Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 831
Filtrar
1.
Environ Monit Assess ; 195(4): 442, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36869997

RESUMO

The article presents the results of research on the leachability of selected heavy metals (cadmium, nickel, chromium, cobalt, lead, and copper) from solid waste obtained in laboratory processes involved in the industrial treatment of wastewater generated in metal surface treatment plants. The test sludges were precipitated using sodium hydroxide solution, calcium hydroxide suspension, 45% solution sodium trithiocarbonate (Na2CS3), 15% solution trimercapto-s-triazine, sodium salt (TMT), and 40% solution sodium dimethyldithiocarbamate (DMDTC). The precipitates were treated with artificial acid rain and artificial salt water. After 1, 7, 14, and 21 days of leaching, the concentration of Cd, Co, Cr, Cu, Pb, and Ni in the leachate was determined. Artificial acid rain leached Ni and Cd to a maximum concentration of 724 mg/L and 1821 mg/L, respectively, from the sludge obtained after the application of Na2CS3, while artificial salt water leached Ni in the maximum amount of 466 mg/L and Cd-max. 1320 mg/L. When Ca(OH)2/NaOH was used, the leaching of Cr reached a similar level for both leaching agents, i.e., the maximum for artificial acid rain was 72.2 mg/L and the maximum for artificial salt water 71.8 mg/L. The use of Na2CS3 or Ca(OH)2/NaOH poses a risk of some heavy metals entering the environment, which may have a negative impact on living organisms, whereas the sludges obtained with the use of DMDTC and TMT as precipitants were the most stable under the experimental conditions and did not pose a potential environmental hazard.


Assuntos
Chuva Ácida , Metais Pesados , Cádmio , Hidróxido de Sódio , Monitoramento Ambiental , Dimetilditiocarbamato , Esgotos , Água
2.
Environ Monit Assess ; 195(4): 498, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947342

RESUMO

High levels of manganese (Mn) and other heavy metals from electrolytic manganese residue (EMR) stockpiled would be released into the environment under natural conditions. A batch-leaching test was carried out to investigate the release characteristics of heavy metals from EMR with different storage times under simulated environmental conditions such as acid rain with different pH (3.0, 4.5, 5.6, and 7.0) at contact times of 1, 2, 4, 6, and 12 h; liquid to solid ratio (L/S) (5:1, 10:1, 20:1, and 30:1); and temperature (15, 25, 35, and 45 °C). The results showed that low pH (3.0 and 4.5) and high temperature (35 and 45 °C) could significantly promote heavy metal leaching from EMRs and increasing the L/S ratio above 20:1 mL/g significantly decreased heavy metal leachate concentrations due to dilution effect. Cr, Mn, and Pb concentrations in leachate increased almost continuously throughout the leaching process, while Zn decreased slightly at the 12th hour. Meanwhile, heavy metal concentrations in EMR1 (fresh EMR) were higher than in EMR2 (out stockpiled for more than 3 months). The concentrations of Mn, Pb, and Zn in leachates from EMRs at pH 3.0 and 4.5 leaching far exceeded the allowable maximum discharge concentrations for pollutants of the integrated wastewater discharge standard in China (GB8978-1996) by 57.5-59.0, 1.3-4.3, and 1.1-1.8 and 53.5-56.0, 3.04-7.25, and 1.0-1.91 times, respectively. Additionally, the Mn concentrations from both EMR leachates at pH 7.0 were above the national safe emission threshold. The morphological structure of EMRs changed after leaching, and XRD analysis showed the disappearance of MnO2, SiO2, FeS2, and CaSO4. The XPS revealed that Cr, Mn, Pb, and Zn existed as Cr3+, MnO, PbSO4, and ZnSiO3, respectively, after leaching. The study concluded that Mn, Pb, and Zn from EMRS leached by acid rain might pose a high potential environmental risk. Therefore, developing appropriate disposal techniques for EMR is necessary to prevent heavy metal pollution.


Assuntos
Chuva Ácida , Metais Pesados , Manganês/análise , Chuva Ácida/análise , Compostos de Manganês/análise , Chumbo/análise , Dióxido de Silício/análise , Monitoramento Ambiental/métodos , Óxidos/análise , Metais Pesados/análise
3.
Ecotoxicology ; 32(1): 114-126, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36652123

RESUMO

Most of the allelopathic studies have focused on the independent allelopathy of one invasive plant, but have ignored the co-allelopathy of the two invasives. The variations in the type of acid rain can modulate the invasiveness of invasives via the changes in the allelopathy. Thus, it is vital to elucidate the allelopathy of invasives, particularly the co-allelopathy of the two invasives, under acid rain with different types, to illuminate the mechanisms driving the co-invasion of two invasives under diversified acid rain. However, little progress has been finished in this aspect presently. This study aimed to evaluate the co-allelopathy of two Asteraceae invasives Solidago canadensis L. and Erigeron annuus L. treated with acid rain with different nitrogen-to-sulfur ratios on seed germination and seedling growth of the horticultural Asteraceae species Lactuca sativa L. via a hydroponic experiment. Aqueous extracts of the two Asteraceae invasives generated obvious allelopathy on L. sativa. S. canadensis aqueous extracts caused stronger allelopathy. There may be an antagonistic effect for the co-allelopathy of the two Asteraceae invasives. Nitric acid at pH 5.6 weakened the allelopathy of the two Asteraceae invasives, but the other types of acid rain strengthened the allelopathy of the two Asteraceae invasives. The allelopathy of the two Asteraceae invasives increases with the increasing acidity of acid rain, but the allelopathy of the two Asteraceae invasives decreases with the increasing nitrogen-to-sulfur ratio of acid rain. Accordingly, the species number of invasives, and the acidity and type of acid rain modulated the impacts of acid rain on the allelopathy of the two Asteraceae invasives.


Assuntos
Chuva Ácida , Asteraceae , Solidago , Germinação , Alelopatia , Plântula , Extratos Vegetais
4.
Artigo em Inglês | MEDLINE | ID: mdl-36554303

RESUMO

Chromium (Cr) can enter groundwater through rainfall infiltration and significantly affects human health. However, the mechanisms by which soil colloids affect chromium transport are not well investigated. In this study, column experiments were conducted to simulate the chromium (Cr) transport mechanism in two typical soils (humic acid + cinnamon soil and montmorillonite + silt) in the vadose zone of a contaminated site and the effects of acid rain infiltration conditions. The results showed that Mt colloids have less influence on Cr. The fixation of Cr by colloid mainly occurs in the cinnamon soil layer containing HA colloid. The adsorption efficiency of Cr was increased by 12.8% with the addition of HA. In the HA-Cr system, the introduction of SO42- inhibited the adsorption of Cr, reducing the adsorption efficiency from 31.4% to 24.4%. The addition of Mt reduced the adsorption efficiency of Cr by 15%. In the Mt-Cr system, the introduction of SO42- had a promoting effect on Cr adsorption, with the adsorption efficiency increasing from 4.4% to 5.1%. Cr release was inhibited by 63.88% when HA colloid was present, but the inhibition owing to changes in acidity was only 14.47%. Mt colloid promotes Cr transport and increases the leaching rate by 2.64% compared to the absence of Mt. However, the effect of acidity change was not significant. Intermittent acid rain will pose a higher risk of pollutant release. Among the influencing factors, the type of colloid had the most significant influence on the efficiency of Cr leaching. This study guides the quantitative assessment of groundwater pollution risk caused by Cr in the vadose zone.


Assuntos
Chuva Ácida , Poluentes do Solo , Humanos , Cromo , Substâncias Húmicas/análise , Solo , Coloides , Adsorção , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
5.
J Environ Manage ; 322: 116144, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36067661

RESUMO

Acid rain is a global environmental problem that mobilizes heavy metals in soils, while the distribution and geochemical fraction of heavy metals during acid rain infiltration in heterogeneous soils are still unclear. In this study, we performed column experiments to investigate the distribution and geochemical fraction of Cu, Pb, Ni and Cd in heterogeneously layered soils during continuous acid rain infiltration. Chloride ion used as a conservative tracer was found to be uniformly distributed during acid rain infiltration, showing insignificant preferential flow effects in the column. In contrast, however, the distribution of heavy metals was highly non-uniform, especially in the silty soil at the lower part of the column, indicating a heterogeneous distribution of adsorption capacity. In addition, in the control experiments with neutral rain infiltration, uniform distribution of heavy metals was observed, indicating that the heterogeneous distribution of adsorption coefficient during acid rain infiltration was mainly caused by different pH buffering capacities. A numerical model considering water flow and solute transport was developed, where the average water-solid distribution coefficient (Kd) in Layer 2 was only 1.5-12.5% of that in Layer 1 during acid rain infiltration. The model could predict the variation of heavy metal concentrations in soil with the majority of error less than 35%, confirming that different Kd induced the heterogeneous distribution of heavy metals. In addition, the geochemical fraction of heavy metals in the upper coarse sand layer remained stable, while the acid-extractable fractions in the lower loam and silt loam layer gradually increased. Our findings suggest that soil heterogeneity, especially chemical heterogeneity affected by rainfall acidity, has an important influence on the infiltration, migration and geochemical fraction of heavy metals in soils. This study could help guide the risk assessment of heavy metal-contaminated sites that were polluted by acid rain or landfill leachate.


Assuntos
Chuva Ácida , Metais Pesados , Poluentes do Solo , Poluentes Químicos da Água , Cádmio , China , Cloretos , Monitoramento Ambiental , Chumbo , Metais Pesados/análise , Areia , Solo , Poluentes do Solo/análise , Água
6.
Sci Total Environ ; 852: 158521, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36067862

RESUMO

High mountain lakes and their catchments are remote ecosystems in areas with low anthropogenic disturbance. High mountain lakes integrate changes in the atmosphere and catchment areas (e.g., acid rain, airborne pollutants, climate change). The present research analyses long-term datasets of meteorological and limnological variables representing two tropical high mountain lakes, El Sol and La Luna, in Central Mexico to identify the impacts of anthropogenic disturbance (i.e., sentinels of global/climate change). The 54-year meteorological analysis showed marked interannual variability with no statistically significant air temperature or rainfall trends. However, from 2000 to 2018, the air temperature increased by 0.5 °C. Accordingly, the lake water temperature increased (Lake El Sol: 0.8 °C, Lake La Luna: 0.6 °C). Although the rainfall displayed no change, the water level decreased in both lakes (1.5 m), most likely associated with increased evapotranspiration. Unexpectedly, the dissolved inorganic nitrogen (DIN) concentration in the lakes decreased. The initial acid pH rose to close neutrality in Lake La Luna and to alkaline values in Lake El Sol. The latter may be a consequence of the lowered SOx and NOx emissions from governmental regulations promulgated to control atmospheric pollution beginning in 2000 and probably resulting in less acidic deposition. An additional explanation for the lakes' deacidification is the increased deposition of alkaline ions derived from activities at the volcano slopes. Since the atmospheric supply is the primary nitrogen source to high mountain lakes, the DIN concentration decline could reflect the reduction in atmospheric HNO3. Thus, Lakes El Sol and La Luna evidenced global change. Both lakes are inside the same crater and are subjected to similar influences; thus, they showed similar responses to global change (increasing lake water temperatures, declining water levels, higher pH value, and lower DIN concentrations). Nevertheless, their differences (e.g., catchment size, surface area, water volume, water depth, trophic status) influenced the magnitude of the impacts, with higher pH increases recorded in Lake El Sol and higher DIN concentrations in Lake La Luna.


Assuntos
Chuva Ácida , Poluentes Ambientais , Lagos , Ecossistema , Chuva Ácida/análise , México , Nitrogênio/análise , Água/análise , Poluentes Ambientais/análise , Monitoramento Ambiental/métodos
7.
Chemosphere ; 307(Pt 3): 135941, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35940419

RESUMO

Emerging microplastics (MPs) pollution and continuing acid rain (AR) co-exist in terrestrial ecosystems, and are considered as threats to ecosystems health. However, few data are available on MPs-AR interactions in plant-microbe-soil systems. Here, a microcosm experiment was manipulated to elucidate the co-exposure of polyethylene MPs (PE MPs; 1%, 5% and 10%) and AR (pH 4.0) on soil-lettuce system, in which the properties of soil and lettuce, and their links were explored. We found that 10% PE MPs increased soil CO2 emission and its temperature sensitivity (Q10) in combination with AR, while 1% PE MPs reduced soil CO2 emission irrespective of AR. PE MPs addition did not influence lettuce production (total biomass) though its photosynthesis was affected. PE MPs exerted negative impact on soil water availability. PE MPs treatments increased NH4+-N content of soil without AR, and dissolved organic carbon content of soil sprayed with AR. 10% PE MPs combined with AR reduced soil microbial biomass, while soil microbial community diversity was not affected by PE MPs or AR. Interestingly, 10% PE MPs addition altered soil microbial community structure, and promoted the complexity and connectivity of soil microbial networks. 5% and 10% PE MPs addition decreased soil urease activity under AR, but this was not the case without AR. These findings highlight the critical role of AR in regulating PE MPs impacts on plant-microbe-soil ecosystems, and the necessity to incorporate other environmental factors when evaluating the actual impacts or risks of MPs pollution in terrestrial ecosystems.


Assuntos
Chuva Ácida , Microbiota , Poluentes do Solo , Dióxido de Carbono , Microplásticos , Plásticos , Polietileno , Solo , Poluentes do Solo/análise , Urease , Água
8.
Environ Pollut ; 310: 119874, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35931385

RESUMO

Generally, Zn in stormwater runoff is considered as low toxicity, but in the senarios of roads and zinc-based materials roof runoff, the concentration of Zn becomes extremely high and cannot be ignored. Bioretention systems are used to remove heavy metals from stormwater runoff, while Zn adsorption is insufficient by conventional filler and is prone to secondary release when exposed to acid rain or high salinity runoff. This study integrated batch experiments and density functional theory calculation to investigate the mechanisms of how KOH-modified biochar (KBC) influences the removal and release of Zn in bioretention systems. The results revealed that KBC adsorbed 89.0-97.5% Zn in the influent, the main adsorption mechanism were complexation and precipitation, and precipitation is more important. In addition, 67% of Zn was immoblized as the residual form by KBC. In acidic and saline runoff, KBC reduced Zn secondary release by 43.6% and 37.08% compared to the results in the absence of KBC, which was attributed to the convertion of most dissolved Zn in acidic and saline runoff into residual Zn. Therefore, KBC has a considerable application potential not only to decontaminate the runoff of roads and Zn-containing roofs, but also to deal with secondary Zn release in acid rain or under the treatment of snow-melting agents.


Assuntos
Chuva Ácida , Álcalis , Adsorção , Carvão Vegetal , Zinco
9.
Chemosphere ; 307(Pt 3): 135853, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948099

RESUMO

Iron oxide-lignin composites (GLS) were prepared based on the significant role of Fe-OM in the environmental behaviour of heavy metals and lignin binding with iron oxide preferentially in soil. GLS was applied in Cd/Pb immobilization and the stability under acid rain was investigated. The results show that the iron oxide appeared weakly crystalline or amorphous similar to 2-line ferrihydrite after the addition of lignin. Agglomerates of nanoparticles with higher adsorption capacity were observed for GLS. The mobility factor (MF) of Cd/Pb in the soil decreased rapidly after adding GLS. At the 3% dosage, the MF of Cd and Pb in the soil was decreased by 58.94% and 78.15% respectively, which was approximately 5 times that of goethite (GE). The mobile and exchangeable Cd/Pb were converted to organic, amorphous Fe oxide-bound and residue fractions. Under acid rain conditions, MF continues to decline for the GLS group, increasing the organic and amorphous Fe oxide-bound fractions, while for control group (CK) and GE, the trend was the opposite. Lignin could inhibit iron oxide dissolution and stabilize the combination of Cd/Pb and iron oxides in soil. The better stability performance of GLS for Cd/Pb may be related to the higher adsorption capacity and microstructural difference after iron oxide combined with lignin.


Assuntos
Chuva Ácida , Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Cádmio/análise , Compostos Férricos , Ferro , Compostos de Ferro , Chumbo , Lignina , Metais Pesados/análise , Minerais , Óxidos/química , Solo/química , Poluentes do Solo/análise
10.
Chemphyschem ; 23(21): e202200395, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-35875889

RESUMO

Despite decades of efforts, much is still unknown about the hydrolysis of nitrogen dioxide (NO2 ), a reaction associated with the formation of acid rain. From the experimental point of view, quantitative analyses are hard, and without pH control the products decompose to some reagents. We resort to high-level quantum chemistry to compute Gibbs energies for a network of reactions relevant to the hydrolysis of NO2 . With COSMO-RS solvation corrections we calculate temperature dependent thermodynamic data in liquid water. Using the computed reaction energies, we determine equilibrium concentrations for a gas-liquid system at controlled pH. For different temperatures and initial concentrations of the different species, we observe that nitrogen dioxide should be fully converted to nitric and nitrous acid. The thermodynamic data in this work can have a potential major impact for several industries with regards to the understanding of atmospheric chemistry and in the reduction of anthropomorphic pollution.


Assuntos
Chuva Ácida , Dióxido de Nitrogênio , Hidrólise , Termodinâmica , Água
11.
Plant Physiol Biochem ; 185: 188-197, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35700585

RESUMO

Melatonin is a natural, multifunctional, nontoxic, regulatory, and ubiquitous biomolecule, having low molecular weight and pleiotropic effects in the plant kingdom. It is a recently discovered plant master regulator which has a crucial role under abiotic stress conditions (salinity, drought, heat, cold, alkalinity, acid rain, ozone, and metals stress). In the solanaceous family, the tomato is highly sensitive to abiotic stresses that affect its growth and development, ultimately hampering production and productivity. Melatonin acts as a strong antioxidant, bio-stimulator, and growth regulator, facilitating photosynthesis, delaying leaf senescence, and increasing the antioxidant enzymes system through direct scavenging of reactive oxygen species (ROS) under abiotic stresses. In addition, melatonin also boosts morphological traits such as vegetative growth, leaf photosynthesis, root architecture system, mineral nutrient elements, and antioxidant activities in tomato plants, confirming their tolerances against salinity, drought, heat, cold, alkalinity, acid rain, chemical, pathogen, and metals stress. In this review, an attempt has been made to summarize the potential role of melatonin for tomato plant endurance towards abiotic stresses, along with the known relationship between the two.


Assuntos
Chuva Ácida , Melatonina , Antioxidantes/farmacologia , Melatonina/farmacologia , Estresse Fisiológico
12.
Chemosphere ; 305: 135393, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35724719

RESUMO

A novel nanocomposite, named as nZVI@LH, was prepared by nanoscale zero-valent iron (nZVI) supported on lignin hydrogel and was used in the remediation of Cr(VI)-contaminated soil collected from an industrial site. Meanwhile, scanning electron microscopy with energy dispersive X-ray (SEM-EDX) and X-ray diffractometry (XRD) results determined that nZVI nanoparticles disperse uniformly on hydrogel. After the 14 days remediation, the immobilization efficiency of Cr(VI) could reach over 87% in the treatment of 3% (w/w%) nZVI@LH and 26% in the treatment of bare-nZVI. Leaching experiment results showed that the treatment group with 3% (w/w%) nZVI@LH was up to the national leaching toxicity identification standard, and there was no threat in simulation of acid rain over the long term. The water-soluble (WS) fraction in 3# nZVI@LH treatment decreased 31.1%, while the Fe-Mn oxide bound (OX) fraction and organic matter-bound (OM) fraction increased 10.9% and 13.4%, respectively. Moreover, nZVI@LH had limited impact on soil properties and the capability to immobilize Cr over a long period exposure to acid rain. This work prove that nZVI@LH has the potential to remediate Cr contaminated soil. Furthermore, details of possible mechanistic insight into the Cr remediation were carefully discussed.


Assuntos
Chuva Ácida , Recuperação e Remediação Ambiental , Poluentes do Solo , Poluentes Químicos da Água , Cromo/análise , Hidrogéis , Ferro , Lignina , Solo , Poluentes do Solo/análise , Poluentes Químicos da Água/análise
13.
Environ Sci Pollut Res Int ; 29(51): 77839-77850, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35688975

RESUMO

Uranium (U) in the U-contaminated acidic red soil exhibits high mobility. In the present study, rice husk was used to produce biochar to remediate U-contaminated red soil under acid precipitation. Firstly, batch adsorption experiments showed that the dissolution of alkaline substance in biochar could buffer the pH value of acidic solution. The equilibrium pH value had a crucial influence on biochar adsorption capacity of U, and the neutral equilibrium pH value was favorable for adsorption. Then, the incubation experiments of red soil with biochar were performed, and the Synthetic Precipitation Leaching Procedure (SPLP) extraction of amended red soil showed that the short-term leachability of U was decreased from 26.53% in control group (without biochar) to 1.40% in 10% biochar-amended red soil. Subsequently, the sequential extraction showed that the fraction of U was mainly transformed from exchangeable and Fe/Mn oxide fraction to carbonate fraction after biochar amendment, and the total amount of exchangeable U and carbonate fraction U in soil was increased slightly. Finally, simulated acid rain leaching experiments showed that the capability of amended red soil to resist acid rain acidification was enhanced. And the long-term leachability of U in amended red soil was decreased from 26.37% in control group to 3.18% in the 10% biochar-amended red soil under the simulated acid rain leaching conditions. In conclusion, biochar has passivation effect on U in U-contaminated red soil, which can reduce the long-term and short-term mobility of U in acidic environments. This study provided an experimental basis for the application of biochar in remediation and improvement of U-contaminated acidic red soil.


Assuntos
Chuva Ácida , Oryza , Poluentes do Solo , Urânio , Urânio/análise , Carvão Vegetal/química , Solo/química , Poluentes do Solo/análise , Óxidos/química , Carbonatos
14.
Environ Pollut ; 307: 119529, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623574

RESUMO

In acidic medium, hazardous heavy metals of lead-zinc tailing (LZT) are easily leachable and mobilizable. Thus, the hazard, amount, form, and complexity of the leached heavy metals under acidic precipitation become a major environmental concern. This work investigates the gangue minerals, toxicity, speciation, leaching characteristics of heavy metals in LZT under simulated acid rain, as well as immobilization effects and mechanisms using a sustainable binder. In LZT, dolomite, quartz, calcite, and muscovite are the main gangue minerals, tiny hazardous metallic minerals were absorbed in the surface. The results revealed that Pb, Zn, Cr, and Cd were the predominant harmful elements, particularly Pb and Zn. Zn is leached completely and is the concerned hazardous element under simulated acid rain. In the acid rain neutralization ability test, the amount of leachable Pb, Cr, Ca, and Si maintained in equilibrium, leached Zn, Cd, Al, and Mg depended on the addition of acid. Pb and Ca were sedimented in residues. Immobilization of Pb, Zn, Cr, and Cd depended on the stability of Ca(OH)2/C-S-H of hydrates, and 70% LZTHP after curing 7 days can be used for some practical engineering projects. This work opens up deeply understandings for the leached heavy metals under acidic precipitation and improves the sustainable and safe in the field of immobilization of heavy metals.


Assuntos
Chuva Ácida , Metais Pesados , Poluentes do Solo , Cádmio , Chumbo , Metais Pesados/análise , Minerais , Poluentes do Solo/análise , Zinco/análise
15.
Environ Pollut ; 306: 119400, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35525516

RESUMO

The interaction of cadmium (Cd) pollution and acid rain stress has seriously threatened soil ecosystem and human health. However, there are still few effective amendments for the in-situ remediation in the Cd-contaminated acidified soil. In this study, the performance and mechanisms of palygorskite (PAL) and mercapto-functionalized PAL (MPAL) on Cd immobilization were investigated, and the stability as well as effects on soil micro-ecology under stimulated acid rain were also explored. Results showed that MPAL could react with Cd to form stable Cd-sulfhydryl and Cd-O complexes. The reduction of bioavailable Cd by MPAL was 121.19-164.86% higher than that by PAL. Notably, the Cd immobilization by MPAL remained stable within 90 days in which the concentrations of HOAc-extractable Cd were reduced by 18.28-25.12%, while the reducible and residual fractions were increased by 9.26-18.53% and 54.16%-479.01%, respectively. The sequential acid rain leaching demonstrated that soil after MPAL treatments had a strong H+ resistance, and the immobilized Cd showed prominent stability. In addition, activities of acid phosphatase, catalase and invertase in MPAL treated soil were significantly enhanced by 34.60%, 22.09% and 48.87%, respectively. After MPAL application, bacterial diversity was further improved with diversified sulfur metabolism biomarkers. The decreased abundance of Cd resistance genes including cadA, cadC, czcA, czcB, czcR and zipA also indicated that soil micro-ecology was improved by MPAL. These results showed that MPAL was an effective and eco-friendly amendment for the immobilization of Cd in contaminated soil.


Assuntos
Chuva Ácida , Poluentes do Solo , Cádmio/análise , Ecossistema , Humanos , Compostos de Magnésio , Compostos de Silício , Solo , Poluentes do Solo/análise
16.
J Hazard Mater ; 435: 128947, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35472539

RESUMO

Sulfur dioxide (SO2) and nitric oxide (NO), known as sulfur oxides and nitrogen oxides, are toxic air pollutants and seriously threaten human health. Herein, for the first time, a robust dual-response fluorescent sensor CGT with two different emission fluorophores and dual well-known response-group for visual bisulphites (HSO3-) and nitrites (NO2-) detection was reported. Specifically, once CGT was incubated with HSO3- firstly, the color of the test solution changed to dark yellow with no-fluorescence emission, following added NO2-, the color of the test solution changed to yellow with a bright cyan emission. However, NO2- was added firstly, the color of the test solution changed to dark purple with a white emission, and then added HSO3-, the color of the test solution changed to yellow with a bright cyan emission. Furthermore, CGT showed high sensitivity and selectivity toward HSO3- and NO2- detecting with good detection limits as low as 20.17 nM and 4.14 nM, respectively. Impressively, CGT showed good detection capability in complex aqueous samples and was successfully used for the detection of HSO3- and NO2- in biosystems. Thus, the experimental results indicated CGT as a powerful novel visual detecting tool for HSO3- and NO2- detecting in complex acid rain and biosystems.


Assuntos
Chuva Ácida , Dióxido de Enxofre , Corantes Fluorescentes , Humanos , Óxido Nítrico , Dióxido de Nitrogênio , Dióxido de Enxofre/análise
17.
Chemosphere ; 300: 134571, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35413369

RESUMO

Cement solidification is a commonly used pre-treatment method for municipal solid waste incineration fly ash (MSWIFA) prior to sanitary landfill. However, the long-term environmental risk of cement-solidified MSWIFA blocks in the exposed scenario of zoning sanitary landfill remains unclear. In this study, the leaching characteristics of different heavy metals in cement-solidified MSWIFA blocks under deionized water and acid rain scenarios were firstly investigated. The leaching control mechanisms of heavy metals were also explored and applied to established mechanical models for the estimation of long-term environmental risk. Results revealed that Pb leaching from cement-solidified MSWIFA blocks was controlled by diffusion; Cu, Cr and As leaching was mainly controlled by surface wash-off and diffusion; and Ni leaching was mainly controlled by diffusion and dissolution. Additionally, the established bulk diffusion, first-order reaction/diffusion and diffusion/dissolution models could accurately fit the abovementioned three types of heavy metals with different leaching control mechanisms (R2 > 0.95). Under acid rain scenarios, according to the prediction results of the calibrated models, the cumulative leaching amount of Pb in 718 d was higher than the limit in GB16889-2008, the cumulative leaching amount of Cu, Cr, As and Ni did not exceed the limit in GB 16889-2008 even in 50 years. Therefore, the long-term environmental risk was relatively high for Pb but was low for Cu, Cr, As and Ni in cement-solidified MSWIFA blocks. This finding could be attributed to the strong alkali environment of cement-solidified MSWIFA blocks (pH > 12) that induced Pb salts (e.g. Pb(OH)2 and PbSO4) dissolution. Therefore, the removal of partially soluble Pb salts from freshly made cement-solidified MSWIFA blocks by water or natural rainwater (e.g. without final cover system) washing in the initial landfilling stage (e.g. the leachate drainage system remains functional) is an effective countermeasure to reduce the environmental risks in zoning sanitary landfill.


Assuntos
Chuva Ácida , Metais Pesados , Eliminação de Resíduos , Carbono , Cinza de Carvão/análise , Incineração , Chumbo , Metais Pesados/análise , Material Particulado , Medição de Risco , Sais , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos , Água
18.
Sci Total Environ ; 827: 154319, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35257779

RESUMO

With continuous endeavors to control air pollutant emissions, the average concentration of PM2.5 in Shanghai in 2019-2020 satisfied the national secondary standard (35 µg m-3) for the first time. In this study, the two-year dataset of hourly resolution PM2.5 compositions observed in downtown Shanghai was used to investigate the relative contribution of sulfate and nitrate as well as particulate acidity. The average concentration of SO2 was reduced to 7.7 µg m-3, while the concentration of NOx remained above 40 µg m-3, indicating that the control of SO2 was more effective than that of NOx during the 13th Five-Year Plan period. Thus, the sulfate pollution was significantly reduced whereas the nitrate loading remained almost constant. The monthly N/S ratio varied from below 0.6 to above 2.0, indicating that the contribution of automobile exhaust to PM2.5 is seasonally dependent. Contrary to sulfate, the nitrate fraction increased rapidly with the increase of PM2.5 mass, suggesting that the explosive growth of nitrate has become a major driver of haze formation. ISORROPIA simulations show that PM2.5 was moderately acidic with pH values following the trend of winter > spring > autumn > summer. The diurnal variation of nitrate was related to the changes in aerosol water content, indicating the effect of heterogeneous aqueous reactions on secondary aerosol formation. The effectiveness of emission control for reducing inorganic PM2.5 varied with different gas precursors and seasons. The abatement of NH3 emissions will increase particle acidity and acid rain pollution, although it is more effective than that of NOx when the emission reduction is larger than 60%. This study suggests that the control of vehicle exhaust should be given priority in the Yangtze River Delta for coordinately mitigating PM2.5 and acid rain pollution.


Assuntos
Chuva Ácida , Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , China , Monitoramento Ambiental , Nitratos/análise , Óxidos de Nitrogênio/análise , Material Particulado/análise , Estações do Ano , Sulfatos/análise , Emissões de Veículos/análise
19.
Environ Pollut ; 303: 119094, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245624

RESUMO

The increasing microplastics (MPs) pollution and continuous acid rain coincide in many areas of the world. However, how MPs interact with acid rain is still unclear. Herein, we conducted a microcosm experiment to decipher the combined effect of polyethylene (PE) MPs (1%, 5%, and 10%) and acid rain (pH 4.0) on the agricultural soil ecosystem of Southern China, in which edaphic property, microbial community, enzymatic activity and CO2 emission were investigated. The results showed that PE MPs significantly decreased soil water retention and nitrate nitrogen content regardless of acid rain. Soil total nitrogen significantly decreased under the co-exposure of 10% PE MPs and acid rain. However, PE MPs did not alter soil microbial biomass, i.e., the content of microbial biomass carbon, total phospholipid fatty acids, with or without acid rain. 10% PE MPs and acid rain treatment significantly increased the activity of catalase and soil CO2 emission. PE MPs addition did not affect the temperature sensitivity (Q10) of soil CO2 emission regardless of acid rain. These findings suggest that MPs may interact with acid rain to affect soil ecosystems, thus underscoring the necessity to consider the interaction between MPs and ambient environmental factors when exploring the impact of MPs on the soil biodiversity and function.


Assuntos
Chuva Ácida , Microbiota , Dióxido de Carbono , Ecossistema , Microplásticos , Nitrogênio , Plásticos , Polietileno/química , Solo/química
20.
Environ Sci Pollut Res Int ; 29(28): 42090-42101, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35334049

RESUMO

Over the past decade, the extent and magnitude of acid rain in Vietnam and other Asian countries have become more apparent. In this study, the effect of simulated acid rain (pH 5.0, 4.0, and 3.0) and control treatment (pH 6.0) are observed for three species Brassica integrifolia, Brassica rapa, and Brassica juncea in Hanoi. The pot experiment was conducted for 42 days and arranged according to a randomized complete block design (RCBD), replicated 3 times with acid rain exposure being supplied every 4 days. The results show that acid rain causes direct damage to leaves. Observations reveal white spots on leaves; leaves getting discolored and gradually turning yellow, curling leaf marginals, and turning dark blue, with the most severe symptoms being necrotic leaves. Parameters of the shoot and root length, leaf area, biomass, and chlorophyll content all decrease as pH drops. However, the accumulation of proline content in leaves tends to increase with greater acidity. In conclusion, Brassica rara has the highest resistance capability to acid rain compared with Brassica integrifolia and Brassica juncea, especially its proline content is the highest at pH 3.0 in three Brassicaceae species.


Assuntos
Chuva Ácida , Brassica rapa , Mostardeira , Prolina , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...