Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 493
Filtrar
1.
Biomed Pharmacother ; 179: 117428, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39255737

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Serotonin (5-HT) is a biogenic monoamine that acts as a neurotransmitter in the central nervous system and as a paracrine, exocrine, or endocrine messenger in peripheral tissues. In this study, we hypothesized that inhibition of serotonin signaling using 5-HT receptor 2B (HTR2B) inhibitors could potentially impede the progression of CRC. We treated CT26 and COLO-205 cells with SB204741, an inhibitor of HTR2B, and evaluated CRC cell proliferation and migration. We then evaluated the effects of HTR2B inhibition in a xenograft mouse model of human colorectal cancer. We also evaluated the role of a novel inhibitor, GM-60186, using both in vitro and in vivo models. RNA sequencing analysis was performed to elucidate the underlying mechanism of the anti-tumor effects of pharmacological inhibition of HTR2B on CRC. In both CRC cell lines and xenograft mouse models, we show that pharmacological inhibition of HTR2B with SB204741 and GM-60186 significantly inhibits CRC cell proliferation and migration. HTR2B inhibition leads to the suppression of extracellular signal-regulated kinase (ERK) signaling, a critical pathway in CRC pathogenesis. Notably, transcriptomic analysis reveals distinct gene expression changes associated with HTR2B inhibition, providing insight into its therapeutic potential. In this study, we found that pharmacological inhibition of HTR2B suppressed CRC proliferation via ERK signaling. In addition, we proposed a novel HTR2B inhibitor for the treatment of CRC. This study highlights the potential role of HTR2B signaling in CRC. These inhibitors may contribute to new therapeutics for CRC treatment.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Colorretais , Sistema de Sinalização das MAP Quinases , Receptor 5-HT2B de Serotonina , Serotonina , Animais , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Humanos , Proliferação de Células/efeitos dos fármacos , Receptor 5-HT2B de Serotonina/metabolismo , Linhagem Celular Tumoral , Serotonina/metabolismo , Serotonina/farmacologia , Movimento Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Camundongos Endogâmicos BALB C , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
2.
Bioorg Med Chem Lett ; 112: 129933, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197796

RESUMO

Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter involved in many physiological and pathological mechanisms through its numerous receptors. Among these, the 5-HT2B receptor is known to play a key role in multiple brain disorders but remains poorly understood. Positron emission tomography (PET) can contribute to a better understanding of pathophysiological mechanisms regulated by the 5-HT2B receptor. To develop the first PET radiotracer for the 5-HT2B receptor, RS-127445, a well-known 5-HT2B receptor antagonist, was labeled with fluorine-18. [18F]RS-127445 was synthesized in a high radiochemical purity and with a good molar activity and radiochemical yield. Preliminary PET scans in rats showed good brain penetration of [18F]RS-127445. However, competition experiments and in vitro autoradiography showed high non-specific binding, especially to brain white matter.


Assuntos
Encéfalo , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Receptor 5-HT2B de Serotonina , Animais , Ratos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Radioisótopos de Flúor/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Receptor 5-HT2B de Serotonina/metabolismo , Piperidinas/síntese química , Piperidinas/química , Piperidinas/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/síntese química , Antagonistas do Receptor 5-HT2 de Serotonina/química , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Estrutura Molecular , Fluorbenzenos
3.
J Pharmacol Toxicol Methods ; 128: 107542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39032441

RESUMO

Cardiac valvulopathy (Cardiac Valve Disease; CVD) associated with off-target activation of the 5-hydroxytryptamine (5-HT) 2B receptor has been well recognized, but is still poorly predicted during drug development. The regulatory guidance proposes the use of 5-HT2B binding data (i.e., Ki values) and free maximum therapeutic exposure (Cmax) to calculate safety margins as a threshold of detection (>10) for eliminating the risk of drug-induced cardiac valvulopathy. In this paper, we provide additional recommendations for preclinical prediction of CVD risk based on clinical pharmacodynamic and pharmacokinetic data obtained from drugs with or without 5-HT2B receptor activation. Our investigations showed that 5-HT2B agonist affinity of molecules tested in an in vitro 5-HT2B cell-based functional assay, placed in perspective to their sustained plasma exposure (AUCs) and not to their peak plasma exposure, Cmax (i.e., maximum therapeutic exposure) provide a solid basis for interpreting 5-HT2B data, for calculating safety margins and then, accurately differentiate drugs associated with a clinical risk of CVD from those which are not (despite having some agonist 5-HT2B activity). In addition, we discuss the risk of multi-organ fibrosis linked to 5-HT2B receptor activation, often underestimated, however well reported in FAERS for 5-HT2B agonists. We believe that our recommendations have the potential to mitigate the risk for the clinical development of CVD and fibrosis.


Assuntos
Doenças das Valvas Cardíacas , Receptor 5-HT2B de Serotonina , Agonistas do Receptor 5-HT2 de Serotonina , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Humanos , Doenças das Valvas Cardíacas/induzido quimicamente , Doenças das Valvas Cardíacas/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Desenvolvimento de Medicamentos/métodos
4.
Sci Rep ; 14(1): 13206, 2024 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851806

RESUMO

Chronic obstructive pulmonary disease (COPD) is often associated with lung squamous cell carcinoma (LUSC), which has the same etiology (smoking, inflammation, oxidative stress, microenvironmental changes, and genetics). Smoking, inflammation, and airway remodeling are the most important and classical mechanisms of COPD comorbidity in LUSC patients. Cancer can occur during repeated airway damage and repair (airway remodeling). Changes in the inflammatory and immune microenvironments, which can cause malignant transformation of some cells, are currently being revealed in both LUSC and COPD patients. We obtained the GSE76925 dataset from the Gene Expression Omnibus database. Screening for possible COPD biomarkers was performed using the LASSO regression model and a random forest classifier. The compositional patterns of the immune cell fraction in COPD patients were determined using CIBERSORT. HTR2B expression was analyzed using validation datasets (GSE47460, GSE106986, and GSE1650). HTR2B expression in COPD cell models was determined via real-time quantitative PCR. Epithelial-mesenchymal transition (EMT) marker expression levels were determined after knocking down or overexpressing HTR2B. HTR2B function and mechanism in LUSC were analyzed with the Kaplan‒Meier plotter database. HTR2B expression was inhibited to detect changes in LUSC cell proliferation. A total of 1082 differentially expressed genes (DEGs) were identified in the GSE76925 dataset (371 genes were significantly upregulated, and 711 genes were significantly downregulated). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the DEGs were mainly enriched in the p53 signaling and ß-alanine metabolism pathways. Gene Ontology enrichment analysis indicated that the DEGs were largely related to transcription initiation from the RNA polymerase I promoter and to the regulation of mononuclear cell proliferation. The LASSO regression model and random forest classifier results revealed that HTR2B, DPYS, FRY, and CD19 were key COPD genes. Immune cell infiltration analysis indicated that these genes were closely associated with immune cells. Analysis of the validation sets suggested that HTR2B was upregulated in COPD patients. HTR2B was significantly upregulated in COPD cell models, and its upregulation was associated with increased EMT marker expression. Compared with that in bronchial epithelial cells, HTR2B expression was upregulated in LUSC cells, and inhibiting HTR2B expression led to the inhibition of LUSC cell proliferation. In conclusions, HTR2B might be a new biomarker and therapeutic target in COPD patients with LUSC.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Escamosas , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Transição Epitelial-Mesenquimal/genética , Receptor 5-HT2B de Serotonina/genética , Receptor 5-HT2B de Serotonina/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral
5.
Neurosci Bull ; 40(10): 1421-1433, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38739251

RESUMO

Irritable bowel syndrome (IBS) is a common functional bowel disorder characterized by abdominal pain and visceral hypersensitivity. Reducing visceral hypersensitivity is the key to effectively relieving abdominal pain in IBS. Increasing evidence has confirmed that the thalamic nucleus reuniens (Re) and 5-hydroxytryptamine (5-HT) neurotransmitter system play an important role in the development of colorectal visceral pain, whereas the exact mechanisms remain largely unclear. In this study, we found that high expression of the 5-HT2B receptors in the Re glutamatergic neurons promoted colorectal visceral pain. Specifically, we found that neonatal maternal deprivation (NMD) mice exhibited visceral hyperalgesia and enhanced spontaneous synaptic transmission in the Re brain region. Colorectal distension (CRD) stimulation induced a large amount of c-Fos expression in the Re brain region of NMD mice, predominantly in glutamatergic neurons. Furthermore, optogenetic manipulation of glutamatergic neuronal activity in the Re altered colorectal visceral pain responses in CON and NMD mice. In addition, we demonstrated that 5-HT2B receptor expression on the Re glutamatergic neurons was upregulated and ultimately promoted colorectal visceral pain in NMD mice. These findings suggest a critical role of the 5HT2B receptors on the Re glutamatergic neurons in the regulation of colorectal visceral pain.


Assuntos
Neurônios , Receptor 5-HT2B de Serotonina , Dor Visceral , Animais , Dor Visceral/metabolismo , Dor Visceral/fisiopatologia , Neurônios/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Masculino , Camundongos , Ácido Glutâmico/metabolismo , Privação Materna , Camundongos Endogâmicos C57BL , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Colo/metabolismo , Colo/inervação , Reto/inervação , Animais Recém-Nascidos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos Ventrais do Tálamo/metabolismo
6.
World J Gastroenterol ; 30(10): 1431-1449, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38596485

RESUMO

BACKGROUND: Serotonin receptor 2B (5-HT2B receptor) plays a critical role in many chronic pain conditions. The possible involvement of the 5-HT2B receptor in the altered gut sensation of irritable bowel syndrome with diarrhea (IBS-D) was investigated in the present study. AIM: To investigate the possible involvement of 5-HT2B receptor in the altered gut sensation in rat model and patients with IBS-D. METHODS: Rectosigmoid biopsies were collected from 18 patients with IBS-D and 10 patients with irritable bowel syndrome with constipation who fulfilled the Rome IV criteria and 15 healthy controls. The expression level of the 5-HT2B receptor in colon tissue was measured using an enzyme-linked immunosorbent assay and correlated with abdominal pain scores. The IBS-D rat model was induced by intracolonic instillation of acetic acid and wrap restraint. Alterations in visceral sensitivity and 5-HT2B receptor and transient receptor potential vanilloid type 1 (TRPV1) expression were examined following 5-HT2B receptor antagonist administration. Changes in visceral sensitivity after administration of the TRPV1 antagonist were recorded. RESULTS: Here, we observed greater expression of the 5-HT2B receptor in the colonic mucosa of patients with IBS-D than in that of controls, which was correlated with abdominal pain scores. Intracolonic instillation of acetic acid and wrap restraint induced obvious chronic visceral hypersensitivity and increased fecal weight and fecal water content. Exogenous 5-HT2B receptor agonist administration increased visceral hypersensitivity, which was alleviated by successive administration of a TRPV1 antagonist. IBS-D rats receiving the 5-HT2B receptor antagonist exhibited inhibited visceral hyperalgesia.Moreover, the percentage of 5-HT2B receptor-immunoreactive (IR) cells surrounded by TRPV1-positive cells (5-HT2B receptor I+) and total 5-HT2B receptor IR cells (5-HT2B receptor IT) in IBS-D rats was significantly reduced by the administration of a 5-HT2B receptor antagonist. CONCLUSION: Our finding that increased expression of the 5-HT2B receptor contributes to visceral hyperalgesia by inducing TRPV1 expression in IBS-D patients provides important insights into the potential mechanisms underlying IBS-D-associated visceral hyperalgesia.


Assuntos
Síndrome do Intestino Irritável , Humanos , Ratos , Animais , Síndrome do Intestino Irritável/patologia , Receptor 5-HT2B de Serotonina , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Serotonina/metabolismo , Diarreia/etiologia , Receptores de Serotonina , Dor Abdominal/etiologia , Dor Abdominal/metabolismo , Acetatos
7.
J Recept Signal Transduct Res ; 44(1): 8-18, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38529713

RESUMO

PURPOSE: The G-protein coupled receptor (GPCR) family, implicated in neurological disorders and drug targets, includes the sensitive serotonin receptor subtype, 5-HT2B. The influence of sodium ions on ligand binding at the receptor's allosteric region is being increasingly studied for its impact on receptor structure. METHODS: High-throughput virtual screening of three libraries, specifically the Asinex-GPCR library, which contains 8,532 compounds and FDA-approved (2466 compounds) and investigational compounds (2731)) against the modeled receptor [4IB4-5HT2BRM] using the standard agonist/antagonist (Ergotamine/Methysergide), as previously selected from our studies based on ADMET profiling, and further on basis of binding free energy a single compound - dihydroergotamine is chosen. RESULTS: This compound displayed strong interactions with the conserved active site. Ions influence ligand binding, with stronger interactions (3-H-bonds and 1-π-bond around 3.35 Å) observed when an agonist and ions are present. Ions entry is guided by conserved motifs in helices III, IV, and VII, which regulate the receptor. Dihydroergotamine, the selected drug, showed binding variance based on ions presence/absence, affecting amino acid residues in these motifs. DCCM and PCA confirmed the stabilization of ligands, with a greater correlation (∼46.6%-PC1) observed with ions. Dihydroergotamine-modified interaction sites within the receptor necessary for activation, serving as a potential 5HT2BRM agonist. RDF analysis showed the sodium ions density around the active site during dihydroergotamine binding. CONCLUSION: Our study provides insights into sodium ion mobility's role in controlling ligand binding affinity in 5HT2BR, offering therapeutic development insights.


Assuntos
Descoberta de Drogas , Ligação Proteica , Receptor 5-HT2B de Serotonina , Sódio , Ligantes , Receptor 5-HT2B de Serotonina/metabolismo , Receptor 5-HT2B de Serotonina/química , Humanos , Sódio/metabolismo , Sódio/química , Desenvolvimento de Medicamentos , Simulação de Acoplamento Molecular , Sítios de Ligação , Sítio Alostérico , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Domínio Catalítico/efeitos dos fármacos
8.
Mol Cancer Res ; 22(6): 538-554, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38381131

RESUMO

A number of neurotransmitters have been detected in tumor microenvironment and proved to modulate cancer oncogenesis and progression. We previously found that biosynthesis and secretion of neurotransmitter 5-hydroxytryptamine (5-HT) was elevated in colorectal cancer cells. In this study, we discovered that the HTR2B receptor of 5-HT was highly expressed in colorectal cancer tumor tissues, which was further identified as a strong risk factor for colorectal cancer prognostic outcomes. Both pharmacological blocking and genetic knocking down HTR2B impaired migration of colorectal cancer cell, as well as the epithelial-mesenchymal transition (EMT) process. Mechanistically, HTR2B signaling induced ribosomal protein S6 kinase B1 (S6K1) activation via the Akt/mTOR pathway, which triggered cAMP-responsive element-binding protein 1 (CREB1) phosphorylation (Ser 133) and translocation into the nucleus, then the phosphorylated CREB1 acts as an activator for ZEB1 transcription after binding to CREB1 half-site (GTCA) at ZEB1 promoter. As a key regulator of EMT, ZEB1, therefore, enhances migration and EMT process in colorectal cancer cells. We also found that HTR2B-specific antagonist (RS127445) treatment significantly ameliorated metastasis and reversed EMT process in both HCT116 cell tail-vein-injected pulmonary metastasis and CT26 cell intrasplenic-injected hepatic metastasis mouse models. IMPLICATIONS: These findings uncover a novel regulatory role of HTR2B signaling on colorectal cancer metastasis, which provide experimental evidences for potential HTR2B-targeted anti-colorectal cancer metastasis therapy.


Assuntos
Neoplasias Colorretais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Transição Epitelial-Mesenquimal , Receptor 5-HT2B de Serotonina , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Animais , Camundongos , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Receptor 5-HT2B de Serotonina/metabolismo , Receptor 5-HT2B de Serotonina/genética , Linhagem Celular Tumoral , Movimento Celular , Metástase Neoplásica , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Masculino , Feminino
9.
Eur J Med Chem ; 259: 115691, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37562117

RESUMO

(N)-Methanocarba adenosine derivatives were structurally modified to target 5-HT2B serotonin receptors as antagonists, predominantly containing branched N6-alkyl groups. N6-Dicycloalkyl-methyl groups, including their asymmetric variations, as well as 2-iodo, were found to generally favor 5-HT2Rs, while only N6-dicyclohexyl-methyl derivative 35 showed weak 5-HT2AR affinity (Ki 3.6 µM). The highest 5-HT2BR affinities were Ki 11-23 nM (N6-dicyclopropyl-methyl-2-iodo 11, 2-chloro-5'-deoxy-5'-methylthio 15 and N6-((R)-cyclobuty-cyclopropyl-methyl)-2-iodo 43), and Ki 73 nM at 5-HT2CR for 36. Direct comparison of adenine ribosides and their corresponding rigid (N)-methanocarba derivatives (cf. 51 and MRS8099 45) indicated a multifold affinity enhancement with the bicyclic ring system. Compounds 43, 45 and 48 were functional 5-HT2BR (KB 2-3 nM) and 5-HT2CR (KB 79-328 nM) antagonists in a Gq-mediated calcium flux assay, with 5-HT2BR functional selectivity ranging from 45- (48) to 113-fold (43). Substantial adenosine receptor (AR) affinity (Ki, A1AR < Ki, A3AR < Ki, A2AAR) was still present in this series, suggestive of dual acting compounds: 5-HT2B antagonist and A1AR agonist, potentially useful for treating chronic conditions (fibrosis; pain). Given its affinity (17 nM) and moderate 5-HT2BR binding selectivity (32-fold vs. 5-HT2CR, 4-fold vs. A1AR), 43 (MRS7925) could potentially be useful for anti-fibrotic therapy.


Assuntos
Adenosina , Serotonina , Antagonistas da Serotonina , Relação Estrutura-Atividade , Receptores Purinérgicos P1 , Receptor 5-HT2B de Serotonina
10.
J Med Chem ; 66(16): 11027-11039, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37584406

RESUMO

The cardiotoxicity associated with des-ethyl-dexfenfluramine (norDF) and related agonists of the serotonin receptor 2B (5-HT2B) has solidified the receptor's place as an "antitarget" in drug discovery. Conversely, a growing body of evidence has highlighted the utility of 5-HT2B antagonists for the treatment of pulmonary arterial hypertension (PAH), valvular heart disease (VHD), and related cardiopathies. In this Perspective, we summarize the link between the clinical failure of fenfluramine-phentermine (fen-phen) and the subsequent research on the role of 5-HT2B in disease progression, as well as the development of drug-like and receptor subtype-selective 5-HT2B antagonists. Such agents represent a promising class for the treatment of PAH and VHD, but their utility has been historically understudied due to the clinical disasters associated with 5-HT2B. Herein, it is our aim to examine the current state of 5-HT2B drug discovery, with an emphasis on the receptor's role in the central nervous system (CNS) versus the periphery.


Assuntos
Doenças das Valvas Cardíacas , Receptor 5-HT2B de Serotonina , Humanos , Serotonina , Fenfluramina , Descoberta de Drogas
11.
Eur J Med Res ; 28(1): 243, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480094

RESUMO

BACKGROUND: During pregnancy, the increase in maternal insulin resistance is compensated by hyperplasia and increased function of maternal pancreatic beta cells; the failure of this compensatory mechanism is associated with gestational diabetes mellitus (GDM). Serotonin participates in beta cell adaptation, acting downstream of the prolactin pathway; the blocking of serotonin receptor B (HTR2B) signaling in pregnant mice impaired beta cell expansion and caused glucose intolerance. Thus, given the importance of the serotoninergic system for the adaptation of beta cells to the increased insulin demand during pregnancy, we hypothesized that genetic variants (single nucleotide polymorphisms [SNPs]) in the gene encoding HTR2B could influence the risk of developing GDM. METHODS: This was a case-control study. Five SNPs (rs4973377, rs765458, rs10187149, rs10194776, and s17619600) in HTR2B were genotyped by real-time polymerase chain reaction in 453 women with GDM and in 443 pregnant women without GDM. RESULTS: Only the minor allele C of SNP rs17619600 conferred an increased risk for GDM in the codominant model (odds ratio [OR] 2.15; 95% confidence interval [CI] 1.53-3.09; P < 0.0001) and in the rare dominant model (OR 2.32; CI 1.61-3.37; P < 0.0001). No associations were found between the SNPs and insulin use, maternal weight gain, newborn weight, or the result of postpartum oral glucose tolerance test (OGTT). In the overall population, carriers of the XC genotype (rare dominant model) presented a higher area under the curve (AUC) of plasma glucose during the OGTT, performed for diagnostic purposes, compared with carriers of the TT genotype of rs17619600. CONCLUSIONS: SNP rs17619600 in the HTR2B gene influences glucose homeostasis, probably affecting insulin release, and the presence of the minor allele C was associated with a higher risk of GDM.


Assuntos
Diabetes Gestacional , Feminino , Humanos , Gravidez , Alelos , Estudos de Casos e Controles , Diabetes Gestacional/genética , Insulina/genética , Receptor 5-HT2B de Serotonina
12.
Assay Drug Dev Technol ; 21(3): 89-96, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36930852

RESUMO

Antagonists of the serotonin receptor 2B (5-HT2B) have shown great promise as therapeutics for the treatment of pulmonary arterial hypertension, valvular heart disease, and related cardiopathies. Herein, we describe a high-throughput screen campaign that led to the identification of highly potent and selective 5-HT2B antagonists. Furthermore, selected compounds were profiled for their predicted ability to cross the blood-brain barrier. Two exemplary compounds, VU0530244 and VU0631019, were predicted to have very limited potential for brain penetration in human subjects, a critical profile for the development of 5-HT2B antagonists devoid of centrally-mediated adverse effects.


Assuntos
Receptor 5-HT2B de Serotonina , Serotonina , Humanos
13.
Eur J Pharmacol ; 944: 175570, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36781042

RESUMO

Vascular Smooth Muscle Cells (VSMCs) are known to be the key drivers of intimal thickening which contribute to early progression of atherosclerosis. VSMCs are the major producers of extracellular matrix within the vessel wall and in response to atherogenic stimuli they could modify the type of matrix proteins produced. Serotonin receptor 2B (5-HT2B receptor/HTR2B) has been implicated in several chronic fibrotic and vascular diseases. Although studies have successfully demonstrated the efficacy of HTR2B blockade in attenuating fibrotic disease, the role of 5-HT2B receptor in TGFß mediated VSMC differentiation remain largely unknown. In the present study, we investigated the potential of targeting the 5-HT2B receptor to prevent TGFß induced VSMCs differentiation. Our results showed that 5-HT2B receptors are expressed in human atherosclerotic lesion and HTR2B expression positively correlated to the VSMCs markers. We show that AM1125, a selective 5-HT2B receptor inhibitor, significantly inhibits TGFß1 induced production of collagen and CTGF. The investigation of underlying mechanisms indicated that 5-HT2B receptor antagonism blocks phospho-Smad2 mediated downstream signaling of TGFß1 in vascular smooth muscle cells. Collectively, the HTR2B/TGF-ß1/Phospho-Smad2 pathway plays a critical role in the regulation of VSMCs differentiation. Our findings might serve 5-HT2B receptor as a therapeutic target to limit TGF-ß1 induced VSMC differentiation.


Assuntos
Aterosclerose , Fator de Crescimento Transformador beta , Humanos , Aterosclerose/patologia , Proteínas de Transporte/metabolismo , Diferenciação Celular , Células Cultivadas , Músculo Liso Vascular , Miócitos de Músculo Liso/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
14.
J Med Chem ; 66(2): 1509-1521, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36621987

RESUMO

Toxicity is a major cause of attrition in the development of pharmaceuticals, and the off-target effects are a frequent contributor. The 5-HT2B receptor agonism is known to be responsible for a variety of safety concerns including valvular heart disease which was the cause for the withdrawal of several compounds from the market. An early detection of potential binding to this receptor is thus desirable. Herein, we present the identification of key amino acid residues in the active site of 5-HT2B by molecular dynamics simulations, the development of pharmacophore models and their performance on in-house data, and a structurally highly diverse subset of Enamine REAL labeled for 5-HT2B activity by a machine learning model. These models may be used as filters employed on screening compound sets for the early filtration of compounds with potential 5-HT2B off-target liabilities.


Assuntos
Farmacóforo , Serotonina , Simulação de Dinâmica Molecular , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/química , Domínio Catalítico , Receptor 5-HT2B de Serotonina
15.
J Invest Dermatol ; 143(1): 142-153.e10, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049541

RESUMO

Growing evidence indicates that transient receptor potential (TRP) channels contribute to different forms of pruritus. However, the endogenous mediators that cause itch through transient receptor potential channels signaling are poorly understood. In this study, we show that genetic deletion or pharmacological antagonism of TRPV4 attenuated itch in a mouse model of psoriasis induced by topical application of imiquimod. Human psoriatic lesions showed increased expression of several microRNAs, including the miR-203b-3p, which induced a calcium ion response in rodent dorsal root ganglion neurons and scratching behavior in mice through 5-HTR2B activation and the protein kinase C‒dependent phosphorylation of TRPV4. Computer simulation revealed that the miR-203b-3p core sequence (GUUAAGAA) that causes 5-HTR2B/TRPV4-dependent itch targets the extracellular side of 5-HTR2B by interacting with a portion of the receptor pocket consistent with its activation. Overall, we reveal the unconventional pathophysiological role of an extracellular microRNA that can behave as an itch promoter through 5-HTR2B and TRPV4.


Assuntos
MicroRNAs , Prurido , Receptor 5-HT2B de Serotonina , Canais de Cátion TRPV , Animais , Humanos , Camundongos , Simulação por Computador , Gânglios Espinais , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Prurido/induzido quimicamente , Prurido/genética , Prurido/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Receptor 5-HT2B de Serotonina/genética , Receptor 5-HT2B de Serotonina/metabolismo
16.
Eur J Med Res ; 27(1): 203, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253869

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and repetitive stereotyped behaviors. Previous studies have reported an association of serotonin or 5-hydroxytryptamine (5-HT) with ASD, but the specific receptors and neurons by which serotonin modulates autistic behaviors have not been fully elucidated. METHODS: RNAi-mediated knockdown was done to destroy the function of tryptophan hydroxylase (Trh) and all the five serotonin receptors. Given that ubiquitous knockdown of 5-HT2B showed significant defects in social behaviors, we applied the CRISPR/Cas9 system to knock out the 5-HT2B receptor gene. Social space assays and grooming assays were the major methods used to understand the role of serotonin and related specific receptors in autism-like behaviors of Drosophila melanogaster. RESULTS: A close relationship was identified between serotonin and autism-like behaviors reflected by increased social space distance and high-frequency repetitive behavior in Drosophila. We further utilized the binary expression system to knock down all the five 5-HT receptors, and observed the 5-HT2B receptor as the main receptor responsible for the normal social space and repetitive behavior in Drosophila for the specific serotonin receptors underlying the regulation of these two behaviors. Our data also showed that neurons in the dorsal fan-shaped body (dFB), which expressed 5-HT2B, were functionally essential for the social behaviors of Drosophila. CONCLUSIONS: Collectively, our data suggest that serotonin levels and the 5-HT2B receptor are closely related to the social interaction and repetitive behavior of Drosophila. Of all the 5 serotonin receptors, 5-HT2B receptor in dFB neurons is mainly responsible for serotonin-mediated regulation of autism-like behaviors.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Proteínas de Drosophila , Animais , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Modelos Animais de Doenças , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neurônios/metabolismo , Receptor 5-HT2B de Serotonina , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Fatores de Transcrição , Triptofano Hidroxilase/genética
17.
Mol Cell Neurosci ; 121: 103750, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35697176

RESUMO

The central serotonin2B receptor (5-HT2BR) modulates 5-HT and dopamine (DA) neuronal function in the mammalian brain and has been suggested as a potential target for the treatment of neuropsychiatric disorders involving derangements of these monoamine systems, such as schizophrenia, cocaine abuse and dependence and major depressive disorder. Studies in rats and mice yielded contrasting results on the control of 5-HT/DA networks by 5-HT2BRs, thereby leading to opposite views on the therapeutic potential of 5-HT2BR agents for treating the above disorders. These discrepancies may result from anatomo-functional differences related to a different cellular location of 5-HT2BRs in rat and mouse brain. Using immunohistochemistry, we assessed this hypothesis by examining the expression of 5-HT2BRs in 5-HT and GABAergic neurons of rats and mice within different subregions of the dorsal raphe nucleus (DRN), currently considered as the main site of action of 5-HT2B agents. Likewise, using in vivo microdialysis, we examined their functional relevance in the control of DRN 5-HT outflow, a surrogate index of 5-HT neuronal activity. In the DRN of both species, 5-HT2BRs are expressed in 5-HT cells expressing tryptophan hydroxylase 2 (TPH2), in GABAergic cells expressing glutamic acid decarboxylase 67 (GAD67), and in cells expressing both markers (GAD67 & TPH2; i.e., GABA-expressing 5-HT neurons). The proportion of 5-HT2BR-positive cells expressing only TPH2 was significantly larger in mouse than in rat DRN, whereas the opposite holds true for the expression in cells expressing GAD67 & TPH2. No major species differences were found in the dorsal and ventral subregions. In contrast, the lateral subregion exhibited large differences, with a predominant expression of 5-HT2BRs in TPH2-positive cells in mice (67.2 vs 19.9 % in rats), associated with a lower expression in GAD67 & TPH2 cells (7.9 % in mice vs 41.5 % in rats). Intra-DRN (0.1 µM) administration of the preferential 5-HT2BR agonist BW 723C86 decreased and increased DRN 5-HT outflow in rats and mice respectively, both effects being prevented by the intra-DRN perfusion of the selective 5-HT2BR antagonist RS 127445 (0.1 µM). Altogether, these results show the existence of anatomical differences in the cellular expression of 5-HT2BRs in the rat and mouse DRN, which translate into an opposite control of 5-HT outflow. Also, they highlight the relevance of the subset of GAD67-positive 5-HT neurons as a key factor responsible for the functional differences between rats and mice in terms of 5-HT neuronal activity modulation.


Assuntos
Núcleo Dorsal da Rafe , Receptor 5-HT2B de Serotonina , Neurônios Serotoninérgicos , Animais , Núcleo Dorsal da Rafe/metabolismo , Camundongos , Ratos , Receptor 5-HT2B de Serotonina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/farmacologia
18.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163491

RESUMO

Uveal melanoma (UM) remains the most common intraocular malignancy among diseases affecting the adult eye. The primary tumor disseminates to the liver in half of patients and leads to a 6 to 12-month survival rate, making UM a particularly aggressive type of cancer. Genomic analyses have led to the development of gene-expression profiles that can efficiently predict metastatic progression. Among these genes, that encoding the serotonin receptor 2B (HTR2B) represents the most discriminant from this molecular signature, its aberrant expression being the hallmark of UM metastatic progression. Recent evidence suggests that expression of HTR2B might be regulated through the Janus kinase/Signal Transducer and Activator of Transcription proteins (JAK/STAT) intracellular signalization pathway. However, little is actually known about the molecular mechanisms involved in the abnormally elevated expression of the HTR2B gene in metastatic UM and whether activated STAT proteins participates to this mechanism. In this study, we determined the pattern of STAT family members expressed in both primary tumors and UM cell-lines, and evaluated their contribution to HTR2B gene expression. Examination of the HTR2B promoter sequence revealed the presence of a STAT putative target site (5'-TTC (N)3 GAA3') located 280 bp upstream of the mRNA start site that is completely identical to the high affinity binding site recognized by these TFs. Gene profiling on microarrays provided evidence that metastatic UM cell lines with high levels of HTR2B also express high levels of STAT proteins whereas low levels of these TFs are observed in non-metastatic UM cells with low levels of HTR2B, suggesting that STAT proteins contribute to HTR2B gene expression in UM cells. All UM cell lines tested were found to express their own pattern of STAT proteins in Western blot analyses. Furthermore, T142 and T143 UM cells responded to interleukins IL-4 and IL-6 by increasing the phosphorylation status of STAT1. Most of all, expression of HTR2B also considerably increased in response to both IL-4 and IL-6 therefore providing evidence that HTR2B gene expression is modulated by STAT proteins in UM cells. The binding of STAT proteins to the -280 HTR2B/STAT site was also demonstrated by electrophoretic mobility shift assay (EMSA) analyses and site-directed mutation of that STAT site also abolished both IL-4 and IL-6 responsiveness in in vitro transfection analyses. The results of this study therefore demonstrate that members from the STAT family of TFs positively contribute to the expression of HTR2B in uveal melanoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Receptor 5-HT2B de Serotonina/genética , Fatores de Transcrição STAT/metabolismo , Neoplasias Uveais/metabolismo , Região 5'-Flanqueadora/genética , Linhagem Celular Tumoral , DNA/metabolismo , Humanos , Interleucina-4/farmacologia , Interleucina-6/farmacologia , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Fatores de Transcrição STAT/genética
19.
Sci Rep ; 11(1): 23582, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880312

RESUMO

Degeneration of brainstem serotonin neurons has been demonstrated in ALS patients and mouse models and was found responsible for the development of spasticity. Consistent with involvement of central serotonin pathways, 5-HT2B receptor (5-HT2BR) was upregulated in microglia of ALS mice. Its deletion worsened disease outcome in the Sod1G86R mouse model and led to microglial degeneration. In ALS patients, a polymorphism in HTR2B gene leading to higher receptor expression in CNS, was associated with increased survival in patients as well as prevention of microglial degeneration. Thus, the aim of our study was to determine the effect of a 5-HT2BR agonist : BW723C86 (BW), in the Sod1G86R mouse model. Despite good pharmacokinetic and pharmacological profiles, BW did not ameliorate disease outcome or motor neuron degeneration in a fast progressing mouse model of ALS despite evidence of modulation of microglial gene expression.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Indóis/farmacologia , Receptor 5-HT2B de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Serotonina/metabolismo , Tiofenos/farmacologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Degeneração Neural/tratamento farmacológico , Degeneração Neural/metabolismo , Superóxido Dismutase-1/metabolismo
20.
J Clin Invest ; 131(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34618686

RESUMO

Insulin resistance is a cornerstone of obesity-related complications such as type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease. A high rate of lipolysis is known to be associated with insulin resistance, and inhibiting adipose tissue lipolysis improves obesity-related insulin resistance. Here, we demonstrate that inhibition of serotonin (5-hydroxytryptamine [5-HT]) signaling through serotonin receptor 2B (HTR2B) in adipose tissues ameliorates insulin resistance by reducing lipolysis in visceral adipocytes. Chronic high-fat diet (HFD) feeding increased Htr2b expression in epididymal white adipose tissue, resulting in increased HTR2B signaling in visceral white adipose tissue. Moreover, HTR2B expression in white adipose tissue was increased in obese humans and positively correlated with metabolic parameters. We further found that adipocyte-specific Htr2b-knockout mice are resistant to HFD-induced insulin resistance, visceral adipose tissue inflammation, and hepatic steatosis. Enhanced 5-HT signaling through HTR2B directly activated lipolysis through phosphorylation of hormone-sensitive lipase in visceral adipocytes. Moreover, treatment with a selective HTR2B antagonist attenuated HFD-induced insulin resistance, visceral adipose tissue inflammation, and hepatic steatosis. Thus, adipose HTR2B signaling could be a potential therapeutic target for treatment of obesity-related insulin resistance.


Assuntos
Resistência à Insulina , Gordura Intra-Abdominal/metabolismo , Obesidade/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Serotonina/metabolismo , Adipócitos/citologia , Adipócitos Brancos , Tecido Adiposo , Tecido Adiposo Branco/metabolismo , Adulto , Animais , Dieta Hiperlipídica , Epididimo , Feminino , Glicerol/metabolismo , Humanos , Inflamação , Insulina/metabolismo , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fosforilação , Transdução de Sinais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA