Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162.317
Filtrar
1.
Sci Total Environ ; 803: 149912, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482134

RESUMO

Agricultural runoff is the main source of water pollution in Central Asia. Excessive nitrogen (N) inputs from overuse of chemical fertilizers are threatening regional water resources. However, the scarcity of quantitative data and simplified empirical models limit the reliability of grey water footprint (GWF), particularly in undeveloped regions. In this study, we developed an Integrated Excess Nitrogen Load Model (IENLM) to calculate excess N load and evaluate its potential water environmental pressure in Central Asia. The model optimized the biological N fixation and atmospheric N deposition modules by involving more environmental variables and human activities. Results showed that N fertilizer application contributed over 60% to total N input and was mainly responsible for 42.9% increase of total GWF from 101.5 to 145.0 billion m3 during 1992 - 2018. Water pollution level (WPL) increased from 0.55 in 1992 to 2.41 in 2018 and the pollution assimilation capacity of water systems has been fully consumed just by N load from agriculture since 2005. GWF intensity and grey water pollution - efficiency types in all Central Asian countries have improved in recent years except for Turkmenistan. N fertilizer application and agricultural economy development were the main driving factors induced N pollution. Results were validated by riverine nitrate concentrations and the estimates from prior studies. In future, combining the N fertilizer reduction with other farm management practices were projected to effectively improve the WPL. The modeling framework is favorable for N pollution research in data-scarce regions and provides a scientific basis for decision-making for agriculture and water resource managements.


Assuntos
Nitrogênio , Água , Agricultura , Humanos , Nitrogênio/análise , Reprodutibilidade dos Testes , Poluição da Água
2.
Sci Total Environ ; 803: 149948, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482136

RESUMO

The temperate steppe in northern China is important for sandstorm control and food/livestock production. Understanding the influence and regulatory control of cultivation on the water balance and water use efficiency (WUE) of this water-limited region would promote the sustainability of local ecosystem and food supply. This study combined eddy covariance system observational data and the Shuttleworth-Wallace model to investigate evapotranspiration (ET) and its composition in paired sites, including a free-grazing steppe site and an adjacent site reclaimed for spring wheat cultivation in Xilinhot, Inner Mongolia. Further, analysis of the WUE of both the ecosystem (WUEE) and the canopy (WUEC) under the two sites showed that the mean daily gross primary productivity (GPP) of the cultivation site was 3.84 gC·m-2·d-1, i.e., 15.7% higher than that of the free-grazing site (3.32 gC·m-2·d-1). Compared with the free-grazing site (1.76 kgH2O·m-2·d-1), the mean daily ET of the cultivation site (1.40 kgH2O·m-2·d-1) was reduced by 20.7%. The difference in ET was due mainly to suppression of evaporation at the cultivation site from increased shading associated with a higher leaf area index (LAI). The largely increased GPP of the cultivation site fundamentally contributed to the 54.7% higher WUEC (4.75 gC·kg-1H2O) in comparison with the free-grazing site (3.08 gC·kg-1H2O). The WUEE of the cultivation site was 57.9% higher than that of the free-grazing site. The variation of transpiration of the free-grazing site explained 64% of the change of WUEC. These results indicate that land use differences in the temperate steppe area changed vegetation productivity substantially. Moreover, ecosystem ET and its composition, as well as large-scale land use change, might influence the regional water use pattern and mass balance. Our findings help clarify the impact of typical land use change on regional WUE, and could promote development of visionary and effective strategies for the use of the limited resources in arid-semiarid regions.


Assuntos
Ecossistema , Triticum , China , Clima Desértico , Pradaria , Estações do Ano , Água
3.
Sci Total Environ ; 803: 150003, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492487

RESUMO

Enrichment of ionic poly/perfluoroalkyl substances (PFASs) in aqueous aerosol (AA) is an important pathway for them to enter atmosphere. In this study, the enrichment behaviors of 12 legacy and emerging PFASs in AA in both single solute and mixed solutions were investigated. The enrichment factors (EF) displayed a general increasing trend with the fluorinated carbon chain length. For the first time, a robust Quantitative Structure-Property Relationship (QSPR) model coupled with partial least-square method was established with fifteen quantum chemical descriptors. Four molecular descriptors, including dipole moment (µ), molecular weight (MW), the maximal value of the molecular surface potential (Vs, max) and molecular volume (V) were identified as the key structural variables affecting the PFASs enrichment. Inorganic salts and humic acid (HA) which are common in seawater, facilitated the PFASs enrichment as a result of enhanced hydrophobicity and the bridging effect caused by divalent cations. The typical cationic and anionic surfactants, cetyltrimethylammonium bromide and sodium dodecyl sulfate, both inhibited the enrichment due to the competition between PFASs and surfactants. It is interesting that 6:2 chlorinated polyfluorinated ether sulfonate (F53B) had the highest EF among the 12 PFASs, implying its strong potential of atmosphere transport.


Assuntos
Ácidos Alcanossulfônicos , Fluorcarbonetos , Poluentes Químicos da Água , Aerossóis , Fluorcarbonetos/análise , Estrutura Molecular , Água , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 803: 149810, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492489

RESUMO

Two-way feedbacks exist between water-stressed vegetation and agricultural drought. Previous studies have focused mainly on the responses of vegetation to agricultural droughts but rarely on those of agricultural droughts to vegetation. Based on a new drought index (AgDI) that incorporates dynamic climatic and vegetation information, this study evaluated the impacts of climate and vegetation variabilities on agricultural droughts in 20 catchments in southwestern China, a region frequently hit by droughts. Results showed that the drought-stressed vegetation tended to alleviate agricultural droughts, and the drought-alleviating ability of vegetation was affected by vegetation types and the magnitudes of the changes in climate. Compared to other types of vegetation, the natural forest generally has a greater ability to affect agricultural drought. Overall, the relative contribution (mean of 29.9 ± 24.6%) of changes in vegetation to agricultural drought was at least comparable to those of the changes in potential evapotranspiration (mean of 14.4 ± 12.7%). Results also showed that even though vegetation has the ability to alleviate agricultural droughts, the changes in agricultural droughts were still dominated by climate changes, especially precipitation (mean relative contribution of 55.7 ± 24.2%).


Assuntos
Secas , Florestas , Agricultura , Mudança Climática , Água
5.
Sci Total Environ ; 803: 149874, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492491

RESUMO

The treatment of sewage sludge (SS) is an environmental problem worldwide. In recent years, hydrothermal carbonization (HTC) of SS for hydrochar (HC) has attracted extensive attention. This study preliminarily explored the microwave-assisted HTC of SS for the first time. Increasing the reaction temperature (150-250 °C) and reaction time (0-120 min) resulted in a decrease in the HC yield, and it gradually increased with the rising solid-liquid ratio (0.03-0.25 g/mL). Compared with raw SS, the HC products possessed higher aromaticity, carbonization degree, porosity, and polarity, and lower content of soluble nutrients (N/P/K) and leachable heavy metals (Cu, Zn, Pb, Cd, Cr, and Ni), indicating a lower risk of nutrient and heavy metal loss. Attention should be paid to the total contents of Zn and Cd in HC exceeded the permitted value for use in cultivated land with edible crops. The use of CaO as a catalyst improved the yield of HC, made the HC and process water (PW) weakly alkaline, and further passivated the heavy metals in the HC. In the case of H3PO4, although the conversion of SS was enhanced (lower content of volatile organic matter in HC), the contents of soluble nutrients (N/P/K) in HC/PW increased, and the migration of Zn and Cd into process water was enhanced. The HCs obtained in this study had poor combustion properties, but higher ignition temperatures than raw SS. PW must be properly treated or recycled because it still contained high contents of organic matter and nutrients. This fundamental study provides basic insights into the microwave-assisted HTC of SS.


Assuntos
Metais Pesados , Esgotos , Carbono , Micro-Ondas , Temperatura , Água
6.
Sci Total Environ ; 803: 149963, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34496343

RESUMO

This research develops a bottom-up procedure to assess the potential of food-energy-water (FEW) systems on the rooftops of buildings in an urban district in Spain considering the urban morphology of the built environment and obtains accurate assessments of production and developmental patterns. A multicriteria decision-making technique implemented in a geographical information system (GIS) environment was used to extract suitable rooftop areas. To implement this method, the slope (tilt), aspect (azimuth), shading, and solar radiation of the rooftops were calculated using LiDAR (Light Detection and Ranging) data and building footprints. The potential of FEW system implementation was analysed at the building and morphology levels. The results showed several differences between residential and non-residential urban morphologies. Industrial areas contained the highest productivity for FEW systems. The production was 2.51 kg of tomatoes/m2, 48 kWh of photovoltaic energy/m2, and 0.16 l of rainwater/m2. Regarding the residential urban morphologies, the more compact tents resulted in better performance. Among the FEW systems, although water could best benefit from the features of the entire roof surface, the best production results were achieved by energy. The food system is less efficient in the built environment since it requires flat roofs. The methodology presented can be applied in any city, and it is considered optimal in the European context for the development of self-production strategies for urban environments.


Assuntos
Sistemas de Informação Geográfica , Água , Cidades , Espanha
7.
Sci Total Environ ; 803: 150084, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500274

RESUMO

Currently, the environmental and ecological damage caused by As(V) and Sb(V) co-contamination has attracted widespread attention worldwide. Due to the similar intrinsic structure configuration and electrostatic repulsion of As(V) and Sb(V), the long-standing issue of their low co-removal capacity remains unresolved. In this study, novel Fe-Cu (FC) binary materials with varied Fe/Cu proportions were synthesized via a simple co-precipitation method to co-eliminate aquatic As(V) and Sb(V). A 2/1 ratio of Fe/Cu was determined to be a suitable proportion with a higher co-adsorption capacity, specifically 70.9 mg·g-1 for As(V) and 94.3 mg·g-1 for Sb(V). Detailed morphological and structural analyses indicated that the FC material gradually changed from microscale aggregates to nanoscale spheres with increasing Cu content, accompanied by an increasing crystalline degree and higher surface area. Additionally, the transformation of amorphous ferrihydrite (FO) into FeO(OH) was suppressed by Fe-Cu complexion during the co-adsorption process, in which ferrihydrite (FO) had more adsorption sites than FeO(OH). In addition, the addition of Cu promoted the pHpzc of FC materials from the acidic range into the neutral or alkaline range. The increased potential difference of FC materials accelerated the As(V) and Sb(V) diffusion rate and effectively offset native electrostatic repulsion, which exhibited a considerable effect than the adsorption sites. Through detailed kinetic data analysis, it was determined that the proportion of the diffusion layer thickness around Sb(V) was suppressed to the As(V) level, and the adsorption kinetics of the two species were both promoted by the self-driven force field. All the results indicated that the co-adsorption capacity depended on the coupling contribution of Fe and Cu, where Fe oxide acted as the major adsorption potential and Cu provided a self-driven force for As(V) and Sb(V) diffusion. This study may provide a novel prospective for homogeneous metal ion co-removal.


Assuntos
Óxidos , Poluentes Químicos da Água , Adsorção , Antimônio , Cobre , Concentração de Íons de Hidrogênio , Estudos Prospectivos , Água
8.
Sci Total Environ ; 803: 150087, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500276

RESUMO

We reported a new strategy for efficient phosphate removal from wastewaters, it relies on the discarded Artemia Cyst-shell in-situ growth of Al(OH)3 nanocluster, the charged amino-acids components of skeleton make available for the small size of Al(OH)3 formation (< 10 nm) with high activity, and the three-dimensional porous structure of discarded matrix provides fast kinetics and efficient Al(OH)3 nanoparticles utilization. These hybrid adsorbents exhibit ultrahigh capacity (850.5 mg/g) and fast kinetics (~2 min) by recent ten-years (2011-2020) survey, the superior selectivity against various foreign ions, with a distribution coefficient (Kd) as high as 4820 mL/g, the porous structure and fast kinetics also accelerate the phosphate accessibility, yielding a satisfactory capacity of ~3000 L/kg sorbent (Artemia CS-Al) for the application, even varying at high feeding-speeds. The saturated adsorbent can be readily regenerated and reused without decrease in performance, this technology is promising for mitigating the contamination problem of excess phosphate worldwide.


Assuntos
Cistos , Nanopartículas , Poluentes Químicos da Água , Adsorção , Animais , Artemia , Fosfatos , Água , Poluentes Químicos da Água/análise
9.
Food Chem ; 370: 131029, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34500292

RESUMO

The effect of pH on the microstructure and properties of the soy hull polysaccharide interfacial layer was determined. The particle size at pH 2.0 was the largest (36.7 µm), whereas the absolute ζ-potential was the smallest. The protein content was the lowest at pH 2.0 and 9.0 and peaked around pH 4.0-5.0 (77.7%). The ordered secondary protein structure content under low pH conditions was greater than that under high pH conditions and the stability of the interfacial layer was higher at high pH, whereas the emulsion viscosity decreased by two orders of magnitude between pH 2.0 and 9.0. It appears that low pH reduced the thermal stability and increased the apparent viscosity of the emulsion by increasing the structural order of the protein in the interfacial layer. These findings lay the foundation for future work to reveal the key components and characteristic structures of soy hull polysaccharide that affect interfacial stability.


Assuntos
Polissacarídeos , Água , Emulsões , Concentração de Íons de Hidrogênio , Tamanho da Partícula
10.
J Colloid Interface Sci ; 607(Pt 1): 153-162, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34506997

RESUMO

HYPOTHESIS: Polarity in polyelectrolyte multilayers (PEMs) may vary from the inner to the top layers of the film as the charge compensation of the layers is more effective inside the PEMs than in outer layers. Doxorubicin hydrochloride (DX) is used here to sense polarity at the single polyelectrolyte level inside PEMS. EXPERIMENTAL: DX is complexed electrostatically to a polyanion, either polystyrene sulfonate (PSS) or polyacrylic acid (PAA) and assembled at selected positions in a multilayer of the polyanion and polyallylamine hydrochloride (PAH) as polycation. Local polarity in the layer domain is evaluated through changes in the intensity ratio of the first to second band of spectra of DX (I1/I2 ratio) by steady state fluorescence, and by Lifetime fluorescence. FINDINGS: PAH/PSS multilayers, show a polarity similar to water with DX/PSS as top layer, decreasing to I1/I2 ratios similar to organic solvents as the number of polyelectrolyte layers assembled on top increases. For PAH/PAA multilayers, polarity values reflect a more polar environment than water when DX/PAA is the top layer, remaining unaltered by the assembly of polyelectrolyte layers on top. Results show that different polar environments may be present in a PEM when considering polarity at the single layer level.


Assuntos
Doxorrubicina , Água , Fluorescência , Fenômenos Físicos , Polieletrólitos
11.
J Colloid Interface Sci ; 607(Pt 1): 163-170, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34506998

RESUMO

HYPOTHESIS: Dynamic imine surfactants (DIS) can be constructed by the formation of dynamic imine bonds (Dibs) between aromatic aldehydes and aliphatic amines in water. Because of the nature of Dibs in water, a thermodynamic equilibrium state was achieved between the DIS and aldehyde and amine precursors to form a dynamic combinatorial library (DCL). When the DIS served as sole emulsifier to form oil-H2O emulsions, the precursors migrated between the H2O phase and the oil phase, which altered the DCL equilibrium. The DIS concentration and emulsion stability also changed. EXPERIMENTS: By mixing 4-(2-sulfobetaine-ethoxy)-benzaldehyde (SBBA) and aliphatic amines of CnH2n+1NH2 (n = 4, BA; n = 6, HA; n = 8, OA; n = 10, DA) in water, four amphoteric DIS (SBBA-BA/HA/OA/DA) were prepared. Dib formation was characterized using 1H NMR. The DIS surface activity was studied by surface tension and fluorescence probe methods. The reversible switching of DIS and its wormlike micelles were explored. FINDINGS: SBBA-OA (or SBBA-DA) DIS was not a suitable emulsifier for stable hydrocarbon (HC)-H2O emulsions. OA and DA were more soluble in the HC phase than the H2O phase. The precursors of OA and DA migrated from the H2O to the HC phase, and the thermodynamic equilibrium state of DCL shifted towards Dib dissociation. The Dib could be regenerated by HC phase removal. A novel strategy where volatile HC (such as pentane) was used as a trigger was developed to switch the DIS reversibly and its self-assemblies (such as wormlike micelles) in water without inorganic salt accumulation. The SBBA-HA (or SBBA-BA) DIS was a suitable emulsifier for stable emulsions because HA and BA were more soluble in the H2O phase.


Assuntos
Iminas , Tensoativos , Emulsões , Micelas , Água
12.
Food Chem ; 370: 131017, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507213

RESUMO

The decrease in the use of K fertilizers may be relevant for developing countries that depend on imports, as well as for specific groups such as patients with chronic kidney disease, who have restricted K in their diets. However, the decrease in the use of K affects plant yield, requiring the study of alternatives to mitigate nutritional stress. Sodium is a beneficial element that can mitigate K deficiency, but studies on kale plants are lacking. We investigated the role of Na in kale grown with and without K in nutrient feed solution. Four treatments were used: abundant K, abundant K plus Na, deficient K, and deficient K plus Na. Low Na (2 mmol L-1) attenuated the symptoms of K deficiency in kale by minimizing leaf water loss and increasing pigment content, leaf area, and plant dry mass. The synergism between K and Na negatively affected the growth of kale plants.


Assuntos
Brassica , Fertilizantes , Humanos , Folhas de Planta , Sódio , Água
13.
J Colloid Interface Sci ; 607(Pt 1): 378-388, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34509112

RESUMO

Membrane separation technology is one of the best methods to deal with wastewater released from oil spills and industrial wastewater. Therefore, we designed and prepared hydroxyl-rich titanium carbide MXene materials and filtered them onto a commercial polyvinylidene fluoride substrate membrane to obtain a cracked-earth-like MXene membrane with abundant hydroxyl groups and excellent underwater wettability. The underwater oil contact and sliding angles were approximately 157° and less than 3°, respectively. Moreover, the membrane effectively separated a variety of surfactant-stabilized stable emulsions with a high permeation flux of up to 6385 L m-2h-1 bar-1 and offered adequate performance after five cycles of the separation experiment. Additionally, the membrane exhibited remarkable resistance toward corrosive chemicals without any decrease in its underwater wettability performance. For example, the membrane was used to separate the emulsions containing alkali, salt, and acid. This study provides a new strategy to resolve the oily wastewater disposal problem by fabricating a cracked-earth-like MXene membrane with abundant hydroxyl groups.


Assuntos
Purificação da Água , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Titânio , Água
14.
J Colloid Interface Sci ; 607(Pt 1): 389-400, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34509113

RESUMO

HYPOTHESIS: We hypothesise that interaction strength between oil droplets determine the rheological properties of oil-in-water (O/W) emulsions by simultaneous formation and break-up of bonds between droplets. Using small (SAOS) and large (LAOS) amplitude oscillatory shear measurements, we aim to distinguish different classes of emulsions based on the specific microstructural evolution of the emulsions. EXPERIMENTS: Concentrated O/W emulsions differing in droplet-droplet interaction strength were obtained. Different interaction strength was obtained using different types of interactions; (a) electrostatic attraction, (b) salt bridging, or (c) crosslinking. FINDINGS: In line with our hypothesis, different rheological events in emulsions depend on the droplet-droplet interaction strength. Strong interactions lead to monotonous yielding, and droplets undergo jamming or densification to provide strain hardening and gel-like behaviour. Emulsions with weak interactions exhibit two-step yielding (SAOS) and continuous yielding in LAOS; indicating a soft-glassy material. In emulsions above maximum packing, and with weak interactions the rheology is controlled by cluster/cage breaking, and transient formation of new clusters. For medium-strength interactions, two-step yielding was reduced, and apparent stain-hardening occurred. The probability of two distinct time scales of yielding is hindered by stronger interactions and jamming. Overall, in concentrated emulsions, yielding is determined by network rupture and reformation, cluster rearrangement and -breaking, which in turn is influenced by interaction type and strength. We present a more differentiated categorisation of emulsions based on interaction strength.


Assuntos
Água , Emulsões , Reologia
15.
J Colloid Interface Sci ; 607(Pt 1): 431-439, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34509117

RESUMO

Polydopamine (PDA)-based self-adhesive hydrogel sensors are extensively explored but it is still a challenge to construct PDA-based hydrogels by free radical polymerization. Herein, a new approach to construct self-adhesive hydrogels by conducting free radical polymerization in both aqueous phase and micelle phase is developed. The following two-phase polymerization processes account for the formation of the self-adhesive hydrogels. The first one is the polymerization of acrylamide (AM) and dopamine (DA) in aqueous phase to form adhesive component PAM-PDA (PAM, polyacrylamide; PDA, polydopamine). The second one is the polymerization of hydrophobic monomer 2-methoxyethyl acrylate (MEA) in micelles of an amphiphilic block copolymer Pluronic F127 diacrylate (F127DA). The poly(2-methoxyethyl acrylate) (PMEA) networks help to maintain the high robustness of the hydrogel. Because PMEA and PDA form in relatively separated phases, the inhibition effect of PDA on the free radical polymerization process of PMEA is weakened. Based on this mechanism, mechanically strong and adhesive hydrogels are achieved. The introduced ions during preparation process, such as Na+, OH- and K+, endow the resulting hydrogels ionic conductivity. Resistive strain sensor of the hydrogel achieves a high gauge factor (GF) of 5.26, a response time of 0.25 s and high sensing stability. Because of the adhesiveness, such hydrogel sensor can be applied as wearable sensors in monitoring various human motions. To further address the freezing and drying problems of the hydrogels, organohydrogels are constructed in glycerol-water mixed solvent. The organohydrogels exhibit outstanding anti-freezing property and moisture retention ability, and their adhesiveness is well maintained in subzero conditions. Capacitive pressure sensors of the organohydrogels possessing a GF of 2.05 kPa-1, high sensing stability and reversibility, are demonstrated and explored in monitoring diverse human motions.


Assuntos
Adesivos , Hidrogéis , Radicais Livres , Humanos , Micelas , Polimerização , Cimentos de Resina , Água
16.
J Colloid Interface Sci ; 607(Pt 1): 451-461, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34509119

RESUMO

In this study, a functionalized Co3O4-Bi2O3-Ti catalytic membrane (CBO-Ti-M) was prepared and applied for removing organic pollutants via activating peroxymonosulfate (PMS) in the dead-end filtration mode. Characterizations including scanning electron microcopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) showed that the Co3O4-Bi2O3 catalyst was successfully supported on the Ti membrane. The CBO-Ti-M /PMS system could efficiently remove various organic pollutants such as sulfamethoxazole, methyl orange, bisphenol A and methylene blue, achieving removal efficiencies of 98.0%-99.5%. The effects of PMS concentration, flow rate and solution environment on degradation efficiency were investigated in detail. Furthermore, quenching experiments, electron spin resonance (ESR) and in-situ open circuit potential (OCP) tests collectively demonstrated that singlet oxygen as well as the non-radical electron transfer pathway mainly contributed in the reaction mechanism. The synergistic effect of Co and Bi was illustrated according to XPS results, and the possible degradation pathway of MB was proposed based on LC-MS analysis. Reusability test showed that pollutant removal efficiency with the CBO-Ti-M /PMS system remained stable in four runs and limited metal leaching was observed.


Assuntos
Poluentes Ambientais , Água , Peróxidos , Titânio
17.
Sci Total Environ ; 803: 150090, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525724

RESUMO

The increasing global demand for rare earth elements (REEs) has led to their recognition as emerging contaminants; however, the effect that biota have on the cycling of these elements at the watershed scale is not currently well understood. In this study, water samples and field freshwater clams Corbicula fluminea were concurrently collected along watershed gradients, and concentration profiles of 14 naturally occurring REEs were measured in operationally defined water fractions and soft tissues of the freshwater clams. Moreover, Post Archean Australian Shale (PAAS) normalized REE patterns, fractionation indices, and anomalous values were determined to further extract characteristic features. As a result, both the water and biological samples had variable REE compositions, with higher concentrations of light REEs (LREEs) than middle REEs (MREEs) and heavy REEs (HREEs), while decreasing concentrations were generally observed as filter pore size decreased, implying that large colloidal and particulate fractions were important carriers of REEs. The spatial distribution patterns of REEs revealed a clear site effect among profiles, with variability more pronounced among watersheds and with peaks in sites from a small watershed near the hotspots of the mining area, and then exhibited a decreasing trend with distance from there. Meanwhile, significant bioaccumulation of REEs was observed potentially reflecting different degrees of contamination gradients among the watersheds. The PAAS-normalized distribution patterns tended to be slightly enriched in MREEs, producing a peculiar "roof-shaped" feature and characteristic fractionation. Remarkably, bio-concentration factors (BCFs) highlighted the importance of large colloidal and particulate phases in assessing biologically available REEs for filter-feeding species. Collectively, our study strongly favored that accumulation patterns and fractionation characteristics of REEs in C. fluminea can serve as a reliable indicator of geochemical behavior, providing a promising biomonitoring tool to quantitatively denote different degrees of REE contamination and assess possible impacts in mining watersheds.


Assuntos
Corbicula , Metais Terras Raras , Poluentes Químicos da Água , Animais , Austrália , Monitoramento Ambiental , Metais Terras Raras/análise , Água , Poluentes Químicos da Água/análise
18.
Sci Total Environ ; 803: 150093, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525740

RESUMO

The interaction of lake water (LW) and shallow groundwater (SGW) accelerates nitrogen (N) loss from the soil profile in the lakeshore cropland, and cropland buffer zone (CBZ) significantly inhibits N loss in this area. Here, characteristics of N loss and transformations driven by SGW and LW interactions were explored using microcosmic experiments, and N loss was estimated using in situ monitoring data before and after the construction of the CBZ along the west bank of Erhai Lake. The results indicated that NO3--N, dissolved organic N and total dissolved N sustained the main N losses in the soil, and the organic N was responsible for the main N loss in the effluent. The lower total nitrogen (TN) concentrations of SGW in this area, the greater the soil N loss. Moreover, N total loss from the 100 cm soil profile in the control check was 1.8 times that in the simulated SGW treatment. We found that nitrification, denitrification and anammox driven by the microbial community and N functional genes were the key processes leading to N loss. The effluent N (3.64%) and gaseous N (0.32%) loss ratios in the cropland for continuously growing vegetables (CGV) were much higher than that in the CBZ (1.07% of effluent N and 0.25% of gaseous N loss ratios). If a 100 m wide and 48 km long area of lakeshore cropland is CGV, an increase by 47% is projected by 2030 compared with the N loss in 2020. But this region was built as a 100 m wide CBZ or 50 m wide CBZ + 50 m wide CGV after 2019, N loss will be reduced by 87% and 44% in 2030 compared with the N loss in CGV. The results implied that restoring a suitable width of CBZ can significantly reduce N loss.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Produtos Agrícolas , Lagos , Nitratos/análise , Nitrogênio/análise , Solo , Água , Poluentes Químicos da Água/análise
19.
Food Chem ; 370: 131056, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34530346

RESUMO

A novel multi-residue method, magnetic solid-phase extraction combined with LC-MS/MS, was proposed for simultaneous enantiomeric determination of eight chiral pesticides in water and fruit juices. Fe3O4@C@UiO-66 was firstly used to extract and enrich pesticides, showing excellent adsorption capacity, which was proved by adsorption kinetic and thermodynamic experiments. Multiple extraction parameters were optimized by Plackett-Burman and Box-Behnken design. Under optimized conditions, good linearity (1.0-200 ng L-1, R2 ≥ 0.9953) for all analytes, detection limits (0.10 to 0.35 ng L-1), quantitation limits (0.35 to 1.00 ng L-1), recoveries (83.68-95.99%), and precision (intra-day RSD ≤ 7.06%, inter-day RSD ≤ 9.40%) were obtained, meeting the requirements of pesticides residues analysis. It is worth mentioning that eight chiral pesticides can be separated quickly within 19 min. The above results indicate that the proposed method with satisfactory sensitivity and accuracy has the potential for routine analysis of chiral pesticide residues in aqueous samples.


Assuntos
Estruturas Metalorgânicas , Resíduos de Praguicidas , Praguicidas , Cromatografia Líquida , Sucos de Frutas e Vegetais , Limite de Detecção , Fenômenos Magnéticos , Resíduos de Praguicidas/análise , Praguicidas/análise , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Água/análise , Zircônio
20.
J Colloid Interface Sci ; 607(Pt 1): 720-728, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34536932

RESUMO

HYPOTHESIS: Carbon dioxide nanobubbles can increase effective gas-transfer to solution and enhance buffering capacity given the stable suspension in water of CO2 gas within nanobubbles and the existence of larger gas/water interface. EXPERIMENTS: The physico-chemical properties and responses of CO2 nanobubbles were recorded at different generation times (10, 30, 50, and 70 min) and benchmarked against traditional macrobubbles of CO2 for the same amount of delivered gas. Effective concentration of CO2 was evaluated by measuring the buffer capacity (ß). The size distribution of nanobubbles during the experiments was measured by Nanoparticle Track Analysis. FINDINGS: The mass transfer coefficient (KLa) showed a dramatically increase by 11-fold for the same volume of gas delivered when using nanobubbles. The ß values obtained for nanobubbles were 7 times higher than that of traditional bubbles which can lead to significant source of CO2 availability by using the nanobubble method. Nanobubbles, consequently, undergo mass loss at higher pH corresponding to mass transfer process due to concentration gradient at the surrounding nanobubbles. This is the first report of CO2 nanobubbles buffer capacity evaluation.


Assuntos
Nanopartículas , Água , Dióxido de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...