RESUMO
Introduction: Vaccination is the most effective mechanism to prevent severe COVID-19. However, breakthrough infections and subsequent transmission of SARS-CoV-2 remain a significant problem. Intranasal vaccination has the potential to be more effective in preventing disease and limiting transmission between individuals as it induces potent responses at mucosal sites. Methods: Utilizing a replication-deficient adenovirus serotype 5-vectored vaccine expressing the SARS-CoV-2 RBD (AdCOVID) in homozygous and heterozygous transgenic K18-hACE2, we investigated the impact of the route of administration on vaccine immunogenicity, SARS-CoV-2 transmission, and survival. Results: Mice vaccinated with AdCOVID via the intramuscular or intranasal route and subsequently challenged with SARS-CoV-2 showed that animals vaccinated intranasally had improved cellular and mucosal antibody responses. Additionally, intranasally vaccinated animals had significantly better viremic control, and protection from lethal infection compared to intramuscularly vaccinated animals. Notably, in a novel transmission model, intranasal vaccination reduced viral transmission to naïve co-housed mice compared to intramuscular vaccination. Discussion: Our data provide convincing evidence for the use of intranasal vaccination in protecting against SARS-CoV-2 infection and transmission.
Assuntos
Infecções por Adenoviridae , Vacinas contra Adenovirus , COVID-19 , Vacinas , Animais , Camundongos , Adenoviridae/genética , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Animais Geneticamente ModificadosRESUMO
In a phase I dose escalation and safety study (NCT02555397), a replication-competent oncolytic adenovirus expressing yCD, TK and hIL-12 (Ad5-yCD/mutTKSR39rep-hIL-12) was administered in 15 subjects with localized recurrent prostate cancer (T1c-T2) at increasing doses (1 × 1010, to 1 × 1012 viral particles) followed by 7-day treatment of 5-fluorocytosine (5-FC) and valganciclovir (vGCV). The primary endpoint was toxicity through day 30 while the secondary and exploratory endpoints were quantitation of IL-12, IFNγ, CXCL10 and peripheral blood mononuclear cells (PBMC). The study maximum tolerated dose (MTD) was not reached indicating 1012 viral particles was safe. Total 115 adverse events were observed, most of which (92%) were grade 1/2 that did not require any treatment. Adenoviral DNA was detected only in two patients. Increase in IL-12, IFNγ, and CXCL10 was observed in 57%, 93%, and 79% patients, respectively. Serum cytokines demonstrated viral dose dependency, especially apparent in the highest-dose cohorts. PBMC analysis revealed immune system activation after gene therapy in cohort 5. The PSA doubling time (PSADT) pre and post treatment has a median of 1.55 years vs 1.18 years. This trial confirmed that replication-competent Ad5-IL-12 adenovirus (Ad5-yCD/mutTKSR39rep-hIL-12) was well tolerated when administered locally to prostate tumors.
Assuntos
Adenocarcinoma , Terapia Viral Oncolítica , Neoplasias da Próstata , Humanos , Masculino , Adenocarcinoma/terapia , Adenoviridae , Terapia Genética/efeitos adversos , Interleucina-12/genética , Leucócitos Mononucleares , Próstata , Neoplasias da Próstata/terapia , Genes Transgênicos SuicidasRESUMO
Purpose: Hydrogels containing the nano-self-assembling peptide RADA16-I (Nanogels) were utilized as scaffolds to establish airway organoids and an adenovirus-infected model. The results support in vitro adenovirus studies, including isolation and culture, pathogenesis research, and antiviral drug screening. Methods: HSAEC1-KT, HuLEC-5a and HELF cells were cocultured in RADA16-I hydrogel scaffolds to construct an airway organoid model. Adenovirus was used to infect this model for adenovirus-related studies. The morphological characteristics and the proliferation and activity of airway organoids before and after adenovirus infection were evaluated. The expression of the airway organoid marker proteins CC10, KRT8, AQP5, SPC, VIM and CD31 was detected. TEM and qPCR were used to detect adenovirus proliferation in airway organoids. Results: HSAEC1-KT, HuLEC-5a and HELF cells cocultured at 10:7:2 self-assembled into airway organoids and maintained long-term proliferation in a RADA16-I hydrogel 3D culture system. The organoids stably expressed the lumen-forming protein KRT8 and the terminal airway markers AQP5 and SPC. Adenoviruses maintained long-term proliferation in this model. Conclusion: An airway-organoid model of adenovirus infection was constructed in vitro from three human lung-derived cell lines on RADA16-I hydrogels. The model has potential as a novel research tool for adenovirus isolation and culture, pathogenesis research, and antiviral drug screening.
Assuntos
Infecções por Adenoviridae , Peptídeos , Humanos , Peptídeos/farmacologia , Adenoviridae/genética , Organoides , Antivirais , HidrogéisRESUMO
BACKGROUND: We aimed to evaluate the effects of public health measures taken during the COVID-19 pandemic on respiratory viruses. METHODS: The study was conducted between February 1, 2021 and December 1, 2022. Patients aged 1 month to 18 years hospitalized for infectious diseases were tested for SARS-CoV-2 and respiratory viruses by multiplex PCR. RESULTS: Of the total 1173 patients, 56.2% were male and 43.8% were female, and 47.5% of the patients were under 24 months of age. The viruses detected were SARS-CoV-2 31.9%, human rhinovirus/enterovirus 19.4%, respiratory syncytial virus (RSV) 9.3%, parainfluenza virus 7%, adenovirus 6%, seasonal coronavirus 5.2%, bocavirus 3.8%, influenza 3.1%, and metapneumovirus 2.8%. Among the patients, 386 were hospitalized with lower respiratory tract infections, 238 with upper respiratory tract infections, 202 to evaluate fever etiology, 111 with acute gastroenteritis and 236 with other diagnoses. Of these patients, 113 were admitted to the intensive care unit. Intensive care unit admission rates were statistically significantly higher for bocavirus and RSV, in those hospitalized between July 1, 2021 and July 1, 2022 (first period when schools were held full-time face-toface at all grades) and in children aged 1-24 months. CONCLUSIONS: Public health measures taken during the COVID-19 pandemic have affected the seasonal distribution of respiratory viruses and the severity of illness in children.
Assuntos
COVID-19 , Infecções Respiratórias , Humanos , Criança , Feminino , Masculino , COVID-19/epidemiologia , SARS-CoV-2 , Estações do Ano , Pandemias , Adenoviridae , Infecções Respiratórias/epidemiologiaRESUMO
BACKGROUND: Despite widespread study of dendritic cell (DC)-based cancer immunotherapies, the in vivo postinjection fate of DC remains largely unknown. Due in part to a lack of quantifiable imaging modalities, this is troubling as the amount of DC migration to secondary lymphoid organs correlates with therapeutic efficacy. Magnetic particle imaging (MPI) has emerged as a suitable modality to quantify in vivo migration of superparamagnetic iron oxide (SPIO)-labeled DC. Herein, we describe a popliteal lymph node (pLN)-focused MPI scan to quantify DC in vivo migration accurately and consistently. METHODS: Adenovirus (Ad)-transduced SPIO+ (Ad SPIO+) and SPIO+ C57BL/6 bone marrow-derived DC were generated and assessed for viability and phenotype, then fluorescently labeled and injected into mouse hind footpads (n = 6). Two days later, in vivo DC migration was quantified using whole animal, pLN-focused, and ex vivo pLN MPI scans. RESULTS: No significant differences in viability, phenotype and in vivo pLN migration were noted for Ad SPIO+ and SPIO+ DC. Day 2 pLN-focused MPI quantified DC migration in all instances while whole animal MPI only quantified pLN migration in 75% of cases. Ex vivo MPI and fluorescence microscopy confirmed that pLN MPI signal was due to originally injected Ad SPIO+ and SPIO+ DC. CONCLUSION: We overcame a reported limitation of MPI by using a pLN-focused MPI scan to quantify pLN-migrated Ad SPIO+ and SPIO+ DC in 100% of cases and detected as few as 1000 DC (4.4 ng Fe) in vivo. MPI is a suitable preclinical imaging modality to assess DC-based cancer immunotherapeutic efficacy. RELEVANCE STATEMENT: Tracking the in vivo fate of DC using noninvasive quantifiable magnetic particle imaging can potentially serve as a surrogate marker of therapeutic effectiveness. KEY POINTS: ⢠Adenoviral-transduced and iron oxide-labeled dendritic cells are in vivo migration competent. ⢠Magnetic particle imaging is a suitable modality to quantify in vivo dendritic cell migration. ⢠Magnetic particle imaging focused field of view overcomes dynamic range limitation.
Assuntos
Medula Óssea , Imageamento por Ressonância Magnética , Animais , Camundongos , Movimento Celular , Imageamento por Ressonância Magnética/métodos , Camundongos Endogâmicos C57BL , Adenoviridae , Células Dendríticas , Fenômenos MagnéticosRESUMO
Nipah virus (NiV) and Hendra virus (HeV) are newly emerging dangerous zoonotic pathogens of the Henipavirus genus of the Paramyxoviridae family. NiV and HeV (HNVs) which are transmitted by bats cause acute respiratory disease and fatal encephalitis in humans. To date, as there is a lack of antiviral drugs or effective antiviral therapies, the development of vaccines against those two viruses is of primary importance, and the immunogen design is crucial to the success of vaccines. In this study, the full-length protein (G), the ectodomain (Ge) and the head domain (Gs) of NiV attachment glycoprotein were delivered by the replication-defective type 5 adenovirus vector (Ad5) respectively, and the recombinant Ad5-NiV vaccine candidates (Ad5-NiVG, Ad5-NiVGe and Ad5-NiVGs) were constructed and their immunogenicity were evaluated in mice. The results showed that all the vaccine candidates stimulated specific humoral and cellular immune responses efficiently and rapidly against both NiV and HeV, and the Ad5-NiVGe elicited the strongest immune responses after a single-dose immunization. Furthermore, the potent conserved T-cell epitope DTLYFPAVGFL shared by NiV and HeV was identified in the study, which may provide valid information on the mechanism of HNVs-specific cellular immunity. In summary, this study demonstrates that the Ad5-NiVGe could be a potent vaccine candidate against HNVs by inducing robust humoral and cellular immune responses.
Assuntos
Vírus Hendra , Vírus Nipah , Humanos , Animais , Camundongos , Vírus Hendra/fisiologia , Vírus Nipah/genética , Vírus Nipah/metabolismo , Ligação Viral , Glicoproteínas/genética , Glicoproteínas/metabolismo , Vacinas Sintéticas , Imunidade Celular , Adenoviridae/genéticaRESUMO
Lung cancer remains among the most difficult-to-treat malignancies and is the leading cause of cancer-related deaths worldwide. The introduction of targeted therapies and checkpoint inhibitors has improved treatment outcomes; however, most patients with advanced-stage non-small cell lung cancer (NSCLC) eventually fail these therapies. Therefore, there is a major unmet clinical need for checkpoint refractory/resistant NSCLC. Here, we tested the combination of aPD-1 and adenovirus armed with TNFα and IL-2 (Ad5-CMV-mTNFα/mIL-2) in an immunocompetent murine NSCLC model. Moreover, although local delivery has been standard for virotherapy, treatment was administered intravenously to facilitate clinical translation and putative routine use. We showed that treatment of tumor-bearing animals with aPD-1 in combination with intravenously injected armed adenovirus significantly decreased cancer growth, even in the presence of neutralizing antibodies. We observed an increased frequency of cytotoxic tumor-infiltrating lymphocytes, including tumor-specific cells. Combination treatment led to a decreased percentage of immunosuppressive tumor-associated macrophages and an improvement in dendritic cell maturation. Moreover, we observed expansion of the tumor-specific memory T cell compartment in secondary lymphoid organs in the group that received aPD-1 with the virus. However, although the non-replicative Ad5-CMV-mTNFα/mIL-2 virus allows high transgene expression in the murine model, it does not fully reflect the clinical outcome in humans. Thus, we complemented our findings using NSCLC ex vivo models fully permissive for the TNFα and IL-2- armed oncolytic adenovirus TILT-123. Overall, our data demonstrate the ability of systemically administered adenovirus armed with TNFα and IL-2 to potentiate the anti-tumor efficacy of aPD-1 and warrant further investigation in clinical trials.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Interleucina-2 , Neoplasias Pulmonares , Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Adenoviridae/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Interleucina-2/genética , Interleucina-2/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/uso terapêutico , Inibidores de Checkpoint ImunológicoAssuntos
Infecções por Adenoviridae , Vacinas contra Adenovirus , Trombocitopenia , Trombose , Humanos , Adenoviridae , Infecções por Adenoviridae/complicações , Anticorpos , Trombocitopenia/etiologia , Trombose/etiologia , Púrpura Trombocitopênica Idiopática/induzido quimicamente , Púrpura Trombocitopênica Idiopática/etiologia , Vacinas contra Adenovirus/efeitos adversosRESUMO
BACKGROUND: Community-acquired pneumonia (CAP) is usually diagnosed in children, and the type of respiratory specimen is critical. Differences in pathogens detection between induced sputum (IS) and bronchoalveolar lavage fluid (BALF) have not been evaluated. METHODS: In 2018, paired sputum and BALF samples from CAP hospitalised children with indications for bronchoalveolar lavage (BAL) were subjected to multiplex PCR for the detection of 11 common respiratory pathogens. RESULTS: A total of 142 children with paired sputum and BALF were tested. The overall positivity rate was 85.9% (122/142) for sputum and 80.3% (114/142) for BALF. The two specimens presented almost perfect agreement between the detection on M. pneumoniae, influenza A, influenza B, bocavirus and RSV. In contrast, adenovirus had the lowest kappa value of 0.156, and a false negative rate (FNR) of 66.7%. Rhinovirus had the highest false positive rate (FPR) as 18.5%. The consistent rate was significantly higher in school-age children than those under 1 year old (p = .005). Bacterial co-infection in BALF specimens were observed in 14.8% (21/142). Of the 11 discordant pairs of specimens, 9 cases were sputum(+)/BALF(-) with adenovirus predominating. CONCLUSION: Our findings suggest that the consistency of results between sputum and BALF is pathogen specific. Careful consideration needs to be given to whether sputum can be used as a substitute for BALF when children are young or co-infections with bacteria are suspected.
Assuntos
Coinfecção , Infecções Comunitárias Adquiridas , Influenza Humana , Pneumonia , Lactente , Criança , Humanos , Broncoscopia , Líquido da Lavagem Broncoalveolar , Escarro , Adenoviridae , Coinfecção/diagnóstico , Infecções Comunitárias Adquiridas/diagnóstico , Mycoplasma pneumoniae , Pneumonia/diagnósticoRESUMO
Human adenovirus (HAdV) is ubiquitous in the human population, constituting a significant burden of global respiratory diseases. Children and individuals with low immunity are at risk of developing severe infections without approved antiviral treatment for HAdV. Our study demonstrated that TRIM35 inhibited HAdV-C5 early gene transcription, early protein expression, genome replication, and infectious virus progeny production. Furthermore, TRIM35 was found to inhibit HAdV replication by attenuating E1A expression. Mechanistically, TRIM35 interacts with and degrades E1A by promoting its K48-linked ubiquitination. Additionally, K253 and K285 are the key sites necessary for TRIM35 degradation. Moreover, an oncolytic adenovirus carrying shTRIM35 was constructed and observed to exhibit improved oncolysis in vivo, providing new ideas for clinical tumor treatment. Our results expand the broad antiviral activity of TRIM35 and mechanically support its application as a HAdV replication inhibitor. IMPORTANCE E1A is an essential human adenovirus (HAdV) protein responsible for the early replication of adenovirus while interacting with multiple host proteins. Understanding the interaction between HAdV E1A and TRIM35 helps identify effective antiviral therapeutic targets. The viral E1A protein is a crucial activator and regulator of viral transcription during the early infection stages. We first reported that TRIM35 interacts with E1A to resist adenovirus infection. Our study demonstrated that TRIM35 targets E1A to resist adenovirus, indicating the applicability of targeting virus-dependent host factors as a suitable antiviral strategy.
Assuntos
Adenovírus Humanos , Criança , Humanos , Adenovírus Humanos/fisiologia , Adenoviridae/metabolismo , Replicação Viral , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Proteínas Virais/metabolismo , Antivirais/farmacologia , Proteínas Reguladoras de Apoptose/metabolismoRESUMO
The dendritic cell (DC) vaccine is a promising cancerimmunotherapy strategy, but its efficacy in treating the solid tumor is limited. To overcome this limitation, an oncolytic adenovirus (OAV-IL-12) was developed to enhance antigen targeting ability of adenovirus-assembled DC vaccine (DCs-CD137L/CAIX) for renal carcinoma treatment. Peritumoral administration of OAV-IL-12 increased the number of tumor-infiltrating DCs and their subsets (CD8+DCs and CD103+DCs). Combining OAV-IL-12 with DCs-CD137L/CAIX significantly inhibited the growth of subcutaneous tumors by inducing potent cytotoxic T lymphocyte (CTL) effect and improving the immune infiltration in tumor lesions. Interestingly, this treatment also reduced tumor growth distal to the OAV-IL-12 injecting side via eliciting a systemic CTL response. Furthermore, OAV-IL-12 potentiated DCs-CD137L/CAIX treatment induced dual CTL responses against both CAIX and adenovirus antigens. The therapeutic benefits of this treatment approach mainly relied on multifunctional CD8+T cell immune responses, as indicated by the depletion assay. Moreover, OAV-IL-12 potentiated DCs-CD137L/CAIX treatment generated a long-lasting protective effect against tumors by inducing memory CD8+T cell immune responses. These results suggest that the effective tumor targeting of the adenovirus-based DC vaccine, boosted by OAV-IL-12, is a promising treatment approach for renal carcinoma and other solid tumors.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Vacinas , Humanos , Linfócitos T Citotóxicos , Adenoviridae/genética , Carcinoma de Células Renais/terapia , Antígenos de Neoplasias , Interleucina-12 , Neoplasias Renais/terapia , Células DendríticasRESUMO
The chromatin-based rule governing the selection and activation of replication origins in metazoans remains to be investigated. Here we report that NFIB, a member of Nuclear Factor I (NFI) family that was initially purified in host cells to promote adenoviral DNA replication but has since mainly been investigated in transcription regulation, is physically associated with the pre-replication complex (pre-RC) in mammalian cells. Genomic analyses reveal that NFIB facilitates the assembly of the pre-RC by increasing chromatin accessibility. Nucleosome binding and single-molecule magnetic tweezers shows that NFIB binds to and opens up nucleosomes. Transmission electron microscopy indicates that NFIB promotes nucleosome eviction on parental chromatin. NFIB deficiency leads to alterations of chromosome contacts/compartments in both G1 and S phase and affects the firing of a subset of origins at early-replication domains. Significantly, cancer-associated NFIB overexpression provokes gene duplication and genomic alterations recapitulating the genetic aberrance in clinical breast cancer and empowering cancer cells to dynamically evolve growth advantage and drug resistance. Together, these results point a role for NFIB in facilitating replication licensing by acting as a genome organizer, shedding new lights on the biological function of NFIB and on the replication origin selection in eukaryotes.
Assuntos
Cromatina , Nucleossomos , Animais , Adenoviridae , Núcleo Celular , Cromatina/genética , Genômica , Mamíferos , Fatores de Transcrição NFI , HumanosRESUMO
Although the use of iodinated contrast agents is sometimes unavoidable for accurate diagnosis, contrast-induced acute kidney injury (CI-AKI) is a possible complication of its administration. The pathogenesis of CI-AKI has not been fully elucidated, but oxidative stress is thought to be a major factor. Sestrin2 plays an important role in cellular and mitochondrial homeostasis by regulating oxidative stress. In this study, we aimed to investigate whether recombinant adenovirus containing sestrin2 (RS) can attenuate CI-AKI by reducing oxidative stress in a CI-AKI mice model. Our results showed that RS decreases oxidative stress, pro-inflammatory cytokines (TNF-α, IL-1α, IL-1ß and IL-6) and apoptosis (Bax/Bcl2 and cleaved caspase-3) in the CI-AKI model. Additionally, RS alleviated mitochondrial damage, as evidenced by morphological changes, are restored ATP synthesis. Furthermore, RS administration resulted in a decrease in mitochondrial fission marker (Drp1) that was increased in the CI-AKI model, while the mitochondrial fusion marker (Mfn2) increased, indicating a restoration of mitochondrial dynamics. Decreased relative blood volume, as evaluated on computed tomography (CT), significantly increased compared to the CI-AKI group after RS administration. Finally, renal injury markers such as Kim-1, Ngal, IL-18 also decreased and kidney function was preserved with RS. These results suggested that RS can mitigate the deterioration of renal function in CI-AKI model.
Assuntos
Injúria Renal Aguda , Estresse Oxidativo , Animais , Camundongos , Adenoviridae , Apoptose , Citocinas , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controleRESUMO
It has been proposed that infection by adipogenic viruses constitutes a "low risk" factor for obesity. Here, we report the presence of adenovirus 36 (Ad36) and its viral load copy number in fat tissue of participants with obesity and normal weight; phylogenetic analysis was performed to describe their relationship and genetic variability among viral haplotypes. Adipose tissue obtained from 105 adult patients with obesity (cases) and 26 normal-weight adult participants as controls were analyzed by quantitative polymerase chain reaction (qPCR) amplifying the partial Ad36 E1a gene. The amplicons were examined by melting curves and submitted to sequencing. Then, genetic diversity and phylogenetic inferences were performed. Ad36 was identified at rates of 82% and 46% in the case and control groups, respectively (p = 1.1 × 10-4 , odds ratio = 5.28); viral load copies were also significantly different between both groups, being 25% higher in the case group. Melting curve analysis showed clear amplification among positive samples. Phylogenetic inferences and genetic diversity analyses showed that the Ad36 E1a gene exhibits low genetic variability and differentiation with strong gene flow due to an expanding process. Our results suggest that the phenomenon of infectobesity by Ad36 might not be a low-risk factor, as has been previously argued by other authors.
Assuntos
Infecções por Adenoviridae , Adenovírus Humanos , Adulto , Humanos , Adenovírus Humanos/genética , Gordura Intra-Abdominal , Filogenia , Carga Viral , Adenoviridae/genética , Obesidade/genéticaRESUMO
Adenovirus vectors possess a good safety profile, an extensive genome, a range of host cells, high viral yield, and the ability to elicit broad humoral and cellular immune responses. Adenovirus vectors are widely used in infectious disease research for future vaccine development and gene therapy. In this study, we obtained a fowl adenovirus serotype 4 (FAdV-4) isolate from sick chickens with hepatitis-hydropericardium syndrome (HHS) and conducted animal regression text to clarify biological pathology. We amplified the transfer vector and extracted viral genomic DNA from infected LMH cells, then recombined the mixtures via the Gibson assembly method in vitro and electroporated them into EZ10 competent cells to construct the FAdV-4 infectious clone. The infectious clones were successfully rescued in LMH cells within 15 days of transfection. The typical cytopathic effect (CPE) and propagation titer of FAdV-4 infectious clones were also similar to those for wild-type FAdV-4. To further construct the single-cycle adenovirus (SC-Ad) vector, we constructed SC-Ad vectors by deleting the gene for IIIa capsid cement protein. The FAdV4 infectious clone vector was introduced into the ccdB cm expression cassette to replace the IIIa gene using a λ-red homologous recombination technique, and then the ccdB cm expression cassette was excised by PmeI digestion and self-ligation to obtain the resulting plasmids as SC-Ad vectors.
Assuntos
Doenças Transmissíveis , Hepatite A , Animais , Galinhas , Sorogrupo , Adenoviridae/genética , Proteínas do Capsídeo , DNA ViralRESUMO
Nosocomial pneumonia (NP) represents a leading cause of morbidity and mortality in hospitalized patients. Historically, clinicians have considered hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), which comprise NP, to be essentially bacterial processes. As such, patients suspected of having either HAP or VAP are initially treated with broad-spectrum antibiotics, and few clinicians search for a possible culprit virus. Recent reports which build on earlier studies, however, indicate that viruses likely play an important role in NP. Studies employing viral diagnostics as part of the evaluation for NP indicate that common respiratory viruses can spread nosocomially and lead to HAP and VAP. Similarly, studies of the general epidemiology of respiratory viral infections, such as influenza, respiratory syncytial virus, adenovirus, and rhinovirus, confirm that these pathogens are important causes of NP, especially among immunosuppressed and pediatric patients. More importantly, these more contemporary analyses reveal that one cannot, based on clinical characteristics, distinguish a viral from a bacterial cause of NP. Additionally, viral HAP and VAP result in crude mortality rates that rival or exceed those reported in bacterial NP. Rigorous prospective, multicenter trials are needed to confirm the significance of respiratory viruses in NP, as are studies of novel therapeutics for these viral infections.
Assuntos
Infecção Hospitalar , Pneumonia Associada a Assistência à Saúde , Vírus Sincicial Respiratório Humano , Humanos , Criança , Estudos Prospectivos , AdenoviridaeRESUMO
Astroviruses (AstV) and adenoviruses (AdV) are associated with diarrhoea in young animals. However, the epidemiology and genetic diversity of AstVs and AdVs in animals is not well studied. Hence, the present study was conducted to detect and characterize AstVs and AdVs in calves, piglets and puppies from Western Maharashtra, India. Out of the processed porcine (48), canine (80), and bovine (65) faecal samples, the porcine AstV (PAstV), bovine AstV (BAstV), canine AstV (CAstV), and porcine AdV (PAdV) were detected in 12.5%, 7.69%, 3.75% and 4.1% of samples, respectively. In the RNA-dependent RNA polymerase region-based phylogenetic analysis, the detected BAstV strains grouped with MAstV-28, MAstV-33, and MAstV-35, CAstV strains belonged to MAstV-5; PAstV strains belonged to MAstV-24, MAstV-26, and MAstV-31. However, in hexon gene-based phylogeny, both the detected PAdV were of genotype 3, exhibiting 91.9-92.5% nucleotide identity with Ivoirian and Chinese strains. The study reports first-time BAstVs from calves and PAdV-3 from piglets in India. The study revealed diversity in the circulation of AstVs in tested animals and AdVs in pigs, and suggested that they alone might be associated with other diarrhoea or in combination with other enteric pathogens, thus highlighting the necessity of extensive epidemiological investigations to develop diagnostic tools and control measures.
Assuntos
Infecções por Adenoviridae , Astroviridae , Canidae , Animais , Bovinos , Cães , Suínos , Adenoviridae , Filogenia , Índia/epidemiologia , Infecções por Adenoviridae/epidemiologia , Infecções por Adenoviridae/veterinária , Astroviridae/genética , Diarreia/epidemiologia , Diarreia/veterináriaRESUMO
Numerous mammalian viruses are routinely analyzed in clinical diagnostic laboratories around the globe or serve as indispensable model systems in viral research. Potentially infectious viral entities are handled as blood, biopsies, or cell and tissue culture samples. Countless protocols describe methods for virus fixation and inactivation, yet for many, a formal proof of safety and completeness of inactivation remains to be shown. While modern nucleic acid extraction methods work quite effectively, data are largely lacking on possible residual viral infectivity, e.g., when assessed after extended culture times, which maximizes the sensitivity for low levels of residual infectiousness. Therefore, we examined the potency and completeness of inactivation procedures on virus-containing specimens when applying commonly used fixatives like formaldehyde or nucleic acid extraction/lysis buffers. Typical representatives of different virus classes, including RNA and DNA viruses, enveloped and non-enveloped, such as adenovirus, enterovirus, lentivirus, and coronavirus, were used, and the reduction in the in vitro infectiousness was assessed for standard protocols. Overall, a 30-minute incubation with formaldehyde at room temperature effectively inactivated all tested enveloped and non-enveloped viruses. Full inactivation of HIV-1 and ECHO-11 was also achieved with all buffers in the test, whereas for SARS-CoV-2 and AdV-5, only five of the seven lysis buffers were fully effective under the tested conditions.
Assuntos
COVID-19 , Inativação de Vírus , Animais , SARS-CoV-2 , Formaldeído/farmacologia , Adenoviridae , MamíferosRESUMO
Preventing the replication of adenovirus could have practical uses, such as controlling infection with wild-type virus or in applications involving recombinant vectors. Mainly transient methods have been used to inhibit adenovirus replication, including siRNA or drugs. Here, we tested whether stable expression of shRNA designed to target hexon, Iva2, or pol can inhibit the replication of a recombinant adenoviral vector, Ad-LacZ (serotype 5, E1/E3 deleted), in 293T cells. Significant knockdown correlating with reduced Ad-LacZ replication was achieved only when hexon was targeted. Cell sorting and isolation of cellular clones further accentuated knockdown of the hexon transcript, reduced protein levels by more than 90%, and diminished adenovirus production. As visualized by transmission electron microscopy, the cellular clone expressing the hexon-specific shRNA yielded 89.2% fewer particles compared to the parental 293T cells. Full scale production followed by purification revealed a 90.2% reduction in Ad-LacZ biological titer. These results support the notion that stable expression of shRNA can be used as a means to control adenovirus replication.