RESUMO
BACKGROUND: Undesired intrathecal injections represent an important subset of medical errors, albeit rare. Clinical effects depend on the type and concentration of drug(s) injected. Here we report on the case of a healthy woman with persistent low back pain, treated with a paravertebral injection of lidocaine, thiocolchicoside, and L-acetylcarnitine at an orthopedic practice. CASE REPORT: A 42-year-old Caucasian woman, with no relevant past medical history, received a lumbar paravertebral injection of lidocaine, thiocolchicoside, and L-acetylcarnitine for persistent low back pain. Approximately 30 minutes after injection, she experienced quick neurological worsening. Upon arrival at the Emergency Department, she was comatose, with fixed bilateral mydriasis, trismus, and mixed acidosis; seizures ensued in the first hours; slow progressive amelioration was observed by day 6; retrograde amnesia was the only clinical relevant remaining symptom by 6 months. CONCLUSIONS: To our knowledge, this is the first reported case of inadvertent intrathecal thiocolchicoside injection in an adult patient, as well as the first in the neurosurgical literature. Our experience suggests that injection therapy for low back pain should be administered in adequate settings, where possible complications may be promptly treated.
Assuntos
Dor Lombar , Adulto , Feminino , Humanos , Dor Lombar/tratamento farmacológico , Acetilcarnitina/uso terapêutico , Injeções Espinhais/efeitos adversos , Lidocaína , Erros MédicosRESUMO
In eukaryotes, carnitine is best known for its ability to shuttle esterified fatty acids across mitochondrial membranes for ß-oxidation. It also returns to the cytoplasm, in the form of acetyl-L-carnitine (LAC), some of the resulting acetyl groups for posttranslational protein modification and lipid biosynthesis. While dietary LAC supplementation has been clinically investigated, its effects on cellular metabolism are not well understood. To explain how exogenous LAC influences mammalian cell metabolism, we synthesized isotope-labeled forms of LAC and its analogs. In cultures of glucose-limited U87MG glioma cells, exogenous LAC contributed more robustly to intracellular acetyl-CoA pools than did ß-hydroxybutyrate, the predominant circulating ketone body in mammals. The fact that most LAC-derived acetyl-CoA is cytosolic is evident from strong labeling of fatty acids in U87MG cells by exogenous 13C2-acetyl-L-carnitine. We found that the addition of d3-acetyl-L-carnitine increases the supply of acetyl-CoA for cytosolic posttranslational modifications due to its strong kinetic isotope effect on acetyl-CoA carboxylase, the first committed step in fatty acid biosynthesis. Surprisingly, whereas cytosolic carnitine acetyltransferase is believed to catalyze acetyl group transfer from LAC to coenzyme A, CRAT-/- U87MG cells were unimpaired in their ability to assimilate exogenous LAC into acetyl-CoA. We identified carnitine octanoyltransferase as the key enzyme in this process, implicating a role for peroxisomes in efficient LAC utilization. Our work has opened the door to further biochemical investigations of a new pathway for supplying acetyl-CoA to certain glucose-starved cells.
Assuntos
Acetilcoenzima A , Acetilcarnitina , Carnitina Aciltransferases , Carnitina , Acetilcoenzima A/metabolismo , Acetilcarnitina/farmacologia , Carnitina/metabolismo , Carnitina Aciltransferases/metabolismo , Carnitina O-Acetiltransferase/genética , Carnitina O-Acetiltransferase/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Oxirredução , Humanos , Linhagem Celular TumoralRESUMO
Obesity and diabetes normally cause mitochondrial dysfunction and hepatic lipid accumulation, while fatty acid synthesis is suppressed and malonyl-CoA is depleted in the liver of severe obese or diabetic animals. Therefore, a negative regulatory mechanism might work for the control of mitochondrial fatty acid metabolism that is independent of malonyl-CoA in the diabetic animals. As mitochondrial ß-oxidation is controlled by the acetyl-CoA/CoA ratio, and the acetyl-CoA generated in peroxisomal ß-oxidation could be transported into mitochondria via carnitine shuttles, we hypothesize that peroxisomal ß-oxidation might play a role in regulating mitochondrial fatty acid oxidation and inducing hepatic steatosis under the condition of obesity or diabetes. This study reveals a novel mechanism by which peroxisomal ß-oxidation controls mitochondrial fatty acid oxidation in diabetic animals. We determined that excessive oxidation of fatty acids by peroxisomes generates considerable acetyl-carnitine in the liver of diabetic mice, which significantly elevates the mitochondrial acetyl-CoA/CoA ratio and causes feedback suppression of mitochondrial ß-oxidation. Additionally, we found that specific suppression of peroxisomal ß-oxidation enhances mitochondrial fatty acid oxidation by reducing acetyl-carnitine formation in the liver of obese mice. In conclusion, we suggest that induction of peroxisomal fatty acid oxidation serves as a mechanism for diabetes-induced hepatic lipid accumulation. Targeting peroxisomal ß-oxidation might be a promising pathway in improving hepatic steatosis and insulin resistance as induced by obesity or diabetes.
Assuntos
Diabetes Mellitus Experimental , Fígado Gorduroso , Resistência à Insulina , Animais , Camundongos , Acetilcoenzima A/metabolismo , Diabetes Mellitus Experimental/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Malonil Coenzima A/metabolismo , Camundongos Obesos , Obesidade/metabolismo , Oxirredução , Acetilcarnitina/metabolismoRESUMO
PURPOSE: Acetylcarnitine can be assessed in vivo using proton MRS (1 H-MRS) with long TEs and this has been previously applied successfully in muscle. The aim of this study was to evaluate a 1 H-MRS technique for liver acetylcarnitine quantification in healthy humans before and after l-carnitine supplementation. METHOD: Baseline acetylcarnitine levels were quantified using a STEAM sequence with prolonged TE in 15 healthy adults. Using STEAM with four different TEs was evaluated in phantoms. To assess reproducibility of the measurements, five of the participants had repeated 1 H-MRS without receiving l-carnitine supplementation. To determine if liver acetylcarnitine could be changed after l-carnitine supplementation, acetylcarnitine was quantified 2 h after intravenous l-carnitine supplementation (50 mg/kg body weight) in the other 10 participants. Hepatic lipids were also quantified from the 1 H-MRS spectra. RESULTS: There was good separation between the acetylcarnitine and fat in the phantoms using TE = 100 ms. Hepatic acetylcarnitine levels were reproducible (coefficient of reproducibility = 0.049%) and there was a significant (p < 0.001) increase in the relative abundance after a single supplementation of l-carnitine. Hepatic allylic, methyl, and methylene peaks were not altered by l-carnitine supplementation in healthy volunteers. CONCLUSION: Our results demonstrate that our 1 H-MRS technique could be used to measure acetylcarnitine in the liver and detect changes following intravenous supplementation in healthy adults despite the presence of lipids. Our techniques should be explored further in the study of fatty liver disease, where acetylcarnitine is suggested to be altered due to hepatic inflexibilities.
Assuntos
Acetilcarnitina , Carnitina , Adulto , Humanos , Reprodutibilidade dos Testes , Músculo Esquelético , Fígado/diagnóstico por imagem , Suplementos Nutricionais , LipídeosRESUMO
OBJECTIVE: Evaluation of the antiasthenic effect of sequential therapy with levocarnitine (LC) and acetylcarnitine (ALC) in patients with arterial hypertension and/or ischemic heart disease (CHD) with asthenic syndrome (AS). MATERIAL AND METHODS: An open comparative study included 120 patients aged 54-67 years in patients with arterial hypertension and/or coronary artery disease with AS. Patients of group1 (n=60), in addition to basic therapy for the underlying disease, received LC (Elcar solution for intravenous and intramuscular injection of 100 mg/ml, the company PIQ-PHARMA) intravenously for 10 days at a dose of 1000 mg/day, followed by a transition to oral administration of ALC (Carnicetine, the company PIQ-PHARMA) 500 mg (2 capsules) 2 times a day for 2 months. Group2 patients (n=60) received only basic therapy for major diseases. The duration of observation was 70 days. The severity of AS was assessed using the MFI-20 questionnaire (MultidiMensional Fatigue Inventory) and the visual analog scale VAS-A (Visual Analog Scale Measuring fatigue). RESULTS: In patients of group1, a statistically significant decrease in various manifestations of AS was noted. The differences were significant both in comparison with the baseline level and in comparison with the 2nd group. The endothelium-protective effect of LC and ALC has been established. CONCLUSION: The results obtained indicate that in such comorbid patients, the use of LC and ALC reduces the severity of AS manifestations, and the established endotheliotropic properties of the drugs allow them to be recommended as part of the complex personalized therapy of patients with cardiovascular diseases.
Assuntos
Doenças Cardiovasculares , Hipertensão , Humanos , Acetilcarnitina/uso terapêutico , Carnitina , Doenças Cardiovasculares/induzido quimicamente , Astenia/tratamento farmacológico , Síndrome , Hipertensão/tratamento farmacológicoRESUMO
For ectothermic species, adaptation to thermal changes is of critical importance. Mitochondrial oxidative phosphorylation (OXPHOS), which leverages multiple electron pathways to produce energy needed for survival, is among the crucial metabolic processes impacted by temperature. Our aim in this study was to identify how changes in temperature affect the less-studied electron transferring flavoprotein pathway, fed by fatty acid substrates. We used the planarian Dugesia tigrina, acclimated for 4 weeks at 10°C (cold acclimated) or 20°C (normothermic). Respirometry experiments were conducted at an assay temperature of either 10 or 20°C to study specific states of the OXPHOS process using the fatty acid substrates palmitoylcarnitine (long chain), octanoylcarnitine (medium chain) or acetylcarnitine (short chain). Following cold acclimation, octanoylcarnitine exhibited increases in both the OXPHOS and electron transfer (ET, non-coupled) states, indicating that the pathway involved in medium-chain length fatty acids adjusts to cold temperatures. Acetylcarnitine only showed an increase in the OXPHOS state as a result of cold acclimation, but not in the ET state, indicative of a change in phosphorylation system capacity rather than fatty acid ß-oxidation. Palmitoylcarnitine oxidation was unaffected. Our results show that cold acclimation in D. tigrina caused a specific adjustment in the capacity to metabolize medium-chain fatty acids rather than an adjustment in the activity of the enzymes carnitine-acylcarnitine translocase, carnitine acyltransferase and carnitine palmitoyltransferase-2. Here, we provide novel evidence of the alterations in fatty acid ß-oxidation during cold acclimation in D. tigrina.
Assuntos
Temperatura Baixa , Palmitoilcarnitina , Palmitoilcarnitina/metabolismo , Acetilcarnitina/metabolismo , Mitocôndrias/metabolismo , Ácidos Graxos/metabolismo , OxirreduçãoRESUMO
Previously, we reported, based on an untargeted metabolomics, carnitine derivatives are part of a mechanism to overcome impaired mitochondrial functioning triggered by an acyl-group overflow in CHO cells. In this study, we analyzed the cell-specific rates of 24 selected metabolites using two metrics: correlation coefficients and root-mean-square deviations (RMSDs) between glucose-fed versus glucose/lactic acid-fed cultures. The time-course profiles of acetylcarnitine, adipoylcarnitine, glutarylcarnitine, glutamate, and succinate exhibited significant negative correlations between the two culture conditions. Based on RMSDs, seven carnitine derivatives, 3-hydroxy-methyl-glutarate, mevalonate, pyridoxamine-5-phosphate, succinate, and glycine were substantially different. The analyses from the two metrics reveal a distinctive rearrangement of rates from the following metabolic pathways: (i) high secretion rates of carnitines as part of the acyl-group removal, (ii) low secretion rates of succinate, related to the tricarboxylic acid cycle and the electron-transport chain, (iii) low secretion rates of pyridoxamine-5-phosphate - a co-factor for amino acid catabolism, transaminations, and transsulfuration, and (iv) increases in the consumption rates of glutamate and glycine, both used to produce glutathione. The rewiring in rates observed upon feeding lactic acid is best explained by the activation of pathways supporting homeostasis of acyl-groups and antioxidant synthesis, which are required for continuous proper functioning of oxidative phosphorylation.
Assuntos
Glucose , Ácido Láctico , Cricetinae , Animais , Glucose/metabolismo , Ácido Láctico/metabolismo , Cricetulus , Ácido Mevalônico , Acetilcarnitina , Antioxidantes , Piridoxamina , Células CHO , Carnitina/metabolismo , Ácido Succínico , Aminoácidos , Glutamatos , Glicina , Glutaratos , Glutationa , FosfatosRESUMO
In the present study, we aimed at assessing the influence of breed and feeding system on the bovine milk profile of betaines and carnitines and milk capacity in counteracting the inflammatory endothelial cell (EC) damage induced by interleukin (IL)-6. In the first experimental design, two breeds were chosen (Holstein vs. Modicana) to investigate the biomolecule content and antioxidant capacity in milk and dairy products. In the second experimental design, two feeding systems (pasture vs. total mixed ratio) were tested only in Holstein to evaluate the possible effect on the functional profile of milk and dairy products. Finally, the bulk milk from the two experimental designs was used to evaluate the efficacy of preventing IL-6-induced endothelial inflammatory damage. Results showed that Modicana milk and whey had higher biomolecule content and antioxidant activity compared to Holstein milk (p < 0.01). Milk from Holstein fed TMR showed higher concentration of γ-butyrobetaine, δ-valerobetaine (p < 0.01), and l-carnitine (p < 0.05). Similarly, whey from Holstein fed TMR also showed higher content of δ-valerobetaine, glycine betaine, l-carnitine, and acetyl-l-carnitine (p < 0.01) compared to the Holstein fed pasture. Conversely, the antioxidant activity of milk and dairy products was not affected by the feeding system. In ECs, all milk samples reduced the IL-6-induced cytokine release, as well as the accumulation of reactive oxygen species (ROS) and the induction of cell death, with the most robust effect elicited by Modicana milk (p < 0.01). Overall, Modicana milk showed a higher content of biomolecules and antioxidant activity compared to Holstein, suggesting that the breed, more than the feeding system, can positively affect the health-promoting profile of dairy cattle milk.
Assuntos
Antioxidantes , Leite , Acetilcarnitina/metabolismo , Ração Animal , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Betaína/metabolismo , Carnitina/metabolismo , Bovinos , Dieta , Feminino , Interleucina-6/metabolismo , Lactação/fisiologia , Leite/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas do Soro do Leite/metabolismoRESUMO
Acetate is widely used as a dialysate buffer to avoid the precipitation of bicarbonate salts. However, even at low concentrations that wouldn't surpass the metabolic capacity of the Krebs tricarboxylic acid (TCA) cycle, other metabolic routes are activated, leading to undesirable clinical consequences by poorly understood mechanisms. This study aims to add information that could biologically explain the clinical improvements found in patients using citrate dialysate. A unicentric, cross-over, prospective targeted metabolomics study was designed to analyze the differences between two dialysates, one containing 4 mmol/L of acetate (AD) and the other 1 mmol/L of citrate (CD). Fifteen metabolites were studied to investigate changes induced in the TCA cycle, glycolysis, anaerobic metabolism, ketone bodies, and triglyceride and aminoacidic metabolism. Twenty-one patients completed the study. Citrate increased during the dialysis sessions when CD was used, without surpassing normal values. Other differences found in the next TCA cycle steps showed an increased substrate accumulation when using AD. While lactate decreased, pyruvate remained stable, and ketogenesis was boosted during dialysis. Acetylcarnitine and myo-inositol were reduced during dialysis, while glycerol remained constant. Lastly, glutamate and glutarate decreased due to the inhibition of amino acidic degradation. This study raises new hypotheses that need further investigation to understand better the biochemical processes that dialysis and the different dialysate buffers induce in the patient's metabolism.
Assuntos
Ácido Cítrico , Soluções para Diálise , Acetatos/farmacologia , Acetilcarnitina , Bicarbonatos/farmacologia , Citratos/farmacologia , Ciclo do Ácido Cítrico , Soluções para Diálise/efeitos adversos , Glutamatos , Glutaratos , Glicerol , Humanos , Inositol , Corpos Cetônicos , Lactatos , Estudos Prospectivos , Ácido Pirúvico , Diálise Renal/efeitos adversos , Sais , TriglicerídeosRESUMO
OBJECTIVE: To investigate the clinical and genetic characteristics of infants with cobalamin (cbl) X type of methylmalonic acidemia (MMA). METHODS: The clinical data of 5 infants with cblX type of MMA diagnosed in Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine and Shanghai Children's Hospital from the year 2016 to 2020 were collected. The levels of blood acylcarnitines were detected by tandem mass spectrometry, the levels of urinary organic acids were detected by gas-chromatography mass spectrometry, the pathogenic genes were detected by whole exon gene sequencing, and the effect of new pathogenic mutations on three-dimensional protein structure was predicted by bioinformatics analysis. RESULTS: Five infants with cblX type were diagnosed, including 4 males and 1 female, and the onset age was 0-6â months. The main clinical manifestations of 4 males were intractable epilepsy, mental and motor retardation, metabolic abnormalities presented mild increase of blood homocysteine level. Among them, 3 cases were accompanied by slight increase of urinary methylmalonic acid, and 1 case was accompanied by increase of blood propionylcarnitine (C3) and C3/acetylcarnitine (C2). Gene detection found that 2 cases carried a same hemizygous mutation c.344C>T (p.A115V) of HCFC1 gene, which was the most reported mutation, and the other 2 cases carried novel pathogenic mutations, c.92G>A (p.R31Q) and c.166G>C (p.V56L). These 3 gene mutations located in the Kelch domain of HCFC1 protein. One female infant carried a benign mutation of c.3731G>T (p.R1244L). Her clinical symptoms were mild, and only the urinary methylmalonic acid was slightly increased. CONCLUSIONS: The clinical manifestations of children with cblX type of MMA are intractable epilepsy, mental and motor retardation, and other serious neurological symptoms. Their metabolic abnormalities present the increase of blood homocysteine with methylmalonic acid (urinary methylmalonic acid or/and blood C3, C3/C2). The clinical and biochemical phenotypes are separated, so the diagnosis should be in combination with the results of gene testing.
Assuntos
Epilepsia Resistente a Medicamentos , Ácido Metilmalônico , Acetilcarnitina , Erros Inatos do Metabolismo dos Aminoácidos , China , Feminino , Genótipo , Homocisteína , Fator C1 de Célula Hospedeira , Humanos , Lactente , Recém-Nascido , Masculino , Ácido Metilmalônico/urina , Vitamina B 12RESUMO
Changes in the metabolic profile within the intestine of lenok (Brachymystax lenok) when challenged to acute and lethal heat stress (HS) are studied using no-target HPLC-MS/MS metabonomic analysis. A total of 51 differentially expressed metabolites (VIP > 1, P < 0.05) were identified in response to HS, and 34 occurred in the positive ion mode and 17 in negative ion mode, respectively. After heat stress, changes in metabolites related to glycolysis (i.e., alpha-D-glucose, stachyose, and L-lactate) were identified. The metabolites (acetyl carnitine, palmitoylcarnitine, carnitine, and erucic acid) related to fatty acid ß-oxidation accumulated significantly, and many amino acids (L-tryptophan, D-proline, L-leucine, L-phenylalanine, L-aspartate, L-tyrosine, L-methionine, L-histidine, and L-glutamine) were significantly decreased in HS-treated lenok. The mitochondrial ß-oxidation pathway might be inhibited, while severe heat stress might activate the anaerobic glycolysis and catabolism of amino acid for energy expenditure. Oxidative damage in HS-treated lenok was indicated by the decreased glycerophospholipid metabolites (i.e., glycerophosphocholine, 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine, 1-palmitoyl-sn-glycero-3-phosphocholine, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1, 2-dioleoyl-sn-glycero-3-phosphatidylcholine) and the increased oxylipin production (12-HETE and 9R, 10S-EpOME). The minor oxidative pathways (omega-oxidation and peroxisomal beta-oxidation) were likely to be induced in HS-treated lenok.
Assuntos
Ácidos Erúcicos , Salmonidae , Animais , Ácidos Erúcicos/metabolismo , Palmitoilcarnitina/metabolismo , Glutamina/metabolismo , Acetilcarnitina/metabolismo , Ácido Aspártico/metabolismo , Leucina , Triptofano , Histidina/metabolismo , Oxilipinas/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Fosforilcolina/metabolismo , Espectrometria de Massas em Tandem , Salmonidae/fisiologia , Fosfatidilcolinas/metabolismo , Resposta ao Choque Térmico , Intestinos , Metionina , Prolina/metabolismo , Tirosina , Fenilalanina , Glucose/metabolismo , Lactatos/metabolismoRESUMO
Primary cilia help to maintain cellular homeostasis by sensing conditions in the extracellular environment, including growth factors, nutrients, and hormones that are involved in various signaling pathways. Recently, we have shown that enhanced primary ciliogenesis in dopamine neurons promotes neuronal survival in a Parkinson's disease model. Moreover, we performed fecal metabolite screening in order to identify several candidates for improving primary ciliogenesis, including L-carnitine and acetyl-L-carnitine. However, the role of carnitine in primary ciliogenesis has remained unclear. In addition, the relationship between primary cilia and neurodegenerative diseases has remained unclear. In this study, we have evaluated the effects of carnitine on primary ciliogenesis in 1-methyl-4-phenylpyridinium ion (MPP+)-treated cells. We found that both L-carnitine and acetyl-L-carnitine promoted primary ciliogenesis in SH-SY5Y cells. In addition, the enhancement of ciliogenesis by carnitine suppressed MPP+-induced mitochondrial reactive oxygen species overproduction and mitochondrial fragmentation in SH-SY5Y cells. Moreover, carnitine inhibited the production of pro-inflammatory cytokines in MPP+-treated SH-SY5Y cells. Taken together, our findings suggest that enhanced ciliogenesis regulates MPP+-induced neurotoxicity and inflammation.
Assuntos
Neuroblastoma , Síndromes Neurotóxicas , 1-Metil-4-fenilpiridínio/toxicidade , Acetilcarnitina/farmacologia , Apoptose , Carnitina/farmacologia , Linhagem Celular Tumoral , Neurônios Dopaminérgicos , Humanos , InflamaçãoRESUMO
Metabolomic research using analytical chemistry methods has been carried out in a wide range of research fields. However, research combining forensic science and metabolomics is rare. Determining the age of bloodstains could provide key information regarding when a crime was committed. Currently, validated methods for estimating the age of bloodstains are unavailable. Metabolites are intermediate and final products of chemical reactions. Therefore, they are less likely to be degraded than other components of blood under field conditions. In this study, metabolites in bloodstains were analyzed using liquid chromatography-mass spectrometry to discover and validate metabolic markers for determining the age of bloodstains within a week post-bleeding. Nontargeted analysis of bloodstain metabolites revealed statistically significant differences over time. Quantitative analysis of identified candidates via multiple reaction monitoring confirmed the statistical significance according to the age of bloodstain. Pyroglutamic acid, l-glutamine, acetylcarnitine, and adenosine 5'-monophosphate were selected as the final markers. The content of each marker exhibited a statistically significant and consistent tendency to decrease with the age of bloodstain. Furthermore, the effect of hemolysis was considered according to the blood fraction spots of the four markers. This study is the first to identify and validate metabolite markers that may help determine the age of bloodstains within a week post-bleeding. If applied to crime scenes as indicators of the age of bloodstains, they can be used as innovative and important tools for reconstructing crime scenes, suggesting initial investigative direction. This study highlights the forensic utility of blood metabolites ex vivo.
Assuntos
Manchas de Sangue , Ácido Pirrolidonocarboxílico , Acetilcarnitina , Adenosina , Medicina Legal/métodos , GlutaminaRESUMO
BACKGROUND: Triclosan is a broad-spectrum antimicrobial, and was thought to affect intrauterine development, but the mechanism remains unclear. OBJECTIVE: To explore the association between prenatal triclosan exposure and birth outcomes. METHODS: Based on 726 mother-child pairs from the Sheyang Mini Birth Cohort Study (SMBCS), we used the available (published) data of triclosan in maternal urines, the hormones including thyroid-related hormones, gonadal hormones in cord blood, and adipokines, trimethylamine-N-oxide (TMAO) and its precursors in cord blood to explore possible health effects of triclosan on birth outcomes through assessing different hormones and parameters, using Bayesian mediation analysis. RESULTS: Maternal triclosan exposure was associated with ponderal index (ß = 0.317) and head circumference (ß = -0.172) in generalized linear models. In Bayesian mediation analysis of PI model, estradiol (ß = 0.806) and trimethylamine (TMA, ß = 0.164) showed positive mediation effects, while total thyroxine (TT4, ß = -0.302), leptin (ß = -2.023) and TMAO (ß = -0.110) showed negative mediation effects. As for model of head circumference, positive mediation effects were observed in free thyroxine (FT4, ß = 0.493), TMA (ß = 0.178), and TMAO (ß = 0.683), negative mediation effects were observed in TT4 (ß = -0.231), testosterone (ß = -0.331), estradiol (ß = -1.153), leptin (ß = -2.361), choline (ß = -0.169), betaine (ß = -0.104), acetyl-L-carnitine (ß = -0.773). CONCLUSION: The results indicated triclosan can affect intrauterine growth by interfering thyroid-related hormones, gonadal hormones, adipokines, TMAO and its precursors.
Assuntos
Triclosan , Acetilcarnitina , Teorema de Bayes , Betaína , Colina , Estudos de Coortes , Estradiol , Feminino , Humanos , Leptina , Exposição Materna/efeitos adversos , Metilaminas , Óxidos , Gravidez , Testosterona , Hormônios Tireóideos , Tiroxina , Triclosan/toxicidadeRESUMO
Fatigue is accompanied by a decrease in physical activity or malaise, and might be reduced by acetyl-L-carnitine (ALC) administration. The purpose of this study was to investigate the preventive effects of ALC on Poly I:C-induced sickness behavior in mice. For the experiment, male C3H/HeN mice were used and treated with ALC for 5 days before Poly I:C administration. ALC administration attenuated the decrease in wheel behavior activity of mice at 24 h after Poly I:C administration and ALC-treated mice quickly recovered from the sickness behavior. The gene expression of brain-derived neurotrophic factor (BDNF) in the cerebrum and hippocampus, which is associated with physical activity, was higher in the ALC-treated group. Translocator protein 18kDa (TSPO), which has cytoprotective effects, was up-regulated in the cerebrum and hippocampus, suggesting that ALC suppressed the decrease in activity induced by Poly I:C treatment through enhancement of cytoprotective effects in the brain.
Assuntos
Acetilcarnitina , Fator Neurotrófico Derivado do Encéfalo , Acetilcarnitina/farmacologia , Acetilcarnitina/uso terapêutico , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Comportamento de Doença , Masculino , Camundongos , Camundongos Endogâmicos C3H , Poli I-C/farmacologiaRESUMO
BACKGROUND: Varicocoele is the most common correctable cause of male infertility; however, predicting varicocoelectomy outcomes is difficult. "Omics" techniques have been increasingly used to develop new diagnostic and prognostics tools for several male infertility causes, and could be applied to study varicocoele. OBJECTIVES: The objective is to create metabolomics models capable of segregating men who improved semen analysis (SA) parameters or achieved natural pregnancy after microsurgical varicocoelectomy (MV) from those who did not, using hydrogen-1 nuclear magnetic resonance (1 H NMR) spectra of seminal plasma of pre-operative samples. MATERIAL AND METHODS: We recruited 29 infertile men with palpable varicocoele. 1 H NMR spectra of seminal plasma were obtained from pre-operative samples and used to create metabonomics models. Improvement was defined as an increase in the total motile progressive sperm count (TMC) of the post-operative SA when compared to the baseline, and pregnancy was assessed for 24 months after MV. RESULTS: Using linear discriminant analysis (LDA), we created a model that discriminated the men who improved SA from those who did not with accuracy of 93.1%. Another model segregated men who achieved natural pregnancy from men who did not. We identified seven metabolites that were important for group segregation: caprylate, isoleucine, N-acetyltyrosine, carnitine, N-acetylcarnitine, creatine, and threonine. DISCUSSION: We described the use of metabonomics model to predict with high accuracy the outcomes of MV in infertile men with varicocoele. The most important metabolites for group segregation are involved in energy metabolism and oxidative stress response, highlighting the pivotal role of these mechanisms in the pathophysiology of varicocoele. CONCLUSIONS: 1 H NMR spectroscopy of seminal plasma can be used in conjunction with multivariate statistical tools to create metabonomics models useful to segregate men with varicocoele based on the reproductive outcomes of MV. These models may help counseling infertile men with varicocoele regarding their prognosis after surgery.
Assuntos
Infertilidade Masculina , Varicocele , Acetilcarnitina/metabolismo , Caprilatos/metabolismo , Creatina/metabolismo , Feminino , Humanos , Hidrogênio , Infertilidade Masculina/etiologia , Isoleucina/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Gravidez , Sêmen/metabolismo , Análise do Sêmen , Contagem de Espermatozoides , Motilidade dos Espermatozoides/fisiologia , Treonina/metabolismo , Varicocele/complicações , Varicocele/diagnóstico , Varicocele/cirurgiaRESUMO
BACKGROUND: Ageing is characterized by a gradual decline in body function, representing the clinical situation called "frailty". Prefrailty is the intermediate stage between frailty and robust condition. L-carnitine (LC) plays an important role in energy production from long-chain fatty acids in mitochondria, and its serum level is lower in prefrail and frail subjects. OBJECTIVE: This study aims to evaluate the effect of Acetyl-L-carnitine (ALCAR) in pre-frail older patients. METHODS: We scheduled 3 months of treatment and then 3 months of follow-up. A total of 92 subjects were selected from May, 2009 to July, 2017, in a randomized, observational, double-blind, placebo-controlled study. We scheduled 3 months of treatment and then 3 months of follow-up. ALCAR (oral 1.5 g/bis in die - BID) or placebo groups were used. RESULTS: After the treatment, only the treated group displayed a decrease in C reactive protein (CRP) p < 0.001 and an increase in serum-free carnitine and acetylcarnitine (p < 0.05) in Mini-Mental state (MMSE) p < 0.0001 and 6-walking distance (p < 0.0001); ALCAR group vs. placebo group showed a decrease in HDL cholesterol and CRP (p < 0.01), an increase in MMSE score (p < 0.001) and in the 6-walking distance (p < 0.001). CONCLUSIONS: ALCAR treatment delays the incidence and severity of onset of degenerative disorders of the elderly in prefrail subjects with improvement in memory and cognitive processes.
Assuntos
Acetilcarnitina , Fragilidade , Humanos , Idoso , Acetilcarnitina/uso terapêutico , Fragilidade/tratamento farmacológico , Fragilidade/epidemiologia , Carnitina , Método Duplo-Cego , EnvelhecimentoRESUMO
Background: This study was undertaken to evaluate the influence of oral Acetyl-L-carnitine (ALC) in patients with acute ischemic stroke. Methods: Sixty-nine cases with acute ischemic stroke with the onset of symptoms less than 24 hours not candidates for reperfusion therapy were randomly assigned to either the ALC group (1000 mg three times per day for three consecutive days) or the matching placebo group. The study outcomes based on intention-to-treat criteria included the change in the modified Rankin Scale (mRS) and National Institutes of Health Stroke Scale (NIHSS) score from baseline to day 90, as well as the change in serum levels of the inflammatory and oxidative stress biomarkers over the 3-day treatment protocol. Results: The NIHSS score and mRS score on day 90 were improved by 5.82 and 0.94 scores, respectively, in the ALC-treated group compared to 2.83 and 0.11 scores, respectively, in the placebo-treated group, which demonstrated the superiority of ALC relative to placebo. By using the multivariable analysis after adjusting for other variables in the model, compared to the group treated with placebo, patients in the ALC group had lower NIHSS score (ß: -2.40, 95% CI: -0.69, -4.10 (p = 0.007)) and mRS score (ß: -1.18, 95% CI: -0.52, -1.84 (p = 0.001)) 90 days after the intervention. The percentage of patients with a favourable functional outcome at day 90, defined as mRS scores of 0 or 1, was significantly higher in the ALC group in comparison to the placebo group (52.9% versus 28.6%). Further, over the 3-day treatment protocol, in the patients receiving ALC, the serum levels of proinflammatory biomarkers, including soluble intercellular adhesion molecule-1 (sICAM-1), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and neuron-specific enolase (NSE), showed a significant decrease, while the serum levels of antioxidant biomarkers, including glutathione peroxidase (GPx), superoxide dismutase (SOD), and total antioxidant capacity (TAC), as well as the total L-carnitine's level showed a significant increase compared to those in patients receiving placebo indicating significant alteration. Conclusions: Although preliminary, these results suggested that ALC administration during the acute phase of ischemic stroke might be helpful in improving functional and neurological outcomes that are probably linked to its anti-inflammatory and antioxidant properties. Trial Registration. This trial is registered with IRCT20150629022965N17 at Iranian Registry of Clinical Trials (registration date: 25/07/2018).
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Acetilcarnitina/uso terapêutico , Antioxidantes/uso terapêutico , Biomarcadores , Isquemia Encefálica/tratamento farmacológico , Humanos , Irã (Geográfico) , Resultado do TratamentoRESUMO
Propionic acid (PPA) is a short-chain fatty acid produced endogenously by gut microbiota and found in foodstuffs and pharmaceutical products as an additive. Exposure to PPA has been associated with the development of autism spectrum disorder (ASD). The purpose of this study was to investigate the protective effect of acetyl-L-carnitine (ALCAR) and liposomal Co-enzyme Q10 (CoQ10) against cerebral and cerebellar oxidative injury, inflammation, and cell death, and alterations in ALDH1A1-RA-RARα signaling in an autism-like rat model induced by PPA. The rats were treated with PPA and concurrently received ALCAR and/or CoQ10 for 5 days. The animals were sacrificed, and the cerebral cortex and cerebellum were collected for analysis. PPA caused histopathological alterations along with increased malondialdehyde (MDA), NF-κB p65, TNF-α, and IL-6 in the cerebrum and cerebellum of rats. Reduced glutathione (GSH) and antioxidant enzymes were declined in the brain of rats that received PPA. Concurrent treatment with ALCAR and/or CoQ10 prevented tissue injury, decreased MDA, NF-κB p65, and pro-inflammatory cytokines, and enhanced cellular antioxidants in PPA-administered rats. ALCAR and/or CoQ10 upregulated Bcl-2 and decreased Bax and caspase-3 in the brain of rats. In addition, ALCAR and/or CoQ10 upregulated cerebral and cerebellar ALDH1A1 and RARα in PPA-treated rats. The combination of ALCAR and CoQ10 showed more potent effects when compared with the individual treatments. In conclusion, ALCAR and/or CoQ10 prevented tissue injury, ameliorated oxidative stress, inflammatory response, and apoptosis, and upregulated ALDH1A1-RA-RARα signaling in the brain of autistic rats.
Assuntos
Transtorno do Espectro Autista , Síndromes Neurotóxicas , Acetilcarnitina/farmacologia , Animais , Antioxidantes/farmacologia , Inflamação/tratamento farmacológico , NF-kappa B/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/prevenção & controle , Estresse Oxidativo , Propionatos , Ratos , Ubiquinona/análogos & derivados , Ubiquinona/farmacologiaRESUMO
The present study evaluated the metabolic and functional effects of adding garra meal to a broiler chicken diet. Three hundred twenty Sasso-breed day-old chicks were randomly assigned to four dietary treatments with either 0, 10, 20 or 30% garra meal added on top of formulated starter and grower basal diets. The experiment lasted for 42 days. Feed intake and body weight gain increased at the starter and grower phases of broilers with garra meal addition (P < 0.05). Broiler chickens fed 30% garra meal were more efficient in converting feed to body weight and yielded the highest carcass weight (P < 0.05). Crude protein ileal digestibility coefficient was higher with 20% (76.2%), and crude fat with 20 (92.1) and 30% (92.6%) garra meal receiving groups (P < 0.05). The increase in individual and total esterified carnitine concentrations in dried blood spots demonstrated the elevated metabolic rate with garra meal addition (P < 0.05). A better supply of glucogenic substrate to the citric acid cycle was seen with garra meal addition due to the increase of propionylcarnitine to acetylcarnitine ratio (P < 0.05) without any apparent effect on ketogenesis in terms of serum 3-hydroxybutyrylcarnitine to acetylcarnitine ratio. Yet, it likely showed that part of the amino acids from garra meal were used as glucogenic substrate (P < 0.05). Histomorphometry data showed 20% garra meal addition elevated villus height, crypt depth and their ratio in the proximal parts of the small intestine (duodenum and jejunum) with the opposite results observed in the more distal part (ileum) with the highest for the control group (P < 0.05). It can be concluded that garra meal improved broiler performance when added to a plant-based diet and only few parameters warranted for caution when using more up to 30% garra meal addition. Beyond growth performance, garra meal generated a shift to a more efficient digestion, absorption and nutrient metabolism.