Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.539
Filtrar
1.
Braz. j. biol ; 83: e246230, 2023. tab, graf
Artigo em Inglês | MEDLINE, LILACS, VETINDEX | ID: biblio-1339369

RESUMO

Abstract Dengue fever vectored by the mosquito Aedes aegypti is one of the most rapidly spreading insect-borne diseases. Current reliance of dengue vector control is mostly on chemical insecticides. Growing insecticide resistance in the primary mosquito vector, Aedes aegypti, limits the effectiveness of vector control through chemical insecticides. These chemical insecticides also have negative environmental impacts on animals, plants and human health. Myco-biocontrol agents are naturally occurring organisms and are found to be less damaging to the environment as compared to chemical insecticides. In the present study, entomopathogenic potential of local strains of fungi isolated from soil was assessed for the control of dengue vector. Local fungal isolates presents better alternative to introducing a foreign biocontrol strain, as they may be better adapted to environmental conditions of the area to survive and may have more entomopathogenic efficacy against target organism. Larvicidal efficacy of Fusarium equiseti and Fusarium proliferatum was evaluated against Aedes aegypti. Local strains of F. equiseti (MK371718) and F. proliferatum (MK371715) were isolated from the soil of Changa Manga Forest, Pakistan by using insect bait method. Larvicidal activity of two Fusarium spp. was tested against forth instar larvae of A. aegypti in the laboratory, using concentrations 105, 106, 107 and 108 conidia /ml. LC50 values for F. equiseti after 24h, 48h, 72h and 96h of exposure were recorded as 3.8x 108, 2.9x107, 2.0x107, and 7.1x106 conidia /ml respectively while LC50 values for F. proliferatum were recorded as 1.21x108, 9.6x107, 4.2x107, 2.6x107 conidia /ml respectively after 24h, 48h, 72h and 96h of exposure. The results indicate that among two fungal strains F. equiseti was found to be more effective in terms of its larvicidal activity than F. proliferatum against larvae of A. aegypti.


Resumo A dengue transmitida pelo mosquito Aedes aegypti é uma das doenças transmitidas por insetos de propagação mais rápida. A dependência atual do controle do vetor da dengue é principalmente de inseticidas químicos. O aumento da resistência a inseticidas no principal vetor do mosquito, Aedes aegypti, limita a eficácia do controle do vetor por meio de inseticidas químicos. Esses inseticidas químicos também têm impactos ambientais negativos sobre os animais, plantas e saúde humana. Os agentes de micobiocontrole são organismos que ocorrem naturalmente e são menos prejudiciais ao meio ambiente em comparação com os inseticidas químicos. No presente estudo, avaliou-se o potencial entomopatogênico de cepas locais de fungos isolados do solo para o controle do vetor da dengue. Isolados de fungos locais apresentam melhor alternativa para a introdução de uma cepa de biocontrole estrangeira, pois podem ser mais bem adaptados às condições ambientais da área para sobreviver e podem ter maior eficácia entomopatogênica contra o organismo-alvo. A eficácia larvicida de Fusarium equiseti e Fusarium proliferatum foi avaliada contra Aedes aegypti. Cepas locais de F. equiseti (MK371718) e F. proliferatum (MK371715) foram isoladas do solo de Changa Manga Forest, Paquistão, usando o método de isca para insetos. Atividade larvicida de dois Fusarium spp. foi testado contra larvas de quarto ínstar de A. aegypti em laboratório, nas concentrações 105, 106, 107 e 108 conídios / ml. Os valores de LC50 para F. equiseti após 24 h, 48 h, 72 h e 96 h de exposição foram registrados como 3,8x 108, 2,9x107, 2,0x107 e 7,1x106 conídios / ml, respectivamente, enquanto os valores de LC50 para F. proliferatum foram registrados como 1,21x108, 9,6 x107, 4,2x107, 2,6x107 conídios / ml, respectivamente, após 24 h, 48 h, 72 h e 96 h de exposição. Os resultados indicam que entre duas cepas de fungos F. equiseti se mostrou mais eficaz em termos de atividade larvicida do que F. proliferatum contra larvas de A. aegypti.


Assuntos
Humanos , Animais , Aedes , Fusarium , Inseticidas/farmacologia , Paquistão , Solo , Extratos Vegetais , Florestas , Mosquitos Vetores , Larva
2.
Braz. j. biol ; 83: e247539, 2023. tab
Artigo em Inglês | MEDLINE, LILACS, VETINDEX | ID: biblio-1278542

RESUMO

Abstract Numerous studies have investigated the chemical composition and biological activities of essential oils from different Citrus species fruit peel, leaves and flowers. This paper aims to investigate the chemical composition, larvicidal and antileishmanial activities of essential oil from Citrus reticulata fruit peel (CR-EO). CR-EO was obtained by hydrodistillation in a Clevenger-type apparatus and its chemical composition was analyzed by GC-MS and GC-FID. Limonene (85.7%), ɣ-terpinene (6.7%) and myrcene (2.1%) were identified as its major components. CR-EO showed high activity against promastigote forms of Leishmania amazonensis (IC50 = 8.23 µg/mL). CR-EO also exhibited high larvicidal activity against third instar Aedes aegypti larvae at a lethal concentration (LC50 = 58.35 µg/mL) and 100% mortality at 150 µg/mL. This study suggests, for the first time, the potential use of CR-EO against this important mosquito-borne viral disease caused by the genus Aedes.


Resumo Numerosos estudos têm investigado a composição química e as atividades biológicas de óleos essenciais extraídos de cascas dos frutos, folhas e flores de diferentes espécies de Citrus. Este trabalho tem como objetivo investigar a composição química e as atividades larvicida e leishmanicida in vitro do óleo essencial das cascas dos frutos de Citrus reticulata (CR-EO). CR-EO foi obtido pela técnica de extração em aparelho Clevenger e sua composição química foi determinada por CG-EM e CG-DIC. Limoneno (85,7%), ɣ-terpineno (6,7%) and mirceno (2,1%) foram identificados como os constituintes majoritários. CR-EO mostrou alta atividade contra as formas promastigota de Leishmania amazonensis (CI50 = 8,23 µg/mL). CR-EO também exibiu alta atividade larvicida contra as larvas do terceiro estágio do Aedes aegypti com concentração letal (CL50 = 58,35 µg/mL) e mortalidade de 100% em 150 µg/mL. Este estudo sugere, pela primeira vez, o uso potencial de CR-EO contra esta importante doença viral transmitida por mosquitos do gênero Aedes.


Assuntos
Animais , Óleos Voláteis/farmacologia , Citrus , Aedes , Inseticidas/farmacologia , Frutas , Larva
3.
Braz. j. biol ; 83: e244647, 2023. tab, graf
Artigo em Inglês | MEDLINE, LILACS, VETINDEX | ID: biblio-1278527

RESUMO

Abstract The essential oil of citronella (Cymbopogon winterianus) has several biological activities, among them the insect repellent action. Some studies showed that cinnamic acid esters can be applied as natural pesticides, insecticides and fungicides. In this context, the objective of the present work was to evaluate the production of esters from citronella essential oil with cinnamic acid via enzymatic esterification. Besides, the essential oil toxicity before and after esterification against Artemia salina and larvicidal action on Aedes aegypti was investigated. Esters were produced using cinnamic acid as the acylating agent and citronella essential oil (3:1) in heptane and 15 wt% NS 88011 enzyme as biocatalysts, at 70 °C and 150 rpm. Conversion rates of citronellyl and geranyl cinnamates were 58.7 and 69.0% for NS 88011, respectively. For the toxicity to Artemia salina LC50 results of 5.29 μg mL-1 were obtained for the essential oil and 4.36 μg mL-1 for the esterified oils obtained with NS 88011. In the insecticidal activity against Aedes aegypti larvae, was obtained LC50 of 111.84 μg mL-1 for the essential oil of citronella and 86.30 μg mL-1 for the esterified oils obtained with the enzyme NS 88011, indicating high toxicity of the esters. The results demonstrated that the evaluated samples present potential of application as bioinsecticide.


Resumo O óleo essencial de citronela (Cymbopogon winterianus) possui diversas atividades biológicas, entre elas a ação repelente a insetos. Alguns estudos mostraram que os ésteres do ácido cinâmico podem ser aplicados como pesticidas naturais, inseticidas e fungicidas. Nesse contexto, o objetivo do presente trabalho foi avaliar a produção de ésteres a partir do óleo essencial de citronela com ácido cinâmico via esterificação enzimática. Além disso, foi investigada a toxicidade do óleo essencial antes e após a esterificação contra Artemia salina e a ação larvicida sobre Aedes aegypti. Os ésteres foram produzidos utilizando ácido cinâmico como agente acilante e óleo essencial de citronela (3: 1) em heptano e 15% em peso da enzima NS 88011 como biocatalisadores, a 70 ° C e 150 rpm. As taxas de conversão de cinamatos de citronelil e geranil foram 58,7 e 69,0% para NS 88011, respectivamente. Para a toxicidade sobre Artemia salina foram obtidos CL50 de 5,29 μg mL-1 para o óleo essencial e 4,36 μg mL-1 para os óleos esterificados com NS 88011. Na atividade inseticida contra larvas de Aedes aegypti, obteve-se CL50 de 111,84 μg mL-1 para o óleo essencial de citronela e 86,30 μg mL-1 para os óleos esterificados com a enzima NS 88011, indicando alta toxicidade dos ésteres. Os resultados demonstraram que as amostras avaliadas apresentam potencial de aplicação como bioinseticida.


Assuntos
Animais , Óleos Voláteis/toxicidade , Aedes , Cymbopogon , Repelentes de Insetos , Inseticidas/toxicidade , Esterificação , Larva
4.
SAR QSAR Environ Res ; 33(4): 239-257, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35532305

RESUMO

Use of protective clothing is a simple and efficient way to reduce the contacts with mosquitoes and consequently the probability of transmission of diseases spread by them. This mechanical barrier can be enhanced by the application of repellents. Unfortunately the number of available repellents is limited. As a result, there is a crucial need to find new active and safer molecules repelling mosquitoes. In this context, a structure-activity relationship (SAR) model was proposed for the design of repellents active on clothing. It was computed from a dataset of 2027 chemicals for which repellent activity on clothing was measured against Aedes aegypti. Molecules were described by means of 20 molecular descriptors encoding physicochemical properties, topological information and structural features. A three-layer perceptron was used as statistical tool. An accuracy of 87% was obtained for both the training and test sets. Most of the wrong predictions can be explained. Avenues for increasing the performances of the model have been proposed.


Assuntos
Aedes , Repelentes de Insetos , Animais , Repelentes de Insetos/química , Redes Neurais de Computação , Relação Quantitativa Estrutura-Atividade
5.
Rev Soc Bras Med Trop ; 55: e03732021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35522807

RESUMO

BACKGROUND: Aedes aegypti is currently controlled with synthetic larvicides; however, mosquitoes have become highly resistant to these larvicides and difficult to eradicate. Studies have shown that insecticides derived from fungal extracts have various mechanisms of action that reduce the risk of resistance in these mosquitoes. One possible mechanism is uncontrolled production of reactive oxygen species (ROS) in the larvae, which can cause changes at the cellular level. Thus, the crude extract of Xylaria sp. was evaluated to investigate the oxidative effect of this extract in A. aegypti larvae by quantifying the oxidative damage to proteins and lipids. METHODS: The larvicidal potential of the crude extract of Xylaria sp. Was evaluated, and the extract was subsequently tested in human lung fibroblasts for cytotoxicity and ROS production. ROS level was quantified in the larvae that were killed following exposure to the extract in the larvicide test. RESULTS: The crude extract of Xylaria sp. Caused cytotoxicity and induced ROS production in human lung fibroblasts and A. aegypti larvae, respectively. In the larvicide trial, the extract showed an LC50 of 264.456 ppm and an LC90 of 364.307 ppm, and was thus considered active. The extract showed greater oxidative damage to lipids and proteins, with LC90 values of 24.7 µmol MDA/L and 14.6278 ×10-3 nmol carbonyl/ mg protein, respectively. CONCLUSIONS: Crude extracts of Xylaria sp. induced oxidative stress that may have caused the mortality of A. aegypti larvae.


Assuntos
Aedes , Anopheles , Culex , Inseticidas , Animais , Humanos , Inseticidas/toxicidade , Larva , Lipídeos , Estresse Oxidativo , Extratos Vegetais/farmacologia , Folhas de Planta , Espécies Reativas de Oxigênio/farmacologia
6.
Parasit Vectors ; 15(1): 156, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505385

RESUMO

BACKGROUND: The city of Guangzhou has been the epicenter of dengue fever in China since the 1990s, with Aedes albopictus being the primary vector. The main method used to control vectors and prevent dengue fever has been the application of chemical insecticides; however, this control strategy has resulted in the development of resistance to these insecticides in mosquitoes. Here we report our investigation of the patterns of knockdown resistance (kdr) mutations in 15 field populations of Ae. albopictus collected from 11 districts in Guangzhou. RESULTS: Four mutant alleles (V1016G, F1534S, F1534C, F1534L) were detected in domain II and III of the voltage-gated sodium channel (VGSC) gene. Various allele frequencies of kdr mutations were observed (3.1-25.9% for V1016G, 22.6-85.5% for F1534S, 0-29.0% for F1534L, 0.6-54.2% for F1534C). Seven kdr haplotypes (VF, VS, VL, VC, GF, GC, GS) were identified; the highest frequency of haplotypes was found for the single mutant haplotype VS (50.8%), followed by the wild-type VF haplotype (21.7%) and the single mutant haplotype VC (11.9%). Of the three double mutant haplotypes, GF was the most frequent (8.8%), followed by GC (1.2%) and GS (0.8%). Aedes albopictus showed spatial heterogeneity in deltamethrin resistance in populations collected in Guangzhou. We also observed significant differences in haplotype frequency. The frequency of the VC haplotype was significantly higher in high-risk dengue areas than in low-risk ones. CONCLUSIONS: The kdr allele V1016G was discovered for the first time in Guangzhou. Genetic isolation in mosquito populations and long-term insecticide selection seem to be responsible for the persistent, patchy distribution of kdr mutant alleles. The small-scale spatial heterogeneity in the distribution and frequency of kdr mutations may have important implications for vector control operations and insecticide resistance management strategies.


Assuntos
Aedes , Dengue , Inseticidas , Aedes/genética , Animais , China , Dengue/prevenção & controle , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mutação
7.
Front Public Health ; 10: 818204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530736

RESUMO

During the summers of 2017-2019, 60 human cases of Jamestown Canyon virus-associated disease were reported in the State of Wisconsin, U.S.A; by comparison, there were 28 cases in the 5 years prior. Jamestown Canyon virus (JCV, Peribunyaviridae: Orthobunyavirus) is a zoonotic, mosquito-borne virus that is endemic throughout North America. The proposed transmission cycle for JCV involves horizontal transmission by a variety of mammal-feeding mosquito species and deer hosts, and transseasonal maintenance by vertical transmission in Aedes mosquito species. Although some of the earliest work on JCV transmission and disease was done in Wisconsin (WI), little is known about the spectrum of mosquitoes that are currently involved in transmission and maintenance of JCV, which is key to inform the approach to control and prevent JCV transmission, and to understand why case numbers have increased dramatically in recent years. Therefore, we undertook an intensive surveillance effort in Sawyer and Washburn counties, WI between April and August of 2018 and 2019, in an area with a concentration of JCV human cases. Larval and adult stages of mosquitoes were surveyed using larval dippers and emergence traps, light traps, resting boxes, a Shannon-style trap, and backpack aspirator. In total, 14,949 mosquitoes were collected in 2018, and 28,056 in 2019; these specimens represent 26 species in 7 genera. Suspect vector species were tested for JCV by polymerase chain reaction (PCR); of 23 species that were tested, only Aedes provocans yielded JCV positive results. In 2018, a single pool of Ae. provocans tested positive. In 2019, with more focused early season surveillance, we detected JCV in 4 pools of adult mosquitoes, and one pool that consisted of lab-raised adults that were collected as larvae. Material from all of these PCR-positive samples also yielded infectious virus in cell culture. Overall, these data provide new insight into the seasonality and habitat preferences for 26 mosquito species in Northern WI, which will be useful to inform future surveillance efforts for JCV. The results underscore the importance of Ae. provocans as a vector species involved in transseasonal maintenance of JCV in this region.


Assuntos
Aedes , Cervos , Vírus da Encefalite da Califórnia , Adulto , Animais , Surtos de Doenças , Humanos , Mosquitos Vetores , Wisconsin/epidemiologia
8.
PLoS One ; 17(5): e0265760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35499983

RESUMO

BACKGROUND: The recent increase in dengue virus (DENV) outbreaks and the absence of an effective vaccine have highlighted the importance of developing rapid and effective diagnostic surveillance tests and mosquito-based screening programs. To establish effective control measures for preventing future DENV transmission, the present study was established to identify the main mosquito vector involved in the dengue fever (DF) outbreak in Upper Egypt in 2016 and detect the diversity of dengue virus serotypes circulating in both humans and vectors. METHODS: We investigated the prevalence of DENV infection and circulating serotypes in the sera of 51 humans clinically suspected of DF and 1800 field-collected Aedes aegypti adult female mosquitoes grouped into 36 pooled samples. Both DENV non-structural protein (NS1) immunochromatographic strip assay and loop-mediated isothermal amplification (LAMP) were used for screening. RESULTS: Overall, the rate of DENV infection in both human sera and pooled mosquito homogenate was 33.3%, as revealed by rapid dipstick immunochromatographic analysis. However, higher detection rates were observed with RT-LAMP assay of 60.8% and 44.4% for humans and vector mosquitoes, respectively. DENV-1 was the most prevalent serotype in both populations. A combination of two, three, or even four circulating serotypes was found in 87.5% of total positive pooled mosquito samples and 83.87% of DENV-positive human sera. CONCLUSION: The study reinforces the evidence of the reemergence of Aedes aegypti in Upper Egypt, inducing an outbreak of DENV. Mosquito-based surveillance of DENV infection is important to elucidate the viral activity rate and define serotype diversity to understand the virus dynamics in the reinfested area. Up to our knowledge, this is the first report of serotyping of DENV infection in an outbreak in Egypt using RT-LAMP assay.


Assuntos
Aedes , Vírus da Dengue , Dengue , Adulto , Animais , Dengue/diagnóstico , Dengue/epidemiologia , Egito/epidemiologia , Feminino , Variação Genética , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico
9.
Parasit Vectors ; 15(1): 160, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526068

RESUMO

BACKGROUND: Different trapping devices and attractants are used in the mosquito surveillance programs currently running in Europe. Most of these devices target vector species belonging to the genera Culex or Aedes, and no studies have yet evaluated the effectiveness of different trapping devices for the specific targeting of Anopheles mosquito species, which are potential vectors of malaria in Europe. This study aims to fill this gap in knowledge by comparing the performance of trapping methods that are commonly used in European mosquito surveillance programs for Culex and Aedes for the specific collection of adults of species of the Anopheles maculipennis complex. METHODS: The following combinations of traps and attractants were used: (i) BG-Sentinel 2 (BG trap) baited with a BG-Lure cartridge (BG + lure), (ii) BG trap baited with a BG-Lure cartridge and CO2 (BG + lure + CO2), (iii) Centers for Disease Control and Prevention-like trap (CDC trap) baited with CO2 (CDC + CO2), (iv) CDC trap used with light and baited with BG-Lure and CO2 (CDC light + lure + CO2). These combinations were compared in the field using a 4 × 4 Latin square study design. The trial was conducted in two sites in northeastern Italy in 2019. Anopheles species were identified morphologically and a sub-sample of An. maculipennis complex specimens were identified to species level by molecular analysis. RESULTS: Forty-eight collections were performed on 12 different trapping days at each site, and a total of 1721 An. maculipennis complex specimens were captured. The molecular analysis of a sub-sample comprising 254 specimens identified both Anopheles messeae/Anopheles daciae (n = 103) and Anopheles maculipennis sensu stricto (n = 8) at site 1, while at site 2 only An. messeae/An. daciae (n = 143) was found. The four trapping devices differed with respect to the number of An. messeae/An. daciae captured. More mosquitoes were caught by the BG trap when it was used with additional lures (i.e. BG + lure + CO2) than without the attractant, CO2 [ratioBG+lure vs BG+lure+CO2 = 0.206, 95% confidence interval (CI) 0.101-0.420, P < 0.0001], while no significant differences were observed between CDC + CO2 and CDC light + lure + CO2 (P = 0.321). The addition of CO2 to BG + lure increased the ability of this combination to capture An. messeae/An. daciae by a factor of 4.85, and it also trapped more mosquitoes of other, non-target species (Culex pipiens, ratioBG+lure vs BG+lure+CO2 = 0.119, 95% CI 0.056-0.250, P < 0.0001; Ochlerotatus caspius, ratioBG+lure vs BG+lure+CO2 = 0.035, 95% CI 0.015-0.080, P < 0.0001). CONCLUSIONS: Our results show that both the BG-Sentinel and CDC trap can be used to effectively sample An. messeae/An. daciae, but that the combination of the BG-Sentinel trap with the BG-Lure and CO2 was the most effective means of achieving this. BG + lure + CO2 is considered the best combination for the routine monitoring of host-seeking An. maculipennis complex species such as An. messeae/An. daciae. The BG-Sentinel and CDC traps have value as alternative methods to human landing catches and manual aspiration for the standardized monitoring of Anopheles species in Europe.


Assuntos
Aedes , Anopheles , Culex , Malária , Animais , Dióxido de Carbono , Centers for Disease Control and Prevention, U.S. , Europa (Continente) , Humanos , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores , Estados Unidos
10.
J Insect Sci ; 22(3)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35526103

RESUMO

The control of mosquito populations using insecticides is increasingly threatened by the spread of resistance mechanisms. Dieldrin resistance, conferred by point mutations in the Rdl gene encoding the γ-aminobutyric acid receptor, has been reported at high prevalence in mosquito populations in response to selective pressures. In this study, we monitored spatio-temporal dynamics of the resistance-conferring RdlR allele in Aedes (Stegomyia) albopictus (Skuse, 1895) and Culex (Culex) quinquefasciatus (Say, 1823) populations from Reunion Island. Specimens of both mosquito species were sampled over a 12-month period in three cities and in sites located at lower (<61 m) and higher (between 503 and 564 m) altitudes. Mosquitoes were genotyped using a molecular test detecting the alanine to serine substitution (A302S) in the Rdl gene. Overall, the RdlR frequencies were higher in Cx. quinquefasciatus than Ae. albopictus. For both mosquito species, the RdlR frequencies were significantly influenced by location and altitude with higher RdlR frequencies in the most urbanized areas and at lower altitudes. This study highlights environmental factors that influence the dynamics of insecticide resistance genes, which is critical for the management of insecticide resistance and the implementation of alternative and efficient vector control strategies.


Assuntos
Aedes , Culex , Inseticidas , Aedes/fisiologia , Animais , Culex/genética , Dieldrin , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Reunião
11.
Recurso na Internet em Português | LIS - Localizador de Informação em Saúde | ID: lis-48768

RESUMO

O Ministério da Saúde adotará as Estações Disseminadoras de Larvicida (EDLs), fruto de pesquisa desenvolvida pelo Instituto Leônidas & Maria Deane (ILMD/Fiocruz Amazônia), como diretriz da Coordenação-Geral de Vigilância de Arboviroses (CGARB/SVS/MS).


Assuntos
Aedes , Tecnologia Biomédica/métodos
12.
PLoS Comput Biol ; 18(4): e1009979, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35363786

RESUMO

As the most widespread viral infection transmitted by the Aedes mosquitoes, dengue has been estimated to cause 51 million febrile disease cases globally each year. Although sustained vector control remains key to reducing the burden of dengue, current understanding of the key factors that explain the observed variation in the short- and long-term vector control effectiveness across different transmission settings remains limited. We used a detailed individual-based model to simulate dengue transmission with and without sustained vector control over a 30-year time frame, under different transmission scenarios. Vector control effectiveness was derived for different time windows within the 30-year intervention period. We then used the extreme gradient boosting algorithm to predict the effectiveness of vector control given the simulation parameters, and the resulting machine learning model was interpreted using Shapley Additive Explanations. According to our simulation outputs, dengue transmission would be nearly eliminated during the early stage of sustained and intensive vector control, but over time incidence would gradually bounce back to the pre-intervention level unless the intervention is implemented at a very high level of intensity. The time point at which intervention ceases to be effective is strongly influenced not only by the intensity of vector control, but also by the pre-intervention transmission intensity and the individual-level heterogeneity in biting risk. Moreover, the impact of many transmission model parameters on the intervention effectiveness is shown to be modified by the intensity of vector control, as well as to vary over time. Our study has identified some of the critical drivers for the difference in the time-varying effectiveness of sustained vector control across different dengue endemic settings, and the insights obtained will be useful to inform future model-based studies that seek to predict the impact of dengue vector control in their local contexts.


Assuntos
Aedes , Dengue , Animais , Simulação por Computador , Dengue/epidemiologia , Dengue/prevenção & controle , Incidência , Mosquitos Vetores
13.
Microbiome ; 10(1): 58, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410630

RESUMO

BACKGROUND: Mosquitoes harbor microbial communities that play important roles in their growth, survival, reproduction, and ability to transmit human pathogens. Microbiome transplantation approaches are often used to study host-microbe interactions and identify microbial taxa and assemblages associated with health or disease. However, no such approaches have been developed to manipulate the microbiota of mosquitoes. RESULTS: Here, we developed an approach to transfer entire microbial communities between mosquito cohorts. We undertook transfers between (Culex quinquefasciatus to Aedes aegypti) and within (Ae. aegypti to Ae. aegypti) species to validate the approach and determine the number of mosquitoes required to prepare donor microbiota. After the transfer, we monitored mosquito development and microbiota dynamics throughout the life cycle. Typical holometabolous lifestyle-related microbiota structures were observed, with higher dynamics of microbial structures in larval stages, including the larval water, and less diversity in adults. Microbiota diversity in recipient adults was also more similar to the microbiota diversity in donor adults. CONCLUSIONS: This study provides the first evidence for successful microbiome transplantation in mosquitoes. Our results highlight the value of such methods for studying mosquito-microbe interactions and lay the foundation for future studies to elucidate the factors underlying microbiota acquisition, assembly, and function in mosquitoes under controlled conditions. Video Abstract.


Assuntos
Aedes , Culex , Microbiota , Animais , Humanos , Larva , Mosquitos Vetores
14.
PLoS One ; 17(4): e0266128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35363810

RESUMO

The susceptibility of Asian tiger mosquitoes to DENV-2 in different seasons was observed in simulated field environments as a reference to design dengue fever control strategies in Guangzhou. The life table experiments of mosquitoes in four seasons were carried out in the field. The susceptibility of Ae. albopictus to dengue virus was observed in both environments in Guangzhou in summer and winter. Ae. albopictus was infected with dengue virus by oral feeding. On day 7 and 14 after infection, the viral load in the head, ovary, and midgut of the mosquito was detected using real-time fluorescent quantitative PCR. Immune-associated gene expression in infected mosquitoes was performed using quantitative real-time reverse transcriptase PCR. The hatching rate and pupation rate of Ae. albopictus larvae in different seasons differed significantly. The winter hatching rate of larvae was lower than that in summer, and the incubation time was longer than in summer. In the winter field environment, Ae. albopictus still underwent basic growth and development processes. Mosquitoes in the simulated field environment were more susceptible to DENV-2 than those in the simulated laboratory environment. In the midgut, viral RNA levels on day 7 in summer were higher than those on day 7 in winter (F = 14.459, P = 0.01); ovarian viral RNA levels on day 7 in summer were higher than those on day 7 in winter (F = 8.656, P < 0.001), but there was no significant difference in the viral load at other time points (P > 0.05). Dicer-2 mRNA expression on day 7 in winter was 4.071 times than that on day 7 in summer: the viral load and Dicer-2 expression correlated moderately. Ae. albopictus could still develop and transmit dengue virus in winter in Guangzhou. Mosquitoes under simulated field conditions were more susceptible to DENV-2 than those under simulated laboratory conditions.


Assuntos
Aedes , Vírus da Dengue , Dengue , Animais , Mudança Climática , Feminino , Mosquitos Vetores , RNA Viral , Estações do Ano
15.
PLoS One ; 17(4): e0265244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35377897

RESUMO

BACKGROUND: The Sterile Insect Technique (SIT) is presently being tested to control dengue in several countries. SIT aims to cause the decline of the target insect population through the release of a sufficient number of sterilized male insects. This induces sterility in the female population, as females that mate with sterilized males produce no offspring. Male insects are sterilized through the use of ionizing irradiation. This study aimed to evaluate variable parameters that may affect irradiation in mosquito pupae. METHODS: An Ae. aegypti colony was maintained under standard laboratory conditions. Male and female Ae. aegypti pupae were separated using a Fay and Morlan glass sorter and exposed to different doses of gamma radiation (40, 50, 60, 70 and 80 Gy) using a Co60 source. The effects of radiation on survival, flight ability and the reproductive capacity of Ae. aegypti were evaluated under laboratory conditions. In addition, mating competitiveness was evaluated for irradiated male Ae. aegypti mosquitoes to be used for future SIT programmes in Sri Lanka. RESULTS: Survival of irradiated pupae was reduced by irradiation in a dose-dependent manner but it was invariably greater than 90% in control, 40, 50, 60, 70 Gy in both male and female Ae. aegypti. Irradiation didn't show any significant adverse effects on flight ability of male and female mosquitoes, which consistently exceeded 90%. A similar number of eggs per female was observed between the non-irradiated groups and the irradiated groups for both irradiated males and females. Egg hatch rates were significantly lower when an irradiation dose above 50 Gy was used as compared to 40 Gy in both males and females. Irradiation at higher doses significantly reduced male and female survival when compared to the non-irradiated Ae. aegypti mosquitoes. Competitiveness index (C) scores of sterile and non-sterile males compared with non-irradiated male mosquitoes under laboratory and semi-field conditions were 0.56 and 0.51 respectively at 50 Gy. SIGNIFICATION: Based on the results obtained from the current study, a 50 Gy dose was selected as the optimal radiation dose for the production of sterile Ae. aegypti males for future SIT-based dengue control programmes aiming at the suppression of Ae. aegypti populations in Sri Lanka.


Assuntos
Aedes , Dengue , Infertilidade Masculina , Aedes/efeitos da radiação , Animais , Dengue/prevenção & controle , Feminino , Insetos , Masculino , Controle de Mosquitos/métodos , Pupa/efeitos da radiação , Radiação Ionizante , Sri Lanka
16.
PLoS Negl Trop Dis ; 16(4): e0010245, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35417446

RESUMO

BACKGROUND: Aedes albopictus originated in the tropical forests of Southeast Asia and can currently be found on all continents. As one of the main arboviral vectors, the control of Ae. albopictus requires novel strategies, informed by a deep knowledge of its biology. Little is known regarding mosquito long noncoding RNAs (lncRNAs), which are transcripts longer than 200 nucleotides that lack protein-coding potential and have roles in developmental regulation. RESULTS: Based on RNA-seq data from five developmental time points, eggs, early larvae, late larvae, pupae, and adults (female and male) of Ae. albopictus, 21,414 lncRNAs were characterized in this study. Differential expression analysis revealed that lncRNAs exhibited developmental stage specificity. The expression of most lncRNAs was upregulated at the onset of metamorphosis developmental stages. More differentially expressed lncRNAs were observed between eggs and early larvae. Weighted gene co-expression network analysis (WGCNA) further confirmed that the expression patterns of lncRNAs were obviously correlated with specific developmental time points. Functional annotation using co-expression analysis revealed that lncRNAs may be involved in the regulation of metamorphic developmental transitions of Ae. albopictus. The hub lncRNAs and hub gene clusters were identified for each module that were highly associated with specific developmental time points. CONCLUSIONS: The results of this study will facilitate future researches to elucidate the regulatory mechanisms of lncRNAs in the development of Ae. albopictus and utilize lncRNAs to assist with mosquito control.


Assuntos
Aedes , RNA Longo não Codificante , Animais , Feminino , Larva , Masculino , Mosquitos Vetores/genética , Pupa/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
17.
Parasit Vectors ; 15(1): 122, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387654

RESUMO

BACKGROUND: Improved understanding of the molecular basis of insecticide resistance may yield new opportunities for control of relevant disease vectors. In this current study, we investigated the quantification responses for the phenotypic and genotypic resistance of Aedes aegypti populations from different states in Malaysia. METHODS: We tested the insecticide susceptibility status of adult Ae. aegypti from populations of three states, Penang, Selangor and Kelantan (Peninsular Malaysia), against 0.25% permethrin and 0.25% pirimiphos-methyl using the World Health Organisation (WHO) adult bioassay method. Permethrin-resistant and -susceptible samples were then genotyped for domains II and III in the voltage-gated sodium channel (vgsc) gene using allele-specific polymerase chain reaction (AS-PCR) for the presence of any diagnostic single-nucleotide mutations. To validate AS-PCR results and to identify any possible additional point mutations, these two domains were sequenced. RESULTS: The bioassays revealed that populations of Ae. aegypti from these three states were highly resistant towards 0.25% permethrin and 0.25% pirimiphos-methyl. Genotyping results showed that three knockdown (kdr) mutations (S989P, V1016G and F1534C) were associated with pyrethroid resistance within these populations. The presence of a novel mutation, the A1007G mutation, was also detected. CONCLUSIONS: This study revealed the high resistance level of Malaysian populations of Ae. aegypti to currently used insecticides. The resistance could be due to the widespread presence of four kdr mutations in the field and this could potentially impact the vector control programmes in Malaysia and alternative solutions should be sought.


Assuntos
Aedes , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Aedes/genética , Animais , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malásia , Mosquitos Vetores/genética , Mutação , Permetrina/farmacologia , Mutação Puntual , Piretrinas/farmacologia , Canais de Sódio Disparados por Voltagem/genética
18.
Parasit Vectors ; 15(1): 133, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440010

RESUMO

BACKGROUND: Mosquito control is currently the main tool available to contain the spread of several arboviruses in Brazil. We have evaluated the association between entomological surveys of female adult Aedes aegypti and the Breteau index (BI) in space and time in a hyperendemic area, and compared the human resources costs required to measure each of these indicators. METHODS: Entomological surveys were conducted between 2016 and 2019 in Vila Toninho, a neighborhood in the city of São José do Rio Preto, Brazil. Monthly records of collected mosquito specimens were made and then grouped by season. RESULTS: Our findings showed that adult and immature mosquitoes are more related in time than in space, possibly due to differences in their habitats or in climate variables. Bayesian temporal modeling revealed that an increase in 1 standard deviation in the BI was associated with a 27% increase in the number of adult female mosquitoes when adjusted for climatic conditions. The cost of entomological surveys of adult mosquitoes was found to be 83% lower than the cost of determining the BI when covering the same geographic area. CONCLUSIONS: For fine-scale assessments, a simple measure of adult Ae. aegypti abundance may be more realistic than aquatic indicators, but the adult indices are not necessarily the only reliable measure. Surveying adult female mosquitoes has significant potential for optimizing vector control strategies because, unlike the BI, this tool provides an effective indicator for micro-areas within an urban region. It should be noted that the results of the present study may be due to specific features of of the study area, and future studies should analyze whether the patterns found in the study neighborhood are also found in other regions.


Assuntos
Aedes , Arbovírus , Dengue , Adulto , Animais , Teorema de Bayes , Feminino , Humanos , Controle de Mosquitos/métodos , Mosquitos Vetores
19.
Parasit Vectors ; 15(1): 137, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449113

RESUMO

BACKGROUND: The primary disease vectors for dengue virus (DENV) transmission between humans are the mosquitoes Aedes aegypti and Aedes albopictus, with Ae. aegypti population size strongly correlated with DENV outbreaks. When a mosquito is infected with DENV, the virus migrates from the midgut to the salivary glands to complete the transmission cycle. How the virus crosses the hemocoel, resulting in systemic infection, is still unclear however. During viral infection and migration, the innate immune system is activated in defense. As part of cellular-mediated immunity, hemocytes are known to defend against bacteria and Plasmodium infection and may also participate in defending against DENV infection. Hemocytes are categorized into three cell types: prohemocytes, granulocytes, and oenocytoids. Here, we investigated which hemocytes can be infected by DENV and compare hemocyte infection between Ae. aegypti and Ae. albopictus. METHODS: Hemocytes were collected from Ae. aegypti and Ae. albopictus mosquitoes that were intrathoracically infected with DENV2-GFP. The collected hemocytes were then identified via Giemsa staining and examined microscopically for morphological differences and viral infection. RESULTS: All three types of hemocytes were infected by DENV, though the predominantly infected cell type was prohemocytes. In Ae. aegypti, the highest and lowest infection rates at 7 days post infection occurred in prohemocytes and granulocytes, respectively. Prohemocytes were also the primary infection target of DENV in Ae. albopictus, with similar infection rates across the other two hemocyte groups. The ratios of hemocyte composition did not differ significantly between non-infected and infected mosquitoes for either species. CONCLUSIONS: In this study, we showed that prohemocytes were the major type of hemocyte infected by DENV in both Ae. aegypti and Ae. albopictus. The infection rate of prohemocytes in Ae. albopictus was lower than that in Ae. aegypti, which may explain why systemic DENV infection in Ae. albopictus is less efficient than in Ae. aegypti and why Ae. albopictus is less correlated to dengue fever outbreaks. Future work in understanding the mechanisms behind these phenomena may help reduce arbovirus infection prevalence.


Assuntos
Aedes , Vírus da Dengue , Dengue , Animais , Humanos , Mosquitos Vetores , Glândulas Salivares
20.
Sci Rep ; 12(1): 6550, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449179

RESUMO

Dengue is recognized as a health problem that causes significant socioeconomic impacts throughout the world, affecting millions of people each year. A commonly used method for monitoring the dengue vector is to count the eggs that Aedes aegypti mosquitoes have laid in spatially distributed ovitraps. Given this approach, the present study uses a database collected from 397 ovitraps allocated across the city of Natal, RN-Brazil. The Egg Density Index for each neighborhood was computed weekly, over four complete years (from 2016 to 2019), and simultaneously analyzed with the dengue case incidence. Our results illustrate that the incidence of dengue is related to the socioeconomic level of the neighborhoods in the city of Natal. A deep learning algorithm was used to predict future dengue case incidence, either based on the previous weeks of dengue incidence or the number of eggs present in the ovitraps. The analysis reveals that ovitrap data allows earlier prediction (four to six weeks) compared to dengue incidence itself (one week). Therefore, the results validate that the quantification of Aedes aegypti eggs can be valuable for the early planning of public health interventions.


Assuntos
Aedes , Dengue , Animais , Inteligência Artificial , Brasil/epidemiologia , Dengue/epidemiologia , Humanos , Mosquitos Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...