Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.399
Filtrar
1.
Stem Cell Res Ther ; 15(1): 261, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148121

RESUMO

BACKGROUND: Human adipose-derived stem cells (ADSCs) exert a strong anti-inflammatory effect, and synovium-derived stem cells (SDSCs) have high chondrogenic potential. Thus, this study aims to investigate whether a combination of human ADSCs and SDSCs will have a synergistic effect that will increase the chondrogenic potential of osteoarthritis (OA) chondrocytes in vitro and attenuate the cartilage degeneration of early and advanced OA in vitro. METHODS: ADSCs, SDSCs, and chondrocytes were isolated from OA patients who underwent total knee arthroplasty. The ADSCs-SDSCs mixed cell ratios were 1:0 (ADSCs only), 8:2, 5:5 (5A5S), 2:8, and 0:1 (SDSCs only). The chondrogenic potential of the OA chondrocytes was evaluated in vitro with a transwell assay or pellet culture with various mixed cell groups. The mixed cell group with the highest chondrogenic potential was then selected and injected into the knee joints of nude rats of early and advanced OA stages in vivo. The animals were then evaluated 12 and 20 weeks after surgery through gait analysis, von frey test, microcomputed tomography, MRI, and immunohistochemical and histological analyses. Finally, the mechanisms underlying these findings were investigated through the RNA sequencing of tissue samples in vivo and Western blot of the OA chondrocyte autophagy pathway. RESULTS: Among the MSCs treatment groups, 5A5S had the greatest synergistic effect that increased the chondrogenic potential of OA chondrocytes in vitro and inhibited early and advanced OA in vivo. The 5A5S group significantly reduced cartilage degeneration, synovial inflammation, pain sensation, and nerve invasion in subchondral nude rat OA, outperforming both single-cell treatments. The underlying mechanism was the activation of chondrocyte autophagy via the FoxO1 signaling pathway. CONCLUSION: A combination of human ADSCs and SDSCs demonstrated higher potential than a single type of stem cell, demonstrating potential as a novel treatment for OA.


Assuntos
Autofagia , Condrócitos , Proteína Forkhead Box O1 , Células-Tronco Mesenquimais , Osteoartrite , Transdução de Sinais , Humanos , Condrócitos/metabolismo , Animais , Ratos , Osteoartrite/terapia , Osteoartrite/metabolismo , Osteoartrite/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Proteína Forkhead Box O1/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Masculino , Ratos Nus , Condrogênese , Membrana Sinovial/metabolismo , Membrana Sinovial/citologia , Pessoa de Meia-Idade , Feminino
2.
BMC Cancer ; 24(1): 767, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926864

RESUMO

BACKGROUND: Breast cancer (BrCa) is a predominant malignancy, with metastasis occurring in one in eight patients, nearly half of which target the bone, leading to serious complications such as pain, fractures, and compromised mobility. Structural rigidity, crucial for bone strength, becomes compromised with osteolytic lesions, highlighting the vulnerability and increased fracture risk in affected areas. Historically, two-dimensional radiographs have been employed to predict these fracture risks; however, their limitations in capturing the three-dimensional structural and material changes in bone have raised concerns. Recent advances in CT-based Structural Rigidity Analysis (CTRA), offer a promising, more accurate non-invasive 3D approach. This study aims to assess the efficacy of CTRA in monitoring osteolytic lesions' progression and response to therapy, suggesting its potential superiority over existing methodologies in guiding treatment strategies. METHODS: Twenty-seven female nude rats underwent femoral intra-medullary inoculation with MDA-MB-231 human breast cancer cells or saline control. They were divided into Control, Cancer Control, Ibandronate, and Paclitaxel groups. Osteolytic progression was monitored weekly using biplanar radiography, quantitative computed tomography (QCT), and dual-energy X-ray absorptiometry (DEXA). CTRA was employed to predict fracture risk, normalized using the contralateral femur. Statistical analyses, including Kruskal-Wallis and ANOVA, assessed differences in outcomes among groups and over time. RESULTS: Biplanar radiographs showed treatment benefits over time; however, only certain time-specific differences between the Control and other treatment groups were discernible. Notably, observer subjectivity in X-ray scoring became evident, with significant inter-operator variations. DEXA measurements for metaphyseal Bone Mineral Content (BMC) did not exhibit notable differences between groups. Although diaphyseal BMC highlighted some variance, it did not reveal significant differences between treatments at specific time points, suggesting a limited ability for DEXA to differentiate between treatment effects. In contrast, the CTRA consistently demonstrated variations across different treatments, effectively capturing bone rigidity changes over time, and the axial- (EA), bending- (EI), and torsional rigidity (GJ) outcomes from the CTRA method successfully distinguished differences among treatments at specific time points. CONCLUSION: Traditional approaches, such as biplanar radiographs and DEXA, have exhibited inherent limitations, notably observer bias and time-specific inefficacies. Our study accentuates the capability of CTRA in capturing real-time, progressive changes in bone structure, with the potential to predict fractures more accurately and provide a more objective analysis. Ultimately, this innovative approach may bridge the existing gap in clinical guidelines, ushering in enhanced Clinical Decision Support Tool (CDST) for both surgical and non-surgical treatments.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Tomografia Computadorizada por Raios X , Animais , Feminino , Ratos , Humanos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Ósseas/secundário , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Absorciometria de Fóton/métodos , Densidade Óssea , Ratos Nus , Paclitaxel/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Linhagem Celular Tumoral , Osteólise/diagnóstico por imagem , Ácido Ibandrônico/uso terapêutico , Ácido Ibandrônico/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Conservadores da Densidade Óssea/farmacologia
3.
Int J Pharm ; 660: 124262, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38815637

RESUMO

Monoclonal antibodies (mAbs) have become the predominant treatment modality for various diseases due to their high affinity and specificity. Although antibodies also have great potential for neurological diseases, they couldn't fully meet the therapeutic requirements due to their high molecular weight and limitations in crossing the blood-brain barrier (BBB). Herein, an innovative strategy based on exosomes (Exos) platform was developed to enhance the delivery of cetuximab (CTX) into the brain, and in combination with doxorubicin (DOX) for the synergistic targeted therapy of glioblastoma (GBM). The in vitro/vivo experiments have shown that exosomes could effectively promote BBB penetration and increase the content of CTX in glioma cells and brain lesions. Cytotoxicity and wound healing experiments have shown that CTX-Exo-DOX could significantly inhibit the proliferation of tumor cells. Finally, in vivo results showed that CTX-Exo-DOX significantly prolonged the survival time of tumor-bearing rats to 28 days, which was 1.47 times that of the DOX group. In summary, exosomes could deliver more antibodies into the brain, and CTX-Exo-DOX is a promising co-delivery system for the treatment of GBM. The results of this study will also provide a prospective strategy for antibody drugs in the treatment of neurological diseases.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Cetuximab , Doxorrubicina , Exossomos , Glioblastoma , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Doxorrubicina/farmacocinética , Exossomos/metabolismo , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Cetuximab/administração & dosagem , Cetuximab/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Humanos , Linhagem Celular Tumoral , Barreira Hematoencefálica/metabolismo , Ratos , Sistemas de Liberação de Medicamentos/métodos , Masculino , Encéfalo/metabolismo , Ratos Sprague-Dawley , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ratos Nus
4.
Sci Transl Med ; 16(746): eadg6298, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718134

RESUMO

Thoracic aortic aneurysm (TAA) is a life-threatening vascular disease frequently associated with underlying genetic causes. An inadequate understanding of human TAA pathogenesis highlights the need for better disease models. Here, we established a functional human TAA model in an animal host by combining human induced pluripotent stem cells (hiPSCs), bioengineered vascular grafts (BVGs), and gene editing. We generated BVGs from isogenic control hiPSC-derived vascular smooth muscle cells (SMCs) and mutant SMCs gene-edited to carry a Loeys-Dietz syndrome (LDS)-associated pathogenic variant (TGFBR1A230T). We also generated hiPSC-derived BVGs using cells from a patient with LDS (PatientA230T/+) and using genetically corrected cells (Patient+/+). Control and experimental BVGs were then implanted into the common carotid arteries of nude rats. The TGFBR1A230T variant led to impaired mechanical properties of BVGs, resulting in lower burst pressure and suture retention strength. BVGs carrying the variant dilated over time in vivo, resembling human TAA formation. Spatial transcriptomics profiling revealed defective expression of extracellular matrix (ECM) formation genes in PatientA230T/+ BVGs compared with Patient+/+ BVGs. Histological analysis and protein assays validated quantitative and qualitative ECM defects in PatientA230T/+ BVGs and patient tissue, including decreased collagen hydroxylation. SMC organization was also impaired in PatientA230T/+ BVGs as confirmed by vascular contraction testing. Silencing of collagen-modifying enzymes with small interfering RNAs reduced collagen proline hydroxylation in SMC-derived tissue constructs. These studies demonstrated the utility of BVGs to model human TAA formation in an animal host and highlighted the role of reduced collagen modifying enzyme activity in human TAA formation.


Assuntos
Prótese Vascular , Colágeno , Células-Tronco Pluripotentes Induzidas , Receptor do Fator de Crescimento Transformador beta Tipo I , Animais , Humanos , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Colágeno/metabolismo , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Aneurisma da Aorta Torácica/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ratos Nus , Modelos Animais de Doenças , Ratos , Bioengenharia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Edição de Genes , Síndrome de Loeys-Dietz/genética , Síndrome de Loeys-Dietz/patologia , Masculino
5.
Am J Reprod Immunol ; 91(4): e13843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606700

RESUMO

PROBLEM: Preeclampsia (PE), new-onset hypertension during pregnancy accompanied by organ dysfunction, is associated with chronic inflammation including elevated IL-17, CD4+ T cells, B cells and natural killer (NK) cells. IL-17 can serve as a signal for either the adaptive or innate immune activation. We have previously shown that IL-17 contributes to increased blood pressure in association with elevated TH17 cells, NK cells and B cells secreting angiotensin II type 1 receptor agonistic autoantibodies (AT1-AA) during pregnancy. Moreover, we have shown an important role for CD4+T cells and AT1-AA in multiorgan dysfunction as measured by mitochondrial oxidative stress (mt ROS). However, we do not know the role of adaptive immune cells such as T cells or B cells secreting AT1-AA in mediating the PE phenotype in response to elevated IL-17. METHOD OF STUDY: In order to answer this question, we infused IL-17 (150 pg/day i.p.) into either Sprague Dawley (SD) or athymic nude rats via mini-osmotic pump from gestational day (GD) 14-19 of pregnancy. On GD 19, blood pressure was determined and NK cells, mtROS and respiration and AT1-AA production from B cells were measured. RESULTS: Infusion of IL-17 increased blood pressure in the presence or absence of T cells. Mean arterial pressure (MAP) increased with IL-17 from 98 ± 2 mm Hg (n = 12) to 114 ± 2 (n = 12) in SD rats and from 99 ± 4 mm Hg (n = 7) versus 115 ± 2 mm Hg (n = 7) in athymic nude rats. Similar trends were seen in NK cells and placental mt ROS. Knowing that IL-17 stimulates AT1-AA in SD pregnant rats, we included a group of SD and athymic nude pregnant rats infused with IL-17 and the AT1-AA inhibitor peptide ('n7AAc'). The inhibitor attenuated blood pressure (104.9 ± 3.2, p = .0001) and normalized NK cells and mt function in SD pregnant rats. Importantly, the AT1-AA was not produced in pregnant nude IL-17 treated rats, nor did 'n7AAc' effect MAP, in nude athymic rats. CONCLUSION: These findings suggest two conclusions; one is that IL-17 causes hypertension and multiorgan dysfunction in the absence of T cells and AT1-AA, possibly through its activation of innate cells and secondly, in the presence of T cells, blockade of the AT1-AA attenuates the effect of IL-17. This study indicates the critical effects of elevated IL-17 during pregnancy and suggest treatment modalities to consider for PE women.


Assuntos
Autoanticorpos , Hipertensão , Interleucina-17 , Receptor Tipo 1 de Angiotensina , Animais , Feminino , Humanos , Gravidez , Ratos , Interleucina-17/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia , Ratos Nus , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo
6.
J Biomed Mater Res A ; 112(10): 1688-1698, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38602243

RESUMO

When delivering cells on a scaffold to treat a bone defect, the cell seeding technique determines the number and distribution of cells within a scaffold, however the optimal technique has not been established. This study investigated if human adipose-derived stem cells (ASCs) transduced with a lentiviral vector to overexpress bone morphogenetic protein 2 (BMP-2) and loaded on a scaffold using dynamic orbital shaker could reduce the total cell dose required to heal a critical sized bone defect when compared with static seeding. Human ASCs were loaded onto a collagen/biphasic ceramic scaffold using static loading and dynamic orbital shaker techniques, compared with our labs standard loading technique, and implanted into femoral defects of nude rats. Both a low dose and standard dose of transduced cells were evaluated. Outcomes investigated included BMP-2 production, radiographic healing, micro-computerized tomography, histologic assessment, and biomechanical torsional testing. BMP-2 production was higher in the orbital shaker cohort compared with the static seeding cohort. No statistically significant differences were noted in radiographic, histomorphometric, and biomechanical outcomes between the low-dose static and dynamic seeding groups, however the standard-dose static seeding cohort had superior biomechanical properties. The standard-dose 5 million cell dose standard loading cohort had superior maximum torque and torsional stiffness on biomechanical testing. The use of orbital shaker technique was labor intensive and did not provide equivalent biomechanical results with the use of fewer cells.


Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea , Terapia Genética , Ratos Nus , Alicerces Teciduais , Animais , Humanos , Proteína Morfogenética Óssea 2/genética , Alicerces Teciduais/química , Ratos , Terapia Genética/métodos , Células-Tronco/citologia , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Masculino , Fêmur/lesões , Fêmur/diagnóstico por imagem , Fêmur/patologia , Microtomografia por Raio-X , Fenômenos Biomecânicos
7.
Stem Cells Transl Med ; 13(6): 546-558, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38457239

RESUMO

Human neural progenitor cells (hNPCs) hold promise for treating spinal cord injury. Studies to date have focused on improving their regenerative potential and therapeutic effect. Equally important is ensuring successful delivery and engraftment of hNPCs at the injury site. Unfortunately, no current imaging solution for cell tracking is compatible with long-term monitoring in vivo. The objective of this study was to apply a novel bright-ferritin magnetic resonance imaging (MRI) mechanism to track hNPC transplants longitudinally and on demand in the rat spinal cord. We genetically modified hNPCs to stably overexpress human ferritin. Ferritin-overexpressing (FT) hNPCs labeled with 0.2 mM manganese provided significant T1-induced bright contrast on in vitro MRI, with no adverse effect on cell viability, morphology, proliferation, and differentiation. In vivo, 2 M cells were injected into the cervical spinal cord of Rowett nude rats. MRI employed T1-weighted acquisitions and T1 mapping on a 3 T scanner. Conventional short-term cell tracking was performed using exogenous Mn labeling prior to cell transplantation, which displayed transient bright contrast on MRI 1 day after cell transplantation and disappeared after 1 week. In contrast, long-term cell tracking using bright-ferritin allowed on-demand signal recall upon Mn supplementation and precise visualization of the surviving hNPC graft. In fact, this new cell tracking technology identified 7 weeks post-transplantation as the timepoint by which substantial hNPC integration occurred. Spatial distribution of hNPCs on MRI matched that on histology. In summary, bright-ferritin provides the first demonstration of long-term, on-demand, high-resolution, and specific tracking of hNPCs in the rat spinal cord.


Assuntos
Rastreamento de Células , Ferritinas , Imageamento por Ressonância Magnética , Células-Tronco Neurais , Ratos Nus , Medula Espinal , Animais , Imageamento por Ressonância Magnética/métodos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Células-Tronco Neurais/metabolismo , Rastreamento de Células/métodos , Humanos , Ratos , Ferritinas/metabolismo , Medula Espinal/metabolismo , Medula Espinal/diagnóstico por imagem , Transplante de Células-Tronco/métodos , Diferenciação Celular , Traumatismos da Medula Espinal/terapia
8.
Tissue Eng Part A ; 30(3-4): 144-153, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37950719

RESUMO

The airway epithelia (AE) play a role in the clearance of foreign substances through ciliary motility and mucus secreted. We developed an artificial trachea that is made of collagen sponges and polypropylene mesh for the regeneration of the tracheal defect, and it was used for a clinical study. Then, a model in which the luminal surface of an artificial trachea was covered with a human-induced pluripotent stem cell-derived AE (hiPSC-AE) was transplanted into the tracheal defect of nude rats to promote epithelialization. In the future, this model was expected to be applied to research on infectious diseases and drug discovery as a trachea-humanized rat model. However, at present, sufficient engraftment has not been achieved to evaluate functional recovery in transplanted cells. Therefore, this study focused on immunosuppression in recipient rats. Nude rats lack T cell function and are widely used for transplantation experiments; however, more severe immunosuppressed recipients are preferred for xenotransplantation. Several strains of immunodeficient rats were created as rats that exhibit more severe immunodeficiency until now. In this study, to establish a trachea-humanized rat model in which human AE function can be analyzed to improve engraftment efficiency, engraftment efficiency in nude rats and X-linked severe combined immunodeficiency (X-SCID) rats following hiPSC-AE transplantation was compared. In the analysis of the proportion of engrafted cells in total cells at the graft site, the engraftment efficiency of epithelial cells tended to be high in X-SCID rats, although no statistical difference was found between the two groups, whereas the engraftment efficiency of mesenchymal cells was higher in X-SCID rats. Furthermore, the number of immune cells that accumulated in the grafts showed that a pan T cell marker, that is, CD3-positive cells, did not differ between the two strains; however, CD45-positive cells and major histocompatibility complex (MHC) class II-positive cells significantly decreased in X-SCID rats. These results indicate that X-SCID rats are more useful for the transplantation of hiPSC-AE into the tracheae to generate trachea-humanized rat models.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X , Humanos , Ratos , Animais , Camundongos , Ratos Nus , Linfócitos T , Traqueia , Camundongos SCID
9.
Indian J Pharmacol ; 55(5): 299-306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929408

RESUMO

BACKGROUND: A spontaneous mutant rat with a hairless phenotype and an intact thymus was discovered in a long-standing Sprague Dawley-National Institute of Nutrition (SD/NIN) rat colony at a national animal resource facility. OBJECTIVE: We conducted extensive phenotypic and biochemical analyses on this mutant strain to determine its suitability as a preclinical model for immunocompetent testing in noncommunicable disease research. MATERIALS AND METHODS: We subjected the mutant rats to strict and frequent phenotypic and genetic surveillance to accomplish this objective. The animals were assessed for food intake, body weight, blood cell profile, clinical chemistry, adipose tissue deposition, and bone mineral density (BMD) using total electrical body conductance (TOBEC) and dual-energy X-ray absorptiometry (DXA) analysis. RESULTS: Initially, only two hairless mutant rats, a male and a female, were born from a single dam in the SD/NIN rat strain. However, the results indicate that the mutant colony propagated from these unique pups displayed distinct phenotypic features and exhibited differences in feeding behavior, weight gain, and clinical biochemistry. The food conversion rate was significantly higher in nude females (2.8-fold) while 26% lower in nude males. Both sexes of nude rats had significantly higher triglycerides and lower glucose levels in females. However, glucose levels did not change in male nude rats. Furthermore, nude female and male rats had significantly lower fat (TOBEC) and bone mineral content (DXA). Nonetheless, BMD was only slightly lower (7%-8%) compared to the heterozygous groups. CONCLUSIONS: These findings indicate that the spontaneous mutant rat has the potential to serve as an immunopotent and modulatory testing system in pharmacokinetics/pharmacodynamics and toxicology, which can be further explored for therapeutic drug discovery.


Assuntos
Doenças não Transmissíveis , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Ratos Nus , Densidade Óssea , Glucose
10.
J Dent ; 138: 104690, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666466

RESUMO

BACKGROUND: Vascularization plays an important role in dental and craniofacial regenerations. Human periodontal ligament stem cells (hPDLSCs) are a promising cell source and, when co-cultured with human umbilical vein endothelial cells (hUVECs), could promote vascularization. The objectives of this study were to develop a novel prevascularized hPDLSC-hUVEC-calcium phosphate construct, and investigate the osteogenic and angiogenic efficacy of this construct with human platelet lysate (hPL) in cranial defects in rats for the first time. METHODS: hPDLSCs and hUVECs were co-cultured on calcium phosphate cement (CPC) scaffolds with hPL. Cell proliferation, angiogenic gene expression, angiogenesis, alkaline phosphatase activity, and cell-synthesized minerals were determined. Bone and vascular regenerations were investigated in rat critical-sized cranial defects in vivo. RESULTS: hPDLSC-hUVEC-CPC-hPL group had 2-fold greater angiogenic expressions and cell-synthesized mineral synthesis than hPDLSC-hUVEC-CPC group (p < 0.05). Microcapillary-like structures were formed on scaffolds in vitro. hPDLSC-hUVEC-CPC-hPL group had more vessels than hPDLSC-hUVEC-CPC group (p < 0.05). In cranial defects in rats, hPDLSC-hUVEC-CPC-hPL group regenerated new bone amount that was 2.1 folds and 4.0 folds, respectively, that of hPDLSC-hUVEC-CPC group and CPC control (p < 0.05). New blood vessel density of hPDLSC-hUVEC-CPC-hPL group was 2 folds and 7.9 folds, respectively, that of hPDLSC-hUVEC-CPC group and CPC control (p < 0.05). CONCLUSION: The hPL pre-culture method is promising to enhance bone regeneration via prevascularized CPC. Novel hPDLSC-hUVEC-CPC-hPL prevascularized construct increased new bone formation and blood vessel density by 4-8 folds over CPC control. CLINICAL SIGNIFICANCE: Novel hPDLSC-hUVEC-hPL-CPC prevascularized construct greatly increased bone and vascular regeneration in vivo and hence is promising for a wide range of craniofacial applications.


Assuntos
Ligamento Periodontal , Alicerces Teciduais , Humanos , Animais , Ratos , Ratos Nus , Alicerces Teciduais/química , Células-Tronco , Osteogênese , Regeneração Óssea , Células Endoteliais da Veia Umbilical Humana , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Crânio/cirurgia , Diferenciação Celular , Células Cultivadas
11.
Phys Med Biol ; 68(19)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37625420

RESUMO

Objective.Tumour response to radiation therapy appears as changes in tumour vascular condition. There are several methods for analysing tumour blood circulatory changes one of which is dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), but there is no method that can observe the tumour vascular condition and physiological changes at the site of radiation therapy. Positron emission tomography (PET) has been applied for treatment verification in charged particle therapy, which is based on the detection of positron emitters produced through nuclear fragmentation reactions in a patient's body. However, the produced positron emitters are washed out biologically depending on the tumour vascular condition. This means that measuring the biological washout rate may allow evaluation of the tumour radiation response, in a similar manner to DCE-MRI. Therefore, this study compared the washout rates in rats between in-beam PET during12C ion beam irradiation and DCE-MRI.Approach.Different vascular conditions of the tumour model were prepared for six nude rats. The tumour of each nude rat was irradiated by a12C ion beam with simultaneous in-beam PET measurement. In 10-12 h, the DCE-MRI experiment was performed for the same six nude rats. The biological washout rate of the produced positron emitters (k2,1st) and the MRI contrast agent (k2a) were derived using the single tissue compartment model.Main results.A linear correlation was observed betweenk2,1standk2a, and they were inversely related to fractional necrotic volume.Significance.This is the first animal study which confirmed the biological washout rate of in-beam PET correlates closely with tumour vascular condition measured with the MRI contrast agent administrated intravenously.


Assuntos
Meios de Contraste , Tomografia Computadorizada por Raios X , Animais , Ratos , Ratos Nus , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética , Carbono
12.
ACS Appl Mater Interfaces ; 15(36): 42413-42423, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37650753

RESUMO

Activating patients' immune cells, either by reengineering them or treating them with bioactive molecules, has been a breakthrough in the field of immunotherapy and has revolutionized treatment, especially against cancer. As immune cells naturally home to tumors or injured tissues, labeling such cells holds promise for non-invasive tracking and biologic manipulation. Our study demonstrates that macrophages loaded with extremely low boiling point perfluorocarbon nanodroplets not only survive ultrasound-induced phase change but also maintain their phagocytic function. Unlike observations made when using higher boiling point perfluorocarbon nanodroplets, our results show that phase change occurs intracellularly at a low mechanical index using a clinical scanner operating within the energy limit set by the Food and Drug Administration (FDA). After nanodroplet-loaded macrophages were given intravenously to nude rats, they were invisible in the liver when imaged at a very low mechanical index using a clinical ultrasound scanner. They became visible when power was increased but still within the FDA limits up to 8 h after administration. The acoustic labeling and in vivo detection of macrophages using a clinical ultrasound scanner represent a paradigm shift in the field of cell tracking and pave the way for potential therapeutic strategies in the clinical setting.


Assuntos
Fluorocarbonos , Macrófagos , Estados Unidos , Animais , Ratos , Volatilização , Acústica , Ratos Nus , Ultrassonografia
13.
Cell Transplant ; 32: 9636897231178460, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37278405

RESUMO

Previous studies transplanted human-induced pluripotent stem cells (hiPSCs)-derived mesenchymal stem cells (iMSCs) into thyroid cartilage defect of X-liked severe combined immunodeficiency (X-SCID) rats and confirmed transplanted cell survival and cartilage regeneration. Thus, this study aimed to investigate the contribution of iMSC transplantation to thyroid cartilage regeneration of nude rats. iMSCs were induced from hiPSCs via a neural crest cell lineage. Then, clumps formed from an iMSC/extracellular matrix complex were transplanted into thyroid cartilage defects in nude rats. The larynx was removed and histological and immunohistochemical analyses were performed 4 or 8 weeks after the transplantation. Human nuclear antigen (HNA)-positive cells were observed in 11 of 12 (91.7%) rats, which indicated that transplanted iMSCs survived in thyroid cartilage defects in nude rats. HNA-positive cells co-expressed SOX9, and type II collagen was identified around HNA-positive cells in 8 of 12 rats (66.7%), which indicated cartilage-like regeneration. Cartilage-like regeneration in nude rats in this study was comparable to the previous report on X-SCID rats (HNA-positive cells were observed in all 14 rats and cartilage-like regeneration was observed in 10 of 14 rats). This result suggests that nude rats could be an alternative to X-SCID rats in thyroid cartilage regeneration experiments using iMSCs, and this nude rat cartilage transplantation model may develop cartilage regeneration research concerning fewer problems such as infection due to immunosuppression.


Assuntos
Células-Tronco Pluripotentes Induzidas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X , Humanos , Ratos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Ratos Nus , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/metabolismo , Diferenciação Celular , Cartilagens Laríngeas , Células-Tronco Mesenquimais/metabolismo
14.
Cell Transplant ; 32: 9636897231167323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37129266

RESUMO

Subcutaneous implants of device-encapsulated stem cell-derived pancreatic endoderm (PE) can establish a functional beta cell mass (FBM) with metabolic control in immune-compromised mice. In a study with human-induced pluripotent stem cell-PE, this outcome was favored by a preformed pouch which allowed lesion-free insertion of devices in a pre-vascularized site. This was not reproduced in nude rats, known to exhibit a higher innate reactivity than mice and therefore relevant as preclinical model: a dense fibrotic capsule formed around subcutis (SC) implants with virtually no FBM formation. Placement in omentum (OM) of nude rats provided a less fibrous, better vascularized environment than SC. It resulted in less donor cell loss (56% recovery at post-transplant-PT week 3 versus 16% in SC) allowing FBM-formation. At PT week 30, 6/13 OM-recipients exhibited glucose-induced plasma hu-C-peptide to 0.1-0.4 ng/ml, versus 0/8 in SC-recipients. These levels are more than 10-fold lower than in a state of metabolic control. This shortcoming is not caused by inadequate glucose responsiveness of the beta cells but by their insufficient number. The size of the formed beta cell mass (0.4 ± 0.2 µl) was lower than that reported in mice receiving the same cell product subcutaneously; the difference is attributed to a lower expansion of pancreatic progenitor cells and to their lower degree of differentiation to beta cells. This study in the nude rat model demonstrates that OM provides a better environment for formation of beta cells in device-encapsulated PE-implants than SC. It also identified targets for increasing their dose-efficacy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Transplante das Ilhotas Pancreáticas , Ratos , Humanos , Camundongos , Animais , Ratos Nus , Células-Tronco Pluripotentes Induzidas/metabolismo , Endoderma/metabolismo , Omento , Transplante das Ilhotas Pancreáticas/métodos , Glucose/metabolismo , Diferenciação Celular
15.
Cell Tissue Bank ; 24(4): 747-758, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37133795

RESUMO

Decalcified bone matrix (DBM) is a widely used alternative material for bone transplantation. In the DBM production process, an effective particle size and the highest utilization rate of raw materials can be achieved only through multiple high-speed circulating comminution. The rat posterolateral lumbar fusion model (PLF) is the most mature small animal model for the initial evaluation of the efficacy of graft materials for bone regeneration and spinal fusion. To evaluate the differences in the in vivo osteogenic effects of DBM pulverization through 1, 5, 9, and 14 high-speed cycles, sixty athymic rats were divided into six groups: single cycling crushing (CC1), 5 cycles of crushing (CC5), 9 cycles of crushing (CC9), 13 cycles of crushing (CC13), autogenous bone graft (ABG) and negative control (NC). Posterolateral lumbar fusion was performed. Six weeks after surgery, the bilateral lumbar fusion of athymic rats was evaluated through manual palpation, X-ray, micro-CT and histological sections. Rank data were tested by the rank-sum test, and nonparametric data were tested by the Kruskal‒Wallis H test. The manual palpation and X-ray results showed that the fusion rate did not significantly differ between the CC1, CC5, CC9, CC13 and ABG groups. However, cavities appeared in CC9 and CC13 on the micro-CT image. The bone mass (BV/TV) of CC1, CC5, CC9 and CC13 was better than that of the ABG group, while almost no osteogenesis was observed in the NC group. Histologically, there was no obvious difference between the four groups except that the CC9 group and CC13 group had more fibrous tissues in the new bone. In conclusion, DMB with different cycling crushing times has no obvious difference in fusion rate of PLF, but it is slightly better than the ABG group.


Assuntos
Matriz Óssea , Fusão Vertebral , Ratos , Animais , Matriz Óssea/transplante , Ratos Nus , Vértebras Lombares/cirurgia , Osso e Ossos , Fusão Vertebral/métodos , Transplante Ósseo/métodos
16.
Sci Rep ; 13(1): 1973, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737618

RESUMO

Developing vascular networks that integrate with the host circulation and support cells engrafted within engineered tissues remains a key challenge in tissue engineering. Most previous work in this field has focused on developing new methods to build human vascular networks within engineered tissues prior to their implant in vivo, with substantively less attention paid to the role of the host in tissue vascularization and engraftment. Here, we assessed the role that different host animal models and anatomic implant locations play in vascularization and cardiomyocyte survival within engineered tissues. We found major differences in the formation of graft-derived blood vessels and survival of cardiomyocytes after implantation of identical tissues in immunodeficient athymic nude mice versus rats. Athymic mice supported robust guided vascularization of human microvessels carrying host blood but relatively sparse cardiac grafts within engineered tissues, regardless of implant site. Conversely, athymic rats produced substantive inflammatory changes that degraded grafts (abdomen) or disrupted vascular patterning (heart). Despite disrupted vascular patterning, athymic rats supported > 3-fold larger human cardiomyocyte grafts compared to athymic mice. This work demonstrates the critical importance of the host for vascularization and engraftment of engineered tissues, which has broad translational implications across regenerative medicine.


Assuntos
Transplante de Coração , Engenharia Tecidual , Camundongos , Ratos , Humanos , Animais , Engenharia Tecidual/métodos , Camundongos Nus , Ratos Nus , Doadores de Tecidos , Miócitos Cardíacos/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Alicerces Teciduais
17.
Muscle Nerve ; 67(2): 177-181, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36507578

RESUMO

INTRODUCTION/AIMS: We have recently isolated and expanded skin-derived Schwann cells (Sk-SCs) from human skin and showed that they are largely similar to nerve-derived Schwann cells (N-SCs). Here, we extend our investigation into functional assessments of the nude rats that received human Sk-SCs and N-SCs after intraneural delivery into crushed and decellularized tibial nerve in adult nude rats. METHODS: Sk-SCs, N-SCs, dermal fibroblasts, or control culture medium was injected into the crushed and decellularized tibial nerve using in situ repeated freeze-thaw cycles. Animals were then subjected to a ladder rung walking test, nociceptive von Frey testing, and walking gait analysis weekly. Animals were euthanized 6 weeks after surgery, gastrocnemius and soleus muscles were weighed, distal nerves were harvested, and whole semithin cross-sections were analyzed using segmentation software. RESULTS: N-SC-injected and dermal fibroblast-injected animals improved significantly at 4 to 6 weeks postinjury in nociceptive assessment compared with medium-injected controls. Sk-SCs recovered more rapidly in tibial functional index at 2 weeks postinjury compared with medium-injected controls. No significant difference was observed for the ladder rung walking test or muscle weight ratio. Histologically, the number of myelinated axons was significantly higher in all cell injection groups compared with medium-injected controls. No significant difference was observed in g ratio, axon diameter, or myelin thickness. DISCUSSION: Cell injection significantly improved axon regeneration across an in situ decellularized nerve segment. However, a more human cell-permissive animal model is required to delineate functional differences between cell types for preclinical transplantation studies.


Assuntos
Axônios , Regeneração Nervosa , Ratos , Animais , Humanos , Axônios/fisiologia , Ratos Nus , Regeneração Nervosa/fisiologia , Células de Schwann/fisiologia , Bainha de Mielina , Nervo Isquiático
18.
Animal Model Exp Med ; 5(5): 453-460, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36208013

RESUMO

BACKGROUND: The aim of the study was to demonstrate the efficacy of human muscle stem cells (MuSCs) isolated using innovative technology in restoring internal urinary sphincter function in a preclinical animal model. METHODS: Colonies of pure human MuSCs were obtained from muscle biopsy specimens. Athymic rats were subjected to internal urethral sphincter damage by electrocauterization. Five days after injury, 2 × 105 muscle stem cells or medium as control were injected into the area of sphincter damage (n = 5 in each group). Peak bladder pressure and rise in pressure were chosen as outcome measures. To repeatedly obtain the necessary pressure values, telemetry sensors had been implanted into the rat bladders 10 days prior to injury. RESULTS: There was a highly significant improvement in the ability to build up peak pressure as well as a pressure rise in animals that had received muscle stem cells as compared to control (p = 0.007) 3 weeks after the cells had been injected. Only minimal histologic evidence of scarring was observed in treated rats. CONCLUSION: Primary human muscle stem cells obtained using innovative technology functionally restore internal urethral sphincter function after injury. Translation into use in clinical settings is foreseeable.


Assuntos
Mioblastos , Uretra , Humanos , Ratos , Animais , Uretra/lesões , Ratos Nus , Bexiga Urinária , Músculos
19.
Methods Mol Biol ; 2550: 477-488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180715

RESUMO

The tissue-isolated human tumor perfusion methodology enables the elucidation of physiological melatonin's oncostatic impact on cancer metabolism and physiology. Here we describe an apparatus and surgical technique for perfusing tissue-isolated human tumor xenografts in nude rats in situ that ensures continuous blood flow to and from the tissue. This system and methodology have proven quite successful in examining the receptor-mediated oncostatic effects of the physiological nocturnal melatonin signal on metabolism and physiology in a variety of epithelial and mesenchymal human tumors.


Assuntos
Melatonina , Neoplasias , Animais , Xenoenxertos , Humanos , Melatonina/farmacologia , Perfusão/métodos , Ratos , Ratos Nus
20.
Methods Mol Biol ; 2550: 489-496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180716

RESUMO

The tissue-isolated tumor model permits the investigation of melatonin's influence on human tumor growth and metabolism in laboratory rats in vivo. Here we describe a unique surgical technique for implanting and growing human tumor xenografts on a vascular stalk composed of the nude rat epigastric artery and vein that provides a continuous blood supply from a single source to the tissue-isolated tumor while insuring the absence of extraneous vascular connections. A variety of human tumor types may be implanted and grown utilizing this unique model that may provide a plethora of scientific data from a single tumor examined.


Assuntos
Melatonina , Neoplasias , Animais , Xenoenxertos , Humanos , Melatonina/farmacologia , Ratos , Ratos Nus , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA