarction (MI) is characterized by irreversible cardiomyocyte death resulting from an inadequate supply of oxygenated blood to the myocardium. Recent studies have indicated that ferroptosis, a form of regulated cell death, exacerbates myocardial injury during MI. Concurrently, the upregulation of CD47 on the surface of damaged myocardium following MI impairs the clearance of dead cells by macrophages, thereby hindering efferocytosis. In this context, simultaneously inhibiting ferroptosis and enhancing efferocytosis may represent a promising strategy to mitigate myocardial damage post-MI. Methods: In this study, we engineered platelet membrane-coated hollow mesoporous silicon nanoparticles (HMSN) to serve as a drug delivery system, encapsulating ferroptosis inhibitor, Ferrostatin-1, along with an anti-CD47 antibody. We aimed to assess the potential of these nanoparticles (designated as Fer-aCD47@PHMSN) to specifically target the site of MI and evaluate their efficacy in reducing cardiomyocyte death and inflammation. Results: The platelet membrane coating on the nanoparticles significantly enhanced their ability to successfully target the site of myocardial infarction (MI). Our findings demonstrate that treatment with Fer-aCD47@PHMSN resulted in a 38.5% reduction in cardiomyocyte ferroptosis under hypoxia, indicated by decreased lipid peroxidation and increased in vitro. Additionally, Fer-aCD47@PHMSN improved cardiomyocyte efferocytosis by approximately 15% in vitro. In MI mice treated with Fer-aCD47@PHMSN, we observed a substantial reduction in cardiomyocyte death (nearly 30%), decreased inflammation, and significant improvement in cardiac function. Conclusion: Our results demonstrated that the cooperation between the two agents induced anti-ferroptosis effects and enhanced dead cardiomyocyte clearance by macrophage as well as anti-inflammation effects. Thus, our nanoparticle Fer-aCD47@PHMSN provides a new therapeutic strategy for targeted therapy of MI.


Assuntos
Antígeno CD47 , Ferroptose , Infarto do Miocárdio , Miócitos Cardíacos , Nanopartículas , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Ferroptose/efeitos dos fármacos , Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Nanopartículas/química , Camundongos , Antígeno CD47/metabolismo , Fagocitose/efeitos dos fármacos , Cicloexilaminas/farmacologia , Cicloexilaminas/química , Masculino , Fenilenodiaminas/farmacologia , Fenilenodiaminas/química , Macrófagos/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Portadores de Fármacos/química , Humanos , Eferocitose
5.
FASEB J ; 38(15): e23850, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39091212

RESUMO

Atherosclerosis is a leading cause of cardiovascular diseases (CVDs), often resulting in major adverse cardiovascular events (MACEs), such as myocardial infarction and stroke due to the rupture or erosion of vulnerable plaques. Ferroptosis, an iron-dependent form of cell death, has been implicated in the development of atherosclerosis. Despite its involvement in CVDs, the specific role of ferroptosis in atherosclerotic plaque stability remains unclear. In this study, we confirmed the presence of ferroptosis in unstable atherosclerotic plaques and demonstrated that the ferroptosis inhibitor ferrostatin-1 (Fer-1) stabilizes atherosclerotic plaques in apolipoprotein E knockout (Apoe-/-) mice. Using bioinformatic analysis combining RNA sequencing (RNA-seq) with single-cell RNA sequencing (scRNA-seq), we identified Yes-associated protein 1 (YAP1) as a potential key regulator of ferroptosis in vascular smooth muscle cells (VSMCs) of unstable plaques. In vitro, we found that YAP1 protects against oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in VSMCs. Mechanistically, YAP1 exerts its anti-ferroptosis effects by regulating the expression of glutaminase 1 (GLS1) to promote the synthesis of glutamate (Glu) and glutathione (GSH). These findings establish a novel mechanism where the inhibition of ferroptosis promotes the stabilization of atherosclerotic plaques through the YAP1/GLS1 axis, attenuating VSMC ferroptosis. Thus, targeting the YAP1/GLS1 axis to suppress VSMC ferroptosis may represent a novel strategy for preventing and treating unstable atherosclerotic plaques.


Assuntos
Ferroptose , Músculo Liso Vascular , Placa Aterosclerótica , Proteínas de Sinalização YAP , Animais , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Camundongos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Proteínas de Sinalização YAP/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Camundongos Knockout , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fenilenodiaminas/farmacologia , Cicloexilaminas/farmacologia , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética
6.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125656

RESUMO

Abnormal shifts in global climate, leading to extreme weather, significantly threaten the safety of individuals involved in outdoor activities. Hypothermia-induced coma or death frequently occurs in clinical and forensic settings. Despite this, the precise mechanism of central nervous system injury due to hypothermia remains unclear, hindering the development of targeted clinical treatments and specific forensic diagnostic indicators. The GEO database was searched to identify datasets related to hypothermia. Post-bioinformatics analyses, DEGs, and ferroptosis-related DEGs (FerrDEGs) were intersected. GSEA was then conducted to elucidate the functions of the Ferr-related genes. Animal experiments conducted in this study demonstrated that hypothermia, compared to the control treatment, can induce significant alterations in iron death-related genes such as PPARG, SCD, ADIPOQ, SAT1, EGR1, and HMOX1 in cerebral cortex nerve cells. These changes lead to iron ion accumulation, lipid peroxidation, and marked expression of iron death-related proteins. The application of the iron death inhibitor Ferrostatin-1 (Fer-1) effectively modulates the expression of these genes, reduces lipid peroxidation, and improves the expression of iron death-related proteins. Severe hypothermia disrupts the metabolism of cerebral cortex nerve cells, causing significant alterations in ferroptosis-related genes. These genetic changes promote ferroptosis through multiple pathways.


Assuntos
Córtex Cerebral , Ferroptose , Hipotermia , Neurônios , Ferroptose/genética , Animais , Hipotermia/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Neurônios/metabolismo , Ferro/metabolismo , Peroxidação de Lipídeos , Masculino , Ratos , Fenilenodiaminas/farmacologia , Cicloexilaminas
7.
Anal Chem ; 96(32): 13131-13139, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39096243

RESUMO

Redox nanozymes have exhibited various applications in recognizing environmental pollutants but not aromatic amines (a type of typical pollutant). Herein, with Cu2+ as a node and tryptophan (Trp) as a linker, Cu-Trp as a specific ascorbic acid oxidase mimic was synthesized, which could catalyze ascorbic acid (AA) oxidation to dehydroascorbic acid (DHAA). Alternatively, with other natural amino acids as linkers to synthesize Cu-based nanozymes, such catalytic performances are also observed. The as-produced DHAA could react with o-phenylenediamine (OPD) and its derivatives (2,3-naphthalene diamine (NDA), 4-nitro-o-phenylenediamine (4-NO2-OPD), 4-fluoro-o-phenylenediamine (4-F-OPD), 4-chloro-o-phenylenediamine(4-Cl-OPD), and 4-bromo-o-phenylenediamine(4-Br-OPD)) to form a Schiff base and emit fluorescence. Based on the results, with Cu-Trp + AA and Cu-Arg (with arginine (Arg) as a linker) + AA as two sensing channels and extracted red, green, and blue (RGB) values from emitted fluorescence as read-out signals, a visual sensor array was constructed to efficiently distinguish OPD, NDA, 4-NO2-OPD, 4-F-OPD, 4-Cl-OPD, and 4-Br-OPD as low as 10 µM. Such detecting performance was further confirmed through discriminating binary, ternary, quinary, and senary mixtures with various concentration ratios, recognizing 18 unknown samples, and even quantitatively analyzing single aromatic amine. Finally, the discriminating ability was further validated in environmental waters, providing an efficient assay for large-scale scanning levels of multiple aromatic amines.


Assuntos
Aminas , Ascorbato Oxidase , Bases de Schiff , Bases de Schiff/química , Aminas/química , Aminas/análise , Ascorbato Oxidase/química , Ascorbato Oxidase/metabolismo , Cobre/química , Cobre/análise , Ácido Ascórbico/química , Ácido Ascórbico/análise , Fenilenodiaminas/química , Oxirredução
8.
Phys Chem Chem Phys ; 26(32): 21677-21687, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39091182

RESUMO

In recent years, great progress has been made on the study of nanozymes with enzyme-like properties. Here, bimetallic Fe and Ni nanoclusters were anchored on the nanosheets of nitrogen-rich layered graphitic carbon nitride by one-step pyrolysis at high temperature (Fe/Ni-CN). The loading content of Fe and Ni on Fe/Ni-CN is as high as 8.0%, and Fe/Ni-CN has a high specific surface area of 121.86 m2 g-1. The Fe/Ni-CN can effectively oxidize 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, and exhibits efficient peroxidase-like activity, leading to a 17.2-fold increase compared to pure graphitic carbon nitride (CN). Similar to the natural horseradish peroxidase (HRP), the Fe/Ni-CN nanozyme follows catalytic kinetics. The Michaelis-Menten constant (Km) value of the Fe/Ni-CN nanozyme for TMB is about 8.3-fold lower than that for HRP, which means that the Fe/Ni-CN nanozyme has better affinity for TMB. In addition, the catalytic mechanism was investigated by combination of free radical quenching experiments and density-functional theory (DFT) calculations. The results show that the high peroxidase-like activity is due to the easy adsorption of H2O2 after bimetal loading, which is conducive to the production of hydroxyl radicals. Based on the extraordinary peroxidase-like activity, the colorimetric detection of p-phenylenediamine (PPD) was constructed with a wide linear range of 0.2-30 µM and a low detection limit of 0.02 µM. The sensor system has been successfully applied to the detection of residual PPD in real dyed hair samples. The results show that the colorimetric method is sensitive, highly selective and accurate. This study provides a new idea for the efficient enhancement of nanozyme activity and effective detection of PPD by a bimetallic synergistic strategy.


Assuntos
Colorimetria , Grafite , Ferro , Níquel , Compostos de Nitrogênio , Fenilenodiaminas , Grafite/química , Fenilenodiaminas/química , Colorimetria/métodos , Compostos de Nitrogênio/química , Níquel/química , Ferro/química , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Nitrilas/química , Limite de Detecção , Catálise , Benzidinas/química
9.
Addict Biol ; 29(8): e13428, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39087789

RESUMO

The increasing rates of drug misuse highlight the urgency of identifying improved therapeutics for treatment. Most drug-seeking behaviours that can be modelled in rodents utilize the repeated intravenous self-administration (SA) of drugs. Recent studies examining the mesolimbic pathway suggest that Kv7/KCNQ channels may contribute to the transition from recreational to chronic drug use. However, to date, all such studies used noncontingent, experimenter-delivered drug model systems, and the extent to which this effect generalizes to rats trained to self-administer drugs is not known. Here, we tested the ability of retigabine (ezogabine), a Kv7 channel opener, to regulate instrumental behaviour in male Sprague Dawley rats. We first validated the ability of retigabine to target experimenter-delivered cocaine in a conditioned place preference (CPP) assay and found that retigabine reduced the acquisition of place preference. Next, we trained rats for cocaine-SA under a fixed-ratio or progressive-ratio reinforcement schedule and found that retigabine pretreatment attenuated the SA of low to moderate doses of cocaine. This was not observed in parallel experiments, with rats self-administering sucrose, a natural reward. Compared with sucrose-SA, cocaine-SA was associated with reductions in the expression of the Kv7.5 subunit in the nucleus accumbens, without alterations in Kv7.2 and Kv7.3. Therefore, these studies reveal a reward-specific reduction in SA behaviour and support the notion that Kv7 is a potential therapeutic target for human psychiatric diseases with dysfunctional reward circuitry.


Assuntos
Carbamatos , Cocaína , Fenilenodiaminas , Ratos Sprague-Dawley , Autoadministração , Sacarose , Animais , Fenilenodiaminas/farmacologia , Fenilenodiaminas/administração & dosagem , Carbamatos/farmacologia , Carbamatos/administração & dosagem , Cocaína/farmacologia , Cocaína/administração & dosagem , Masculino , Ratos , Sacarose/administração & dosagem , Sacarose/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Canais de Potássio KCNQ/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem
10.
Mikrochim Acta ; 191(9): 528, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120734

RESUMO

A dual-template molecularly imprinted electrochemical sensor was developed for the simultaneous detection of serotonin (5-HT) and glutamate (Glu). First, amino-functionalized reduced graphene oxide (NRGO) was used as the modification material of a GCE to increase its electrical conductivity and specific surface area, using Glu and 5-HT as dual-template molecules and o-phenylenediamine (OPD) with self-polymerization ability as functional monomers. Through self-assembly and electropolymerization, dual-template molecularly imprinted polymers were formed on the electrode. After removing the templates, the specific recognition binding sites were exposed. The amount of NRGO, polymerization parameters, and elution parameters were further optimized to construct a dual-template molecularly imprinted electrochemical sensor, which can specifically recognize double-target molecules Glu and 5-HT. The differential pulse voltammetry (DPV) technique was used to achieve simultaneous detection of Glu and 5-HT based on their distinct electrochemical activities under specific conditions. The sensor showed a good linear relationship for Glu and 5-HT in the range 1 ~ 100 µM, and the detection limits were 0.067 µM and 0.047 µM (S/N = 3), respectively. The sensor has good reproducibility, repeatability, and selectivity. It was successfully utilized to simultaneously detect Glu and 5-HT in mouse serum, offering a more dependable foundation for objectively diagnosing and early warning of depression. Additionally, the double signal sensing strategy also provides a new approach for the simultaneous detection of both electroactive and non-electroactive substances.


Assuntos
Técnicas Eletroquímicas , Ácido Glutâmico , Grafite , Limite de Detecção , Impressão Molecular , Fenilenodiaminas , Serotonina , Serotonina/sangue , Serotonina/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Animais , Ácido Glutâmico/análise , Ácido Glutâmico/sangue , Ácido Glutâmico/química , Grafite/química , Camundongos , Fenilenodiaminas/química , Depressão/diagnóstico , Depressão/sangue , Eletrodos , Biomarcadores/sangue , Biomarcadores/análise , Reprodutibilidade dos Testes
11.
BMC Gastroenterol ; 24(1): 245, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090535

RESUMO

BACKGROUND: Ferroptosis is a newly recognized form of regulatory cell death characterized by severe lipid peroxidation triggered by iron overload and the production of reactive oxygen species (ROS). However, the role of ferroptosis in severe acute pancreatitis(SAP) has not been fully elucidated. METHODS: We established four severe acute pancreatitis models of rats including the sham control group, the SAP group, the Fer -1-treated SAP (SAP + Fer-1) group, the 3-MA-treated SAP (SAP + 3-MA) group. The SAP group was induced by retrograde injection of sodium taurocholate into the pancreatic duct. The other two groups were intraperitoneally injected with ferroptosis inhibitor (Fer-1) and autophagy inhibitor (3-MA), respectively. The model of severe acute pancreatitis with amylase crest-related inflammatory factors was successfully established. Then we detected ferroptosis (GPX4, SLC7A1 etc.) and autophagy-related factors (LC3II, p62 ect.) to further clarify the relationship between ferroptosis and autophagy. RESULTS: Our study found that ferroptosis occurs during the development of SAP, such as iron and lipid peroxidation in pancreatic tissues, decreased levels of reduced glutathione peroxidase 4 (GPX 4) and glutathione (GSH), and increased malondialdehyde(MDA) and significant mitochondrial damage. In addition, ferroptosis related proteins such as GPX4, solute carrier family 7 member 11(SLC7A11) and ferritin heavy chain 1(FTH1) were significantly decreased. Next, the pathogenesis of ferroptosis in SAP was studied. First, treatment with the ferroptosis inhibitor ferrostatin-1(Fer-1) significantly alleviated ferroptosis in SAP. Interestingly, autophagy occurs during the pathogenesis of SAP, and autophagy promotes the occurrence of ferroptosis in SAP. Moreover, 3-methyladenine (3-MA) inhibition of autophagy can significantly reduce iron overload and ferroptosis in SAP. CONCLUSIONS: Our results suggest that ferroptosis is a novel pathogenesis of SAP and is dependent on autophagy. This study provides a new theoretical basis for the study of SAP.


Assuntos
Autofagia , Modelos Animais de Doenças , Ferroptose , Peroxidação de Lipídeos , Pancreatite , Ratos Sprague-Dawley , Animais , Pancreatite/metabolismo , Pancreatite/patologia , Ratos , Masculino , Adenina/análogos & derivados , Adenina/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ácido Taurocólico , Cicloexilaminas/farmacologia , Pâncreas/patologia , Pâncreas/metabolismo , Fenilenodiaminas/farmacologia , Malondialdeído/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doença Aguda , Glutationa/metabolismo , Ferro/metabolismo
12.
ACS Sens ; 9(8): 4265-4276, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39031767

RESUMO

Homocysteine (Hcy) and C-reactive protein (CRP) are critical biomarkers for numerous chronic diseases, with cardiovascular disease (CVD) being the most prevalent. The ability to simultaneously detect both biomarkers in point-of-care settings is in high demand for CVD early diagnosis and prevention. Herein, we prepared the eutectic gallium indium (EGaIn) nanoparticles decorated with p-phenylenediamine (PPD) on the surface to facilitate the subsequent attachment of gold nanoparticles (AuNPs) to achieve EGaIn-PPD@Au, which was modified on the screen-printed electrochemical paper-based analytical devices (ePADs). Aptamers that are specific to Hcy and CRP were then immobilized on the EGaIn-PPD@Au surface to achieve the sensing interface on ePADs. The presence of EGaIn-PPD@Au significantly enhanced the electrical conductivity, leading to amplified electrochemical signals. This aptasensor demonstrated high specificity, capable of detecting Hcy in a range of 1-50 µM with a detection limit of 0.22 µM, and the detection range for CRP was 1-100 ng/mL with a detection limit of 0.039 ng/mL. The aptasensor also effectively detected Hcy and CRP in clinical saliva samples, yielding an area under the curve (AUC) of about 0.80 when the individual biomarker was considered and 0.93 when both biomarkers were taken into account. The positive correlation observed between salivary and blood concentrations of Hcy and CRP, coupled with their association with cardiovascular disease (CVD), suggested the potential of this methodology as a noninvasive point-of-care strategy for the early diagnosis of CVD.


Assuntos
Proteína C-Reativa , Doenças Cardiovasculares , Diagnóstico Precoce , Gálio , Ouro , Homocisteína , Índio , Nanopartículas Metálicas , Saliva , Proteína C-Reativa/análise , Humanos , Homocisteína/análise , Homocisteína/sangue , Doenças Cardiovasculares/diagnóstico , Saliva/química , Ouro/química , Nanopartículas Metálicas/química , Índio/química , Gálio/química , Técnicas Eletroquímicas/métodos , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Técnicas Biossensoriais/métodos , Papel , Fenilenodiaminas/química , Biomarcadores/sangue , Biomarcadores/análise
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167354, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39004378

RESUMO

Acute lung injury (ALI) is a serious disorder characterized by the release of pro-inflammatory cytokines and cascade activation of macrophages. Ferroptosis, a form of iron-dependent cell death triggered by intracellular phospholipid peroxidation, has been implicated as an internal mechanism underlying ALI. In this study, we investigated the effects of m6A demethylase fat mass and obesity-associated protein (FTO) on the inhibition of macrophage ferroptosis in ALI. Using a mouse model of lipopolysaccharide (LPS)-induced ALI, we observed the induction of ferroptosis and its co-localization with the macrophage marker F4/80, suggesting that ferroptosis might be induced in macrophages. Ferroptosis was promoted during LPS-induced inflammation in macrophages in vitro, and the inflammation was counteracted by the ferroptosis inhibitor ferrostatin-1 (fer-1). Given that FTO showed lower expression levels in the lung tissue of mice with ALI and inflammatory macrophages, we further dissected the regulatory capacity of FTO in ferroptosis. The results demonstrated that FTO alleviated macrophage inflammation by inhibiting ferroptosis. Mechanistically, FTO decreased the stability of ACSL4 mRNA via YTHDF1, subsequently inhibiting ferroptosis and inflammation by interrupting polyunsaturated fatty acid consumption. Moreover, FTO downregulated the synthesis and secretion of prostaglandin E2, thereby reducing ferroptosis and inflammation. In vivo, the FTO inhibitor FB23-2 aggravated lung injury, the inflammatory response, and ferroptosis in mice with ALI; however, fer-1 therapy mitigated these effects. Overall, our findings revealed that FTO may function as an inhibitor of the inflammatory response driven by ferroptosis, emphasizing its potential as a target for ALI treatment.


Assuntos
Lesão Pulmonar Aguda , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Coenzima A Ligases , Ferroptose , Inflamação , Macrófagos , Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Cicloexilaminas , Modelos Animais de Doenças , Ferroptose/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Lipopolissacarídeos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Fenilenodiaminas/farmacologia , Células RAW 264.7
14.
Sci Total Environ ; 948: 175018, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39059665

RESUMO

The widespread occurrence and accumulation of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its quinone metabolite, 6PPD quinone (6PPD-Q), have been globally recognized as a critical environmental issue. However, knowledge on the adverse effects of 6PPD and 6PPD-Q on freshwater invertebrates is limited. This study investigated the effects of 6PPD and its oxidative byproduct, 6PPD-Q, on the growth and reproduction of Daphnia pulex. Through 21-day exposure experiments, we measured the uptake of 0.1, 1, and 10 µg/L 6PPD and 6PPD-Q by D. pulex and assessed the effects on growth and fecundity of D. pulex. While 6PPD and 6PPD-Q did not affect the mortality rate of D. pulex, 6PPD-Q exposure inhibited the growth of D. pulex, indicating potential ecological risks. In particular, the reproductive capacity of D. pulex remained unaffected across the tested concentrations of 6PPD and 6PPD-Q, suggesting specific toxicological pathways that warrant further investigation. This study underscored the importance of evaluating the sublethal effects of emerging contaminants such as 6PPD and 6PPD-Q on aquatic invertebrates, and highlighted the need for comprehensive risk assessments to better understand their environmental impacts.


Assuntos
Daphnia , Reprodução , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Reprodução/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Fenilenodiaminas/toxicidade , Quinonas/metabolismo , Quinonas/toxicidade , Água Doce , Cladocera/efeitos dos fármacos , Cladocera/fisiologia
15.
Ecotoxicol Environ Saf ; 281: 116680, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964057

RESUMO

Inhaling polyhexamethylene guanidine (PHMG) aerosol, a broad-spectrum disinfectant, can lead to severe pulmonary fibrosis. Ferroptosis, a form of programmed cell death triggered by iron-dependent lipid peroxidation, is believed to play a role in the chemical-induced pulmonary injury. This study aimed to investigate the mechanism of ferroptosis in the progression of PHMG-induced pulmonary fibrosis. C57BL/6 J mice and the alveolar type II cell line MLE-12 were used to evaluate the toxicity of PHMG in vivo and in vitro, respectively. The findings indicated that iron deposition was observed in PHMG induced pulmonary fibrosis mouse model and ferroptosis related genes have changed after 8 weeks PHMG exposure. Additionally, there were disturbances in the antioxidant system and mitochondrial damage in MLE-12 cells following a 12-hour treatment with PHMG. Furthermore, the study observed an increase in lipid peroxidation and a decrease in GPX4 activity in MLE-12 cells after exposure to PHMG. Moreover, pretreatment with the ferroptosis inhibitors Ferrostatin-1 (Fer-1) and Liproxstatin-1 (Lip-1) not only restored the antioxidant system and GPX4 activity but also mitigated lipid peroxidation. Current data exhibit the role of ferroptosis pathway in PHMG-induced pulmonary fibrosis and provide a potential target for future treatment.


Assuntos
Ferroptose , Guanidinas , Peroxidação de Lipídeos , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fibrose Pulmonar , Animais , Ferroptose/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Camundongos , Peroxidação de Lipídeos/efeitos dos fármacos , Linhagem Celular , Guanidinas/toxicidade , Guanidinas/farmacologia , Masculino , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Cicloexilaminas/farmacologia , Fenilenodiaminas , Quinoxalinas , Compostos de Espiro
16.
J Chromatogr A ; 1731: 465195, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39038416

RESUMO

N,N'-Substituted p-phenylenediamine quinones (PPD-Qs) are the emerging toxicant, which transform from the rubber tire antioxidant N,N'-substituted p-phenylenediamines (PPDs). Because of their potential toxic and widespread occurrence in the environment, PPD-Qs have received great attention. However, efficiently extracting PPD-Qs from complex samples is still a challenge. Herein, a cysteine functional covalent organic framework (Cys-COF) designed according to the "donor-acceptor" sites of hydrogen bonding of PPD-Qs was synthesized via click reaction and then used as solid-phase extraction (SPE) adsorbent. Cys-COF can form the seven-member ring adsorption structure with PPD-Qs via hydrogen bonding. The adsorption mechanism was tentatively revealed by density functional theory (DFT). After optimizing the Cys-COF-SPE parameters, PPD-Qs were efficiently extracted from water, soil, sediment, and fish, followed by detection using ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The Cys-COF-SPE-UHPLC-MS/MS method exhibited ideal linearity (R2 ≥ 0.9932), high relative recoveries (80.4-111 %), and low limits of detection (0.0001-0.0013 ng mL-1). In addition, the bioconcentration kinetics in goldfish provides a feasible platform to investigate the toxicity and accumulated ability of PPD-Qs.


Assuntos
Química Click , Cisteína , Fenilenodiaminas , Quinonas , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Fenilenodiaminas/química , Cisteína/química , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Quinonas/química , Quinonas/isolamento & purificação , Química Click/métodos , Cromatografia Líquida de Alta Pressão/métodos , Animais , Limite de Detecção , Adsorção , Estruturas Metalorgânicas/química , Peixes
17.
Sci Total Environ ; 948: 174449, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38969117

RESUMO

Substituted p-phenylenediamines (PPDs), a class of antioxidants, have been widely used to extend the lifespan of rubber products, such as tires and pipes. During use, PPDs will generate their quinone derivatives (PPD-Qs). In recent years, PPDs and PPD-Qs have been detected in the global environment. Among them, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q), the oxidation product of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), has been identified as highly toxic to coho salmon, with the lethal concentration of 50 % (LC50) being 95 ng/L, highlighting it as an emerging pollutant of great concern. This review summarizes the physicochemical properties, global environmental distribution, bioaccessibility, potential toxicity, human exposure risk, and green measures of PPDs and PPD-Qs. These chemicals exhibit lipophilicity, bioaccumulation potential, and poor aqueous stability. They have been found in water, air, dust, soil, and sediment worldwide, indicating their significance as emerging pollutants. Notably, current studies have identified electronic waste (e-waste), such as discarded wires and cables, as a non-negligible source of PPDs and PPD-Qs, in addition to tire wear. PPDs and PPD-Qs exhibit strong bioaccumulation in aquatic organisms and mammals, with a tendency for biomagnification within the food web, posing health threats to humans. Available toxicity data indicate that PPDs and PPD-Qs have negative effects on aquatic organisms, mammals, and invertebrates. Acute exposure leads to death and acute damage, and long-term exposure can cause a series of adverse effects, including growth and development toxicity, reproductive toxicity, neurotoxicity, intestinal toxicity, and multi-organ damage. This paper discusses current research gaps and offers recommendations to understand better the occurrence, behavior, toxicity, and environmental exposure risks of PPDs and PPD-Qs.


Assuntos
Antioxidantes , Poluentes Ambientais , Fenilenodiaminas , Fenilenodiaminas/toxicidade , Humanos , Poluentes Ambientais/toxicidade , Quinonas/toxicidade , Exposição Ambiental , Monitoramento Ambiental
18.
Otol Neurotol ; 45(8): 947-953, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39072683

RESUMO

BACKGROUND: Gentamicin is a commonly used aminoglycoside antibiotic, with ototoxicity as a significant side effect. Ferroptosis, an iron-dependent form of cell death, has been implicated in a variety of disorders. Whether ferroptosis impacts gentamicin ototoxicity is not yet known. The current work used an in-vitro model to examine the influence of gentamicin-induced ferroptosis on cochlear hair cell damage and probable molecular biological pathways. METHODS: House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were treated with different concentrations of gentamicin for 24 hours, with or without ferrostatin-1 pretreatment, to observe gentamicin-induced ferroptosis. The role of p53/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling in gentamicin-induced ferroptosis was explored by pretreating cells with the p53 inhibitor pifithrin-α (PFT-α). We investigated the effect of gentamicin on cells by assessing cell viability. Cellular proteins were isolated and Western blots were performed to detect changes in the expression of p53, SLC7A11, and GPX4. Fluorescence staining was used to assess levels of reactive oxygen species. An enzymatic detection kit was used to detect glutathione, Fe, and malondialdehyde markers. RESULTS: Gentamicin reduced cell viability, glutathione content, and SLC7A11 and GPX4 protein levels, and increased levels of p53 protein, reactive oxygen species, malondialdehyde, and Fe. These effects were largely blocked by pretreatment with ferrostatin-1. Pretreatment with the p53 inhibitor PFT-α prevented the gentamicin-induced reduction in SLC7A11 and GPX4, which alleviated several features of ferroptosis including glutathione depletion, iron overload, and lipid peroxidation build-up. CONCLUSION: Gentamicin induces ferroptosis in the HEI-OC1 cell line, and the mechanism may be related to the p53/SLC7A11/GPX4 signaling pathway.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Antibacterianos , Ferroptose , Gentamicinas , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Transdução de Sinais , Proteína Supressora de Tumor p53 , Ferroptose/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Gentamicinas/toxicidade , Gentamicinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Sistema y+ de Transporte de Aminoácidos/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Linhagem Celular , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Órgão Espiral/efeitos dos fármacos , Órgão Espiral/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cicloexilaminas/farmacologia , Glutationa Peroxidase/metabolismo , Fenilenodiaminas
19.
J Physiol ; 602(15): 3769-3791, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38976504

RESUMO

Fragile X syndrome (FXS), the most frequent monogenic form of intellectual disability, is caused by transcriptional silencing of the FMR1 gene that could render neuronal hyperexcitability. Here we show that pyramidal cells (PCs) in the dorsal CA1 region of the hippocampus elicited a larger action potential (AP) number in response to suprathreshold stimulation in juvenile Fmr1 knockout (KO) than wild-type (WT) mice. Because Kv7/M channels modulate CA1 PC excitability in rats, we investigated if their dysfunction produces neuronal hyperexcitability in Fmr1 KO mice. Immunohistochemical and western blot analyses showed no differences in the expression of Kv7.2 and Kv7.3 channel subunits between genotypes; however, the current mediated by Kv7/M channels was reduced in Fmr1 KO mice. In both genotypes, bath application of XE991 (10 µM), a blocker of Kv7/M channels: produced an increased AP number, produced an increased input resistance, produced a decreased AP voltage threshold and shaped AP medium afterhyperpolarization by increasing mean velocities. Retigabine (10 µM), an opener of Kv7/M channels, produced opposite effects to XE991. Both XE991 and retigabine abolished differences in all these parameters found in control conditions between genotypes. Furthermore, a low concentration of retigabine (2.5 µM) normalized CA1 PC excitability of Fmr1 KO mice. Finally, ex vivo seizure-like events evoked by 4-aminopyiridine (200 µM) in the dorsal CA1 region were more frequent in Fmr1 KO mice, and were abolished by retigabine (5-10 µM). We conclude that CA1 PCs of Fmr1 KO mice exhibit hyperexcitability, caused by Kv7/M channel dysfunction, and increased epileptiform activity, which were abolished by retigabine. KEY POINTS: Dorsal pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice exhibit hyperexcitability. Kv7/M channel activity, but not expression, is reduced in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice. Kv7/M channel dysfunction causes hyperexcitability in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice by increasing input resistance, decreasing AP voltage threshold and shaping medium afterhyperpolarization. A Kv7/M channel opener normalizes neuronal excitability in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice. Ex vivo seizure-like events evoked in the dorsal CA1 region were more frequent in Fmr1 KO mice, and such an epileptiform activity was abolished by a Kv7/M channel opener depending on drug concentration. Kv7/M channels may represent a therapeutic target for treating symptoms associated with hippocampal alterations in fragile X syndrome.


Assuntos
Potenciais de Ação , Região CA1 Hipocampal , Proteína do X Frágil da Deficiência Intelectual , Fenilenodiaminas , Células Piramidais , Animais , Masculino , Camundongos , Antracenos/farmacologia , Região CA1 Hipocampal/fisiopatologia , Região CA1 Hipocampal/metabolismo , Carbamatos/farmacologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso , Fenilenodiaminas/farmacologia , Células Piramidais/fisiologia , Células Piramidais/metabolismo , Células Piramidais/efeitos dos fármacos
20.
Ecotoxicol Environ Saf ; 282: 116689, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39002379

RESUMO

The recent acceleration of industrialization and urbanization has brought significant attention to N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ), an emerging environmental pollutant from tire wear, due to its long-term effects on the environment and organisms. Recent studies suggest that 6-PPDQ can disrupt neurotransmitter synthesis and release, impact receptor function, and alter signaling pathways, potentially causing oxidative stress, inflammation, and apoptosis. This review investigates the potential neurotoxic effects of prolonged 6-PPDQ exposure, the mechanisms underlying its cytotoxicity, and the associated health risks. We emphasize the need for future research, including precise exposure assessments, identification of individual differences, and development of risk assessments and intervention strategies. This article provides a comprehensive overview of 6-PPDQ's behavior, impact, and neurotoxicity in the environment, highlighting key areas and challenges for future research.


Assuntos
Poluentes Ambientais , Síndromes Neurotóxicas , Humanos , Poluentes Ambientais/toxicidade , Síndromes Neurotóxicas/etiologia , Animais , Estresse Oxidativo/efeitos dos fármacos , Fenilenodiaminas/toxicidade , Medição de Risco , Exposição Ambiental/efeitos adversos , Apoptose/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA