Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.547
Filtrar
1.
Braz. j. biol ; 84: e252364, 2024. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355885

RESUMO

Abstract Understanding morphological and physiological changes under different light conditions in native fruit species in juveniles' stage is important, as it indicate the appropriate environment to achieve vigorous saplings. We aimed to verify growth and morphophysiological changes under shade gradient in feijoa (Acca sellowiana (O. Berg) Burret) to achieve good quality saplings adequate to improve cultivation in orchards. The saplings were grown for twenty-one-month under four shading treatments (0%, 30%, 50%, and 80%). Growth, photosynthetic pigments, gas exchanges, chlorophyll fluorescence, and leaf anatomy parameters were evaluated. Saplings under full sun and 30% shade had higher height and diameter growth and dry mass accumulation due to higher photosynthesis rate. As main acclimatization mechanisms in feijoa saplings under 80% shade were developed larger leaf area, reduced leaf blade thickness, and enhanced quantum yield of photosystem II. Even so, the net CO2 assimilation and the electron transport rate was lower and, consequently, there was a restriction on the growth and dry mass in saplings under deep shade. Therefore, to obtain higher quality feijoa saplings, we recommend that it be carried out in full sun or up to 30% shade, to maximize the sapling vigor in nurseries and, later, this light environment can also be used in orchards for favor growth and fruit production.


Resumo A verificação de mudanças morfológicas e fisiológicas sob diferentes condições luminosas em espécies frutíferas nativas em estágio juvenil é importante, uma vez que indicam o ambiente adequado para a formação de mudas com alto vigor. Objetivou-se verificar o crescimento e as alterações morfofisiológicas sob gradiente de sombreamento em mudas de feijoa (Acca sellowiana (O. Berg) Burret) para obter mudas de boa qualidade, adequadas para fomentar os plantios da espécie em pomares. As mudas foram cultivadas por vinte e um meses sob quatro tratamentos de sombreamento (0%, 30%, 50% e 80%). Foram avaliados parâmetros de crescimento, pigmentos fotossintéticos, trocas gasosas, fluorescência da clorofila e anatomia foliar. Mudas a pleno sol e 30% de sombra apresentaram maior crescimento em altura, diâmetro e acúmulo de massa seca, devido à maior taxa de fotossíntese. Como principais mecanismos de aclimatação sob 80% de sombra, as mudas desenvolveram maior área foliar, redução da espessura do limbo foliar e aumento do rendimento quântico do fotossistema II. Mesmo assim, a assimilação líquida de CO2 e a taxa de transporte de elétrons foram menores e, consequentemente, houve restrição ao crescimento e acúmulo de massa seca das mudas no maior nível de sombreamento. Portanto, para a obtenção de mudas de feijoa de maior qualidade, recomendamos que seja realizada a pleno sol ou até 30% de sombra, para maximizar o vigor das mudas em viveiros e, posteriormente, este ambiente de luz também pode ser utilizado em pomares para favorecer o crescimento e a produção de frutos.


Assuntos
Myrtaceae , Feijoa , Fotossíntese , Folhas de Planta , Aclimatação , Luz
2.
Sci Rep ; 12(1): 13180, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915153

RESUMO

Cultural transformations of lifestyles and dietary practices have been key drivers of human evolution. However, while most of the evidence of genomic adaptations is related to the hunter-gatherer transition to agricultural societies, little is known on the influence of other major cultural manifestations. Shamanism is considered the oldest religion that predominated throughout most of human prehistory and still prevails in many indigenous populations. Several lines of evidence from ethno-archeological studies have demonstrated the continuity and importance of psychoactive plants in South American cultures. However, despite the well-known importance of secondary metabolites in human health, little is known about its role in the evolution of ethnic differences. Herein, we identified candidate genes of adaptation to hallucinogenic cactus in Native Andean populations with a long history of shamanic practices. We used genome-wide expression data from the cactophilic fly Drosophila buzzatii exposed to a hallucinogenic columnar cactus, also consumed by humans, to identify ortholog genes exhibiting adaptive footprints of alkaloid tolerance. Genomic analyses in human populations revealed a suite of ortholog genes evolving under recent positive selection in indigenous populations of the Central Andes. Our results provide evidence of selection in genetic variants related to alkaloids toxicity, xenobiotic metabolism, and neuronal plasticity in Aymara and Quechua populations, suggesting a possible process of gene-culture coevolution driven by religious practices.


Assuntos
Alcaloides , Cactaceae , Aclimatação , Adaptação Fisiológica/genética , Animais , Cactaceae/genética , Drosophila/genética , Genômica , Humanos
3.
Proc Natl Acad Sci U S A ; 119(32): e2203121119, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914124

RESUMO

Animals maintain the ability to survive and reproduce by acclimating to environmental temperatures. We showed here that Caenorhabditis elegans exhibited temperature acclimation plasticity, which was regulated by a head-tail-head neural circuitry coupled with gut fat storage. After experiencing cold, C. elegans individuals memorized the experience and were prepared against subsequent cold stimuli. The cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) regulated temperature acclimation in the ASJ thermosensory neurons and RMG head interneurons, where it modulated ASJ thermosensitivity in response to past cultivation temperature. The PVQ tail interneurons mediated the communication between ASJ and RMG via glutamatergic signaling. Temperature acclimation occurred via gut fat storage regulation by the triglyceride lipase ATGL-1, which was activated by a neuropeptide, FLP-7, downstream of CREB. Thus, a head-tail-head neural circuit coordinated with gut fat influenced experience-dependent temperature acclimation.


Assuntos
Proteínas de Caenorhabditis elegans , Neuropeptídeos , Aclimatação , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Neuropeptídeos/metabolismo , Temperatura
4.
Nat Commun ; 13(1): 3847, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794093

RESUMO

Heat-induced labor loss is a major economic cost related to climate change. Here, we use hourly heat stress data modeled with a regional climate model to investigate the heat-induced labor loss in 231 Chinese cities. Results indicate that future urban heat stress is projected to cause an increase in labor losses exceeding 0.20% of the total account gross domestic product (GDP) per year by the 2050s relative to the 2010s. In this process, certain lower-paid sectors could be disproportionately impacted. The implementation of various urban adaptation strategies could offset 10% of the additional economic loss per year and help reduce the inequality-related impact on lower-paid sectors. So future urban warming can not only damage cities as a whole but can also contribute to income inequality. The implication of adaptation strategies should be considered in regard to not only cooling requirements but also environmental justice.


Assuntos
Aclimatação , Regulação da Temperatura Corporal , Mudança Climática , Modelos Climáticos , Temperatura Baixa , Feminino , Humanos , Gravidez
5.
Sci Rep ; 12(1): 11411, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794131

RESUMO

Glass biodeterioration by fungi has caused irreversible damage to valuable glass materials such as cultural heritages and optical devices. To date, knowledge about metabolic potential and genomic profile of biodeteriorative fungi is still scarce. Here, we report for the first time the whole genome sequence of Curvularia eragrostidis C52 that strongly degraded silica-based glasses coated with fluorine and hafnium, as expressed by the hyphal surface coverage of 46.16 ± 3.3% and reduced light transmission of 50.93 ± 1.45%. The genome of C. eragrostidis C52 is 36.9 Mb long with a GC content of 52.1% and contains 14,913 protein-coding genes, which is the largest genome ever recorded in the genus Curvularia. Phylogenomic analysis revealed C. eragrostidis C52 formed a distinct cluster with Curvularia sp. IFB-Z10 and was not evolved from compared genomes. Genome-wide comparison showed that strain C52 harbored significantly higher proportion of proteins involved in carbohydrate-active enzymes, peptidases, secreted proteins, and transcriptional factors, which may be potentially attributed to a lifestyle adaptation. Furthermore, 72 genes involved in the biosynthesis of 6 different organic acids were identified and expected to be crucial for the fungal survival in the glass environment. To form biofilm against stress, the fungal strain utilized 32 genes responsible for exopolysaccharide production. These findings will foster a better understanding of the biology of C. eragrostidis and the mechanisms behind fungal biodeterioration in the future.


Assuntos
Aclimatação , Curvularia , Composição de Bases , Genoma Fúngico
6.
Elife ; 112022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35904422

RESUMO

We investigated early vegetative growth of natural Arabidopsis thaliana accessions in cold, nonfreezing temperatures, similar to temperatures these plants naturally encounter in fall at northern latitudes. We found that accessions from northern latitudes produced larger seedlings than accessions from southern latitudes, partly as a result of larger seed size. However, their subsequent vegetative growth when exposed to colder temperatures was slower. The difference was too large to be explained by random population differentiation, and is thus suggestive of local adaptation, a notion that is further supported by substantial transcriptome and metabolome changes in northern accessions. We hypothesize that the reduced growth of northern accessions is an adaptive response and a consequence of reallocating resources toward cold acclimation and winter survival.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Aclimatação , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Temperatura
7.
J Physiol Anthropol ; 41(1): 27, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836266

RESUMO

This review mainly aimed to introduce the findings of research projects comparing the responses of tropical and temperate indigenes to heat. From a questionnaire survey on thermal sensation and comfort of Indonesians and Japanese, we found that the thermal descriptor "cool" in tropical indigenes connotes a thermally comfortable feeling, suggesting that linguistic heat acclimatization exists on a cognitive level. Ten male students born and raised in Malaysia were invited to Fukuoka, Japan, and compared their responses with 10 Japanese male students with matched physical fitness and morphological characteristics. Cutaneous thermal sensitivity: The sensitivities were measured at 28 °C. The forehead warm sensitivity was significantly blunted in Malaysians. The less sensitivity to the warmth of tropical indigenes is advantageous in respect to withstanding heat stress with less discomfort and a greater ability to work in hot climates. Passive heat stress: Thermoregulatory responses, especially sweating, were investigated, during the lower leg hot bathing (42 °C for 60 min). The rectal temperature at rest was higher in Malaysians and increased smaller during immersion. There was no significant difference in the total amount of sweating between the two groups, while the local sweating on the forehead and thighs was lesser in Malaysians, suggesting distribution of sweating was different from Japanese. Exercise: Malaysian showed a significantly smaller increase in their rectal temperature during 55% maximal exercise for 60 min in heat (32 °C 70% relative humidity), even with a similar sweating and skin blood flow response in Japanese. The better heat tolerance in Malaysians could be explained by the greater convective heat transfer from the body core to the skin due to the greater core-to-skin temperature gradient. In addition, when they were hydrated, Malaysian participants showed better body fluid regulation with smaller reduction in plasma volume at the end of the exercise compared to the non-hydrated condition, whereas Japanese showed no difference between hydration conditions. We further investigated the de-acclimatization of heat adaptation by longitudinal observation on the heat tolerance of international students who had moved from tropical areas to Fukuoka for several years.


Assuntos
Regulação da Temperatura Corporal , Temperatura Alta , Aclimatação/fisiologia , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Clima , Humanos , Masculino , Sudorese
8.
Food Res Int ; 158: 111477, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35840198

RESUMO

In this article, the thermal inactivation of two Salmonella strains (Salmonella Enteritidis CECT4300 and Salmonella Senftenberg CECT4565) was studied under both isothermal and dynamic conditions. We observed large differences between these two strains, with S. Senftenberg being much more resistant than S. Enteritidis. Under isothermal conditions, S. Senftenberg had non-linear survivor curves, whereas the response of S. Enteritidis was log-linear. Therefore, weibullian inactivation models were used to describe the response of S. Senftenberg, with the Mafart model being the more suitable one. For S. Enteritidis, the Bigelow (log-linear) inactivation model was successful at describing the isothermal response. Under dynamic conditions, a combination of the Peleg and Mafart models (secondary model of Mafart; t* of Peleg) fitted to the isothermal data could predict the response of S. Senftenberg to the dynamic treatments tested (heating rates between 0.5 and 10 °C/min). This was not the case for S. Enteritidis, where the model predictions based on isothermal data underestimated the microbial concentrations. Therefore, a dynamic model that considers stress acclimation to one of the dynamic profiles was fitted, using the remaining profiles as validation. In light of this, besides its quantitative impact, variability between strains of bacterial species can also cause qualitative differences in microbial inactivation. This is demonstrated by S. Enteritidis being able to develop stress acclimation where S. Senftenbenberg could not. This has important implications for the development of microbial inactivation models to support process design, as every industrial treatment is dynamic. Consequently, it is crucial to consider different model hypotheses, and how they affect the model predictions both under isothermal and dynamic conditions.


Assuntos
Microbiologia de Alimentos , Salmonella enteritidis , Aclimatação , Viabilidade Microbiana
9.
Sci Rep ; 12(1): 12692, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879333

RESUMO

Temperature is one of the most critical environmental factors that influence various biological processes. Species distributed in different temperature regions are considered to have different optimal temperatures for daily life activities. However, how organisms have acquired various features to cope with particular temperature environments remains to be elucidated. In this study, we have systematically analyzed the temperature preference behavior and effects of temperatures on daily locomotor activity and sleep using 11 Drosophila species. We also investigated the function of antennae in the temperature preference behavior of these species. We found that, (1) an optimal temperature for daily locomotor activity and sleep of each species approximately matches with temperatures it frequently encounters in its habitat, (2) effects of temperature on locomotor activity and sleep are diverse among species, but each species maintains its daily activity and sleep pattern even at different temperatures, and (3) each species has a unique temperature preference behavior, and the contribution of antennae to this behavior is diverse among species. These results suggest that Drosophila species inhabiting different climatic environments have acquired species-specific temperature response systems according to their life strategies. This study provides fundamental information for understanding the mechanisms underlying their temperature adaptation and lifestyle diversification.


Assuntos
Proteínas de Drosophila , Drosophila , Aclimatação , Animais , Drosophila/fisiologia , Locomoção/fisiologia , Temperatura
10.
BMC Biol ; 20(1): 167, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35879753

RESUMO

BACKGROUND: Chimeras are genetically mixed entities resulting from the fusion of two or more conspecifics. This phenomenon is widely distributed in nature and documented in a variety of animal and plant phyla. In corals, chimerism initiates at early ontogenic states (larvae to young spat) and results from the fusion between two or more closely settled conspecifics. When compared to genetically homogenous colonies (non-chimeras), the literature has listed ecological and evolutionary benefits for traits at the chimeric state, further positioning coral chimerism as an evolutionary rescue instrument. However, the molecular mechanisms underlying this suggestion remain unknown. RESULTS: To address this question, we developed field monitoring and multi-omics approaches to compare the responses of chimeric and non-chimeric colonies acclimated for 1 year at 10-m depth or exposed to a stressful environmental change (translocation from 10- to 2-m depth for 48h). We showed that chimerism in the stony coral Stylophora pistillata is associated with higher survival over a 1-year period. Transcriptomic analyses showed that chimeras lose transcriptomic plasticity and constitutively express at higher level (frontload) genes responsive to stress. This frontloading may prepare the colony to face at any time environmental stresses which explain its higher robustness. CONCLUSIONS: These results show that chimeras are environmentally robust entities with an enhanced ability to cope with environmental stress. Results further document the potential usefulness of chimeras as a novel reef restoration tool to enhance coral adaptability to environmental change, and confirm that coral chimerism can be an evolutionary rescue instrument.


Assuntos
Antozoários , Aclimatação , Animais , Antozoários/genética , Quimera , Larva/genética , Estresse Fisiológico/genética
12.
Proc Biol Sci ; 289(1979): 20220529, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35892216

RESUMO

Relative to a growing body of knowledge about the negative consequences of freshwater salinization, little is known about how aquatic insects respond to progressively ion-poor conditions. Here, we examined life-history and physiological acclimation in Neocloeon triangulifer by rearing nymphs from 1-day post-egg hatch to adulthood across a gradient of decreasing Na concentrations (15, 8, 4, 2 and 1 mg l-1 Na). We found no significant changes in survival, growth, development time and whole-body Na content across these treatments. Radiotracer data revealed that nymphs acclimated to their dilute exposures by increasing their rates of Na uptake and were able to maintain a relatively narrow range of uptake rates (±s.e.m.) of 38.5 ± 4.2 µg Na g-1 h-1 across all treatments. By contrast, the Na uptake rates observed in naive nymphs were much more concentration dependent. This acclimatory response is partially explained by differences in ionocyte counts on the gills of nymphs reared under different salinities. Acclimated nymphs were surprisingly less retentive of their sodium composition when subjected to deionized water challenge. By contrasting our findings with a previous N. triangulifer salinity acclimation study, we show a physiological affinity for dilute conditions in this emerging mayfly model.


Assuntos
Ephemeroptera , Poluentes Químicos da Água , Aclimatação , Animais , Ephemeroptera/fisiologia , Água Doce , Brânquias , Íons , Salinidade , Sódio
13.
Proc Natl Acad Sci U S A ; 119(31): e2121858119, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35895682

RESUMO

Contemporary evolution has the potential to significantly alter biotic responses to global change, including range expansion dynamics and biological invasions. Models predicting range dynamics often make highly simplifying assumptions about the genetic architecture underlying relevant traits. However, genetic architecture defines evolvability and higher-order evolutionary processes, which determine whether evolution will be able to keep up with environmental change or not. Therefore, we here study the impact of the genetic architecture of dispersal and local adaptation, two central traits of high relevance for range expansions, on the dynamics and predictability of invasion into an environmental gradient, such as temperature. In our theoretical model we assume that dispersal and local adaptation traits result from the products of two noninteracting gene-regulatory networks (GRNs). We compare our model to simpler quantitative genetics models and show that in the GRN model, range expansions are accelerating and less predictable. We further find that accelerating dynamics in the GRN model are primarily driven by an increase in the rate of local adaptation to novel habitats which results from greater sensitivity to mutation (decreased robustness) and increased gene expression. Our results highlight how processes at microscopic scales, here within genomes, can impact the predictions of large-scale, macroscopic phenomena, such as range expansions, by modulating the rate of evolution.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Aclimatação , Adaptação Fisiológica/genética , Ecossistema , Modelos Genéticos , Mutação
14.
Sensors (Basel) ; 22(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35898010

RESUMO

Sensors are devices that output signals for sensing physical phenomena and are widely used in all aspects of our social production activities. The continuous recording of physical parameters allows effective analysis of the operational status of the monitored system and prediction of unknown risks. Thanks to the development of deep learning, the ability to analyze temporal signals collected by sensors has been greatly improved. However, models trained in the source domain do not perform well in the target domain due to the presence of domain gaps. In recent years, many researchers have used deep unsupervised domain adaptation techniques to address the domain gap between signals collected by sensors in different scenarios, i.e., using labeled data in the source domain and unlabeled data in the target domain to improve the performance of models in the target domain. This survey first summarizes the background of recent research on unsupervised domain adaptation with time series sensor data, the types of sensors used, the domain gap between the source and target domains, and commonly used datasets. Then, the paper classifies and compares different unsupervised domain adaptation methods according to the way of adaptation and summarizes different adaptation settings based on the number of source and target domains. Finally, this survey discusses the challenges of the current research and provides an outlook on future work. This survey systematically reviews and summarizes recent research on unsupervised domain adaptation for time series sensor data to provide the reader with a systematic understanding of the field.


Assuntos
Aclimatação , Redes Neurais de Computação , Fatores de Tempo
15.
PLoS One ; 17(7): e0271792, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35862396

RESUMO

BACKGROUND: Anthropogenic changes in the environment are increasingly threatening the sustainability of socioecological systems on a global scale. As stewards of the natural capital of over a quarter of the world's surface area, Indigenous Peoples (IPs), are at the frontline of these changes. Indigenous socioecological systems (ISES) are particularly exposed and sensitive to exogenous changes because of the intimate bounds of IPs with nature. Traditional food systems (TFS) represent one of the most prominent components of ISES, providing not only diverse and nutritious food but also critical socioeconomic, cultural, and spiritual assets. However, a proper understanding of how future climate change may compromise TFS through alterations of related human-nature interactions is still lacking. Climate change resilience of indigenous socioecological systems (RISE) is a new joint international project that aims to fill this gap in knowledge. METHODS AND DESIGN: RISE will use a comparative case study approach coupling on-site socioeconomic, nutritional, and ecological surveys of the target ISES of Sakha (Republic of Sakha, Russian Federation) and Karen (Kanchanaburi, Thailand) people with statistical models projecting future changes in the distribution and composition of traditional food species under contrasting climate change scenarios. The results presented as alternative narratives of future climate change impacts on TFS will be integrated into a risk assessment framework to explore potential vulnerabilities of ISES operating through altered TFS, and possible adaptation options through stakeholder consultation so that lessons learned can be applied in practice. DISCUSSION: By undertaking a comprehensive analysis of the socioeconomic and nutritional contributions of TFS toward the sustainability of ISES and projecting future changes under alternative climate change scenarios, RISE is strategically designed to deliver novel and robust science that will contribute towards the integration of Indigenous issues within climate change and sustainable agendas while generating a forum for discussion among Indigenous communities and relevant stakeholders. Its goal is to promote positive co-management and regional development through sustainability and climate change adaptation.


Assuntos
Mudança Climática , Povos Indígenas , Aclimatação , Humanos , Federação Russa , Tailândia
16.
Sci Rep ; 12(1): 12265, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851608

RESUMO

This study looks at the nexus between urban growth, climate change, and flood risk in Doha, Qatar, a hot-spot, climate change region that has experienced unprecedented urban growth during the last four decades. To this end, this study overviews the main stages of Doha's urban growth and influencing climatic factors during this period. A physically-based hydrological model was then built to simulate surface runoff and quantify flood risk. Finally, the Pearson correlation was used to verify the potential nexus between flood risk, climate change, and urban growth. Surveying showed that, between 1984 and 2020, urban areas grew by 777%, and bare lands decreased by 54.7%. In addition, Doha witnessed various climatic changes with a notable increase in air temperature (+ 8.7%), a decrease in surface wind speed (- 19.5%), and a decrease in potential evapotranspiration losses (- 33.5%). Growth in urban areas and the perturbation of climatic parameters caused runoff to increase by 422%, suggesting that urban growth contributed more than climatic parameters. Pearson correlation coefficient between flood risk and urban growth was strong (0.83) and significant at p < 0.05. Flood risk has a strong significant positive (negative) correlation with air temperature (wind speed) and a moderate positive (negative) correlation with precipitation (potential evapotranspiration). These results pave the way to integrate flood risk reduction measures in local urban development and climate change adaptation plans.


Assuntos
Mudança Climática , Inundações , Aclimatação , Cidades , Hidrologia
17.
Nat Commun ; 13(1): 3911, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853849

RESUMO

The influence of climate change on civil conflict and societal instability in the premodern world is a subject of much debate, in part because of the limited temporal or disciplinary scope of case studies. We present a transdisciplinary case study that combines archeological, historical, and paleoclimate datasets to explore the dynamic, shifting relationships among climate change, civil conflict, and political collapse at Mayapan, the largest Postclassic Maya capital of the Yucatán Peninsula in the thirteenth and fourteenth centuries CE. Multiple data sources indicate that civil conflict increased significantly and generalized linear modeling correlates strife in the city with drought conditions between 1400 and 1450 cal. CE. We argue that prolonged drought escalated rival factional tensions, but subsequent adaptations reveal regional-scale resiliency, ensuring that Maya political and economic structures endured until European contact in the early sixteenth century CE.


Assuntos
Mudança Climática , Secas , Aclimatação , Arqueologia
18.
Front Cell Infect Microbiol ; 12: 909888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846739

RESUMO

Neisseria gonorrhoeae and Neisseria meningitidis are human-specific pathogens in the Neisseriaceae family that can cause devastating diseases. Although both species inhabit mucosal surfaces, they cause dramatically different diseases. Despite this, they have evolved similar mechanisms to survive and thrive in a metal-restricted host. The human host restricts, or overloads, the bacterial metal nutrient supply within host cell niches to limit pathogenesis and disease progression. Thus, the pathogenic Neisseria require appropriate metal homeostasis mechanisms to acclimate to such a hostile and ever-changing host environment. This review discusses the mechanisms by which the host allocates and alters zinc, manganese, and copper levels and the ability of the pathogenic Neisseria to sense and respond to such alterations. This review will also discuss integrated metal homeostasis in N. gonorrhoeae and the significance of investigating metal interplay.


Assuntos
Manganês , Neisseria meningitidis , Aclimatação , Cobre/toxicidade , Homeostase , Humanos , Íons , Manganês/toxicidade , Metais , Neisseria , Neisseria gonorrhoeae , Zinco/toxicidade
19.
Sci Rep ; 12(1): 12836, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896607

RESUMO

Mesophotic coral ecosystems (MCEs, reefs between 30 and 150 m depth) have been hypothesized to contribute to shallow reef recovery through the recruitment of larvae. However, few studies have directly examined this. Here we used mesophotic colonies of Seriatopora hystrix, a depth generalist coral, to investigate the effect of light intensity on larval behavior and settlement through ex situ experiments. We also investigated juvenile survival, growth, and physiological acclimation in situ. Bleached larvae and a significant reduction in settlement rates were found when the mesophotic larvae were exposed to light conditions corresponding to shallow depths (5 and 10 m) ex situ. The in situ experiments showed that mesophotic juveniles survived well at 20 and 40 m, with juveniles in shaded areas surviving longer than three months at 3-5 m during a year of mass bleaching in 2016. Juvenile transplants at 20 m showed a sign of physiological acclimation, which was reflected by a significant decline in maximum quantum yield. These results suggest that light is a significant factor for successful recolonization of depth-generalist corals to shallow reefs. Further, recolonization of shallow reefs may only occur in shaded habitats or potentially through multigenerational recruitments with intermediate depths acting as stepping stones.


Assuntos
Antozoários , Aclimatação , Animais , Antozoários/fisiologia , Recifes de Corais , Ecossistema
20.
Sci Rep ; 12(1): 11148, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778402

RESUMO

Despite aerobic activity requiring up to tenfold increases in air intake, human populations in high-altitude hypoxic environments can sustain high levels of endurance physical activity. While these populations generally have relatively larger chest and lung volumes, how thoracic motions actively increase ventilation is unknown. Here we show that rib movements, in conjunction with chest shape, contribute to ventilation by assessing how adulthood acclimatization, developmental adaptation, and population-level adaptation to high-altitude affect sustained aerobic activity. We measured tidal volume, heart rate, and rib-motion during walking and running in lowland individuals from Boston (~ 35 m) and in Quechua populations born and living at sea-level (~ 150 m) and at high altitude (> 4000 m) in Peru. We found that Quechua participants, regardless of birth or testing altitudes, increase thoracic volume 2.0-2.2 times more than lowland participants (p < 0.05). Further, Quechua individuals from hypoxic environments have deeper chests resulting in 1.3 times greater increases in thoracic ventilation compared to age-matched, sea-level Quechua (p < 0.05). Thus, increased thoracic ventilation derives from a combination of acclimatization, developmental adaptation, and population-level adaptation to aerobic demand in different oxygen environments, demonstrating that ventilatory demand due to environment and activity has helped shape the form and function of the human thorax.


Assuntos
Aclimatação , Altitude , Aclimatação/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Exercício Físico/fisiologia , Humanos , Hipóxia , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...