Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Braz. j. biol ; 83: e250550, 2023. tab, graf
Artigo em Inglês | MEDLINE, LILACS, VETINDEX | ID: biblio-1345536

RESUMO

Abstract Vanillin is the major component which is responsible for flavor and aroma of vanilla extract and is produced by 3 ways: natural extraction from vanilla plant, chemical synthesis and from microbial transformation. Current research was aimed to study bacterial production of vanillin from native natural sources including sewage and soil from industrial areas. The main objective was vanillin bio-production by isolating bacteria from these native sources. Also to adapt methodologies to improve vanillin production by optimized fermentation media and growth conditions. 47 soil and 13 sewage samples were collected from different industrial regions of Lahore, Gujranwala, Faisalabad and Kasur. 67.7% bacterial isolates produced vanillin and 32.3% were non-producers. From these 279 producers, 4 bacterial isolates selected as significant producers were; A3, A4, A7 and A10. These isolates were identified by ribotyping as A3 Pseudomonas fluorescence (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) and A10 Bacillus subtilis (KT962919). Vanillin producers were further tested for improved production of vanillin and were grown in different fermentation media under optimized growth conditions for enhanced production of vanillin. The fermentation media (FM) were; clove oil based, rice bran waste (residues oil) based, wheat bran based and modified isoeugenol based. In FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36, and FM37, the selected 4 bacterial strains produced significant amounts of vanillin. A10 B. subtilis produced maximum amount of vanillin. This strain produced 17.3 g/L vanillin in FM36. Cost of this fermentation medium 36 was 131.5 rupees/L. This fermentation medium was modified isoeugenol based medium with 1% of isoeugenol and 2.5 g/L soybean meal. ech gene was amplified in A3 P. fluorescence using ech specific primers. As vanillin use as flavor has increased tremendously, the bioproduction of vanillin must be focused.


Resumo A vanilina é o principal componente responsável pelo sabor e aroma do extrato de baunilha e é produzida de três formas: extração natural da planta da baunilha, síntese química e transformação microbiana. A pesquisa atual teve como objetivo estudar a produção bacteriana de vanilina a partir de fontes naturais nativas, incluindo esgoto e solo de áreas industriais. O objetivo principal era a bioprodução de vanilina por meio do isolamento de bactérias dessas fontes nativas. Também para adaptar metodologias para melhorar a produção de vanilina por meio de fermentação otimizada e condições de crescimento. Foram coletadas 47 amostras de solo e 13 de esgoto de diferentes regiões industriais de Lahore, Gujranwala, Faisalabad e Kasur; 67,7% dos isolados bacterianos produziram vanilina e 32,3% eram não produtores. Desses 279 produtores, 4 isolados bacterianos selecionados como produtores significativos foram: A3, A4, A7 e A10. Esses isolados foram identificados por ribotipagem como fluorescência A3 Pseudomonas (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) e A10 Bacillus subtilis (KT962919). Os produtores de vanilina foram posteriormente testados para produção aprimorada de vanilina e foram cultivados em diferentes meios de fermentação sob condições de crescimento otimizadas para produção aprimorada de vanilina. Os meios de fermentação (FM) foram: à base de óleo de cravo, à base de resíduos de farelo de arroz (resíduos de óleo), à base de farelo de trigo e à base de isoeugenol modificado. Em FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36 e FM37, as 4 cepas bacterianas selecionadas produziram quantidades significativas de vanilina. A10 B. subtilis produziu quantidade máxima de vanilina. Essa cepa produziu 17,3 g / L de vanilina em FM36. O custo desse meio de fermentação 36 foi de 131,5 rúpias / L. Esse meio de fermentação foi um meio à base de isoeugenol modificado com 1% de isoeugenol e 2,5 g / L de farelo de soja. O gene ech foi amplificado em A3 P. fluorescence usando primers específicos para ech. Como o uso da vanilina como sabor aumentou tremendamente, a bioprodução da vanilina deve ser focada.


Assuntos
Benzaldeídos/metabolismo , Aromatizantes/metabolismo , Bacillus subtilis/metabolismo , Microbiologia Industrial , Pseudomonas fluorescens/metabolismo , Enterococcus faecium/metabolismo , Meios de Cultura , Alcaligenes faecalis/metabolismo , Fermentação
2.
Appl Environ Microbiol ; 88(11): e0017222, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35604228

RESUMO

Picolinic acid (PA) is a natural toxic pyridine derivative as well as an important intermediate used in the chemical industry. In a previous study, we identified a gene cluster, pic, that responsible for the catabolism of PA in Alcaligenes faecalis JQ135. However, the transcriptional regulation of the pic cluster remains known. This study showed that the entire pic cluster was composed of 17 genes and transcribed as four operons: picR, picCDEF, picB4B3B2B1, and picT1A1A2A3T2T3MN. Deletion of picR, encoding a putative MarR-type regulator, greatly shortened the lag phase of PA degradation. An electrophoretic mobility shift assay and DNase I footprinting showed that PicR has one binding site in the picR-picC intergenic region and two binding sites in the picB-picT1 intergenic region. The DNA sequences of the three binding sites have the palindromic characteristics of TCAG-N4-CTNN: the space consists of four nonspecific bases, and the four palindromic bases on the left and the first two palindromic bases on the right are strictly conserved, while the last two bases on the right vary among the three binding sites. An in vivo ß-galactosidase activity reporter assay indicated that 6-hydroxypicolinic acid but not PA acted as a ligand of PicR, preventing PicR from binding to promoter regions and thus derepressing the transcription of the pic cluster. This study revealed the negative transcriptional regulation mechanism of PA degradation by PicR in A. faecalis JQ135 and provides new insights into the structure and function of the MarR-type regulator. IMPORTANCE The pic gene cluster was found to be responsible for PA degradation and widely distributed in Alpha-, Beta-, and Gammaproteobacteria. Thus, it is very necessary to understand the regulation mechanism of the pic cluster in these strains. This study revealed that PicR binds to three sites of the promoter regions of the pic cluster to multiply regulate the transcription of the pic cluster, which enables A. faecalis JQ135 to efficiently utilize PA. Furthermore, the study also found a unique palindrome sequence for binding of the MarR-type regulator. This study enhanced our understanding of microbial catabolism of environmental toxic pyridine derivatives.


Assuntos
Alcaligenes faecalis , Alcaligenes faecalis/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA Intergênico , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Ácidos Picolínicos , Ligação Proteica , Piridinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
BMC Genomics ; 23(Suppl 1): 316, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35443609

RESUMO

BACKGROUND: Drug-resistant bacteria are important carriers of antibiotic-resistant genes (ARGs). This fact is crucial for the development of precise clinical drug treatment strategies. Long-read sequencing platforms such as the Oxford Nanopore sequencer can improve genome assembly efficiency particularly when they are combined with short-read sequencing data. RESULTS: Alcaligenes faecalis PGB1 was isolated and identified with resistance to penicillin and three other antibiotics. After being sequenced by Nanopore MinION and Illumina sequencer, its entire genome was hybrid-assembled. One chromosome and one plasmid was assembled and annotated with 4,433 genes (including 91 RNA genes). Function annotation and comparison between strains were performed. A phylogenetic analysis revealed that it was closest to A. faecalis ZD02. Resistome related sequences was explored, including ARGs, Insert sequence, phage. Two plasmid aminoglycoside genes were determined to be acquired ARGs. The main ARG category was antibiotic efflux resistance and ß-lactamase (EC 3.5.2.6) of PGB1 was assigned to Class A, Subclass A1b, and Cluster LSBL3. CONCLUSIONS: The present study identified the newly isolated bacterium A. faecalis PGB1 and systematically annotated its genome sequence and ARGs.


Assuntos
Alcaligenes faecalis , Nanoporos , Alcaligenes faecalis/genética , Antibacterianos/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Prostaglandinas B , Análise de Sequência de DNA
4.
FEMS Microbiol Lett ; 369(1)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35416242

RESUMO

Quinolinic acid (QA) is a pyridine derivative that can be found in many organisms and is widely used in the chemical industry. However, QA possesses excitotoxic properties. To date, the catabolism of QA mediated by microorganisms has rarely been reported. In this study, a QA-degrading strain (JQ191) was isolated from sewage sludge. Based on phenotypic and 16S rRNA gene phylogenetic analysis, the strain was identified as Alcaligenes faecalis. Strain JQ191 was able to utilize QA as the sole source of carbon and nitrogen for growth. QA-cultured cells of JQ191 completely degrade 200 mg/L QA within 2 days in a mineral salt medium, whereas the LB-cultured cells experienced a 2-day lag period before degrading QA, indicating that the catabolic enzymes involved in QA degradation were induced by QA. 6-Hydroxypicolinic acid (6HPA) was identified as an intermediate of QA degradation by strain JQ191. A 6HPA monooxygenase gene picB was cloned, genetically disrupted, and heterologously expressed, and the results show that picB was responsible for catalyzing 6HPA to 3,6DHPA in JQ191. A new QA mineralization pathway was proposed. This study identifies a new bacterium candidate that has a potential application prospect in the bioremediation of QA-polluted environment, as well as provides new insights into the bacterial catabolism of QA.


Assuntos
Alcaligenes faecalis , Alcaligenes faecalis/genética , Alcaligenes faecalis/metabolismo , Biodegradação Ambiental , Filogenia , Ácido Quinolínico/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
5.
Arch Virol ; 167(3): 931-934, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35118527

RESUMO

A novel lytic phage named vB_AfaP_QDWS595 infecting Alcaligenes faecalis was isolated and characterized in this study. The genome of phage vB_AfaP_QDWS595 was sequenced and analyzed, and the result revealed that the phage contained 70,466 bp of double-stranded DNA with 41.12% GC content. There were 74 putative genes encoding proteins as well as 11 tRNAs predicted in the phage genome. Phenotype and phylogeny analysis indicated that this phage might be a new member of the family Schitoviridae.


Assuntos
Alcaligenes faecalis , Bacteriófagos , Alcaligenes faecalis/genética , Bacteriófagos/genética , Composição de Bases , Genoma Viral , Filogenia , Análise de Sequência de DNA
6.
Appl Environ Microbiol ; 88(6): e0226121, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35108103

RESUMO

Ammonia oxidation is an important process in both the natural nitrogen cycle and nitrogen removal from engineered ecosystems. Recently, a new ammonia oxidation pathway termed Dirammox (direct ammonia oxidation, NH3→NH2OH→N2) has been identified in Alcaligenes ammonioxydans. However, whether Dirammox is present in other microbes, as well as its genetic regulation, remains unknown. In this study, it was found that the metabolically versatile bacterium Alcaligenes faecalis strain JQ135 could efficiently convert ammonia into N2 via NH2OH under aerobic conditions. Genetic deletion and complementation results suggest that dnfABC is responsible for the ammonia oxidation to N2 in this strain. Strain JQ135 also employs aerobic denitrification, mainly producing N2O and trace amounts of N2, with nitrite as the sole nitrogen source. Deletion of the nirK and nosZ genes, which are essential for denitrification, did not impair the capability of JQ135 to oxidize ammonia to N2 (i.e., Dirammox is independent of denitrification). Furthermore, it was also demonstrated that pod (which encodes pyruvic oxime dioxygenase) was not involved in Dirammox and that AFA_16745 (which was previously annotated as ammonia monooxygenase and is widespread in heterotrophic bacteria) was not an ammonia monooxygenase. The MocR-family transcriptional regulator DnfR was characterized as an activator of the dnfABC operon with the binding motif 5'-TGGTCTGT-3' in the promoter region. A bioinformatic survey showed that homologs of dnf genes are widely distributed in heterotrophic bacteria. In conclusion, this work demonstrates that, besides A. ammonioxydans, Dirammox occurs in other bacteria and is regulated by the MocR-family transcriptional regulator DnfR. IMPORTANCE Microbial ammonia oxidation is a key and rate-limiting step of the nitrogen cycle. Three previously known ammonia oxidation pathways (i.e., nitrification, anaerobic ammonia oxidation [Anammox], and complete ammonia oxidation [Comammox]) are mediated by autotrophic microbes. However, the genetic foundations of ammonia oxidation by heterotrophic microorganisms have not been investigated in depth. Recently, a previously unknown pathway, termed direct ammonia oxidation to N2 (Dirammox), has been identified in the heterotrophic bacterium Alcaligenes ammonioxydans HO-1. This paper shows that, in the metabolically versatile bacterium Alcaligenes faecalis JQ135, the Dirammox pathway is mediated by dnf genes, which are independent of the denitrification pathway. A bioinformatic survey suggests that homologs of dnf genes are widely distributed in bacteria. These findings enhance the understanding of the molecular mechanisms of heterotrophic ammonia oxidation to N2.


Assuntos
Alcaligenes faecalis , Aerobiose , Alcaligenes faecalis/genética , Alcaligenes faecalis/metabolismo , Amônia/metabolismo , Desnitrificação , Ecossistema , Nitrificação , Nitritos/metabolismo , Nitrogênio/metabolismo
7.
Appl Environ Microbiol ; 88(6): e0239021, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35138929

RESUMO

5-Hydroxypicolinic acid (5HPA), an important natural pyridine derivative, is microbially degraded in the environment. Previously, a gene cluster, hpa, responsible for 5HPA degradation, was identified in Alcaligenes faecalis JQ135. However, the transcription regulation mechanism of the hpa cluster is still unknown. In this study, the transcription start site and promoter of the hpa operon was identified. Quantitative reverse transcription-PCR and promoter activity analysis indicated that the transcription of the hpa operon was negatively regulated by a TetR family regulator, HpaR, whereas the transcription of hpaR itself was not regulated by HpaR. Electrophoretic mobility shift assay and DNase I footprinting revealed that HpaR bound to two DNA sequences, covering the -35 region and -10 region, respectively, in the promoter region of the hpa operon. Interestingly, the two binding sequences are partially palindromic, with 3 to 4 mismatches and are complementary to each other. 5HPA acted as a ligand of HpaR, preventing HpaR from binding to promoter region and derepressing the transcription of the hpa operon. The study revealed that HpaR binds to two unique complementary sequences of the promoter of the hpa operon to negatively regulate the catabolism of 5HPA. IMPORTANCE This study revealed that the transcription of the hpa operon was negatively regulated by a TetR family regulator, HpaR. The binding of HpaR to the promoter of the hpa operon has the following unique features: (i) HpaR has two independent binding sites in the promoter of the hpa operon, covering -35 region and -10 region, respectively; (ii) the palindrome sequences of the two binding sites are complementary to each other; and (iii) both of the binding sites include a 10-nucleotide partial palindrome sequence with 3 to 4 mismatches. This study provides new insights into the binding features of the TetR family regulator with DNA sequences.


Assuntos
Alcaligenes faecalis , Alcaligenes faecalis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Óperon , Regiões Promotoras Genéticas
8.
Biotechnol Appl Biochem ; 69(2): 587-595, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33650215

RESUMO

Nitrilases can directly hydrolyze nitrile compounds into carboxylic acids and ammonium. To solve the current problems of bioconversions using nitrilases, including the difficult separation of products from the resting cells used as the catalyst and high costs of chemical inducers, a nitrilase from Alcaligenes faecalis was heterologously expressed in Pichia pastoris X33. The stable nitrilase-expressing strain No.39-6-4 was obtained after three rounds of screening based on a combined detection method including dot-blot, SDS-PAGE, and western blot analyses, which confirmed the presence of recombinant nitrilase with a molecular mass of about 50 kDa. The temperature and pH optima of the nitrilase were 45°C and pH 7.5, respectively. Cu2+ , Zn2+ , and Tween 80 strongly inhibited the enzyme activity, but the optical purity of the product R-mandelic acid (R-MA) was stable, with practically 100% enantiomeric excess (ee). The nitrilase-producing P. pastoris strain developed in this study provides a basis for further research on the enzyme.


Assuntos
Alcaligenes faecalis , Alcaligenes faecalis/química , Alcaligenes faecalis/genética , Aminoidrolases/genética , Aminoidrolases/metabolismo , Concentração de Íons de Hidrogênio , Ácidos Mandélicos/química , Ácidos Mandélicos/metabolismo , Pichia/genética , Pichia/metabolismo , Saccharomycetales
9.
Environ Technol ; 43(12): 1903-1916, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33342352

RESUMO

Farmers near towns and cities are using a wide range of highly polluted wastewaters for crop irrigation in Pakistan due to severe freshwater shortage. The present study aimed to promote indigenous bacterial strains isolated from domestic, hospital, textile, pharmaceutical and mixed wastewaters to remove contaminants and colour and render these wastewaters safer for irrigation. Thirty seven bacterial strains were isolated from five wastewater samples collected from different sites in Lahore, Pakistan. Under optimal growth conditions, three isolates (D6, D7 and P1) showed >93% decolourisation potential in the treatment of hospital wastewater. 16S rDNA sequencing identified two of these isolates (D6 and D7) as showing 100% and 99.86% homology to Bacillus paramycoides spp. - novel strains from B. cereus group. Isolate P1 showed 97.47% homology to Alcaligenes faecalis. GCMS analysis of the untreated hospital wastewater revealed the presence of pharmaceutic pollutants, i.e. Phenol (876 µg/L), Salicylic acid (48 µg/L), Caffeine (7 µg/L), Naproxen (23 µg/L), Octadecene (185 µg/L) and Diazepam (14 µg/L). The analysis of treated hospital wastewaters showed percentage degradation of pharmaceutic pollutants (100%-43%) and significant reduction in the BOD5 (91%-68%), COD (89%-52%) and heavy metals concentrations. These strains therefore can represent a low-cost and low-tech alternative to bioremediate complex matrices of hospital wastewater prior to crop irrigation to support the achievement of clean re-usable water in developing countries like Pakistan.


Assuntos
Alcaligenes faecalis , Poluentes Ambientais , Bacillus , Bactérias , Biodegradação Ambiental , Hospitais , Águas Residuárias
10.
Environ Technol ; 43(1): 131-138, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32508276

RESUMO

Microbial immobilization is considered as one of the effective denitrification techniques in the treatment of high load wastewater. In this study, the immobilized cells consisting of polyvinyl alcohol (PVA), sodium alginate (SA), and calcium chloride (CaCl2) were inoculated with Alcaligenes faecalis strain WT14 to treat wastewater with high nitrate-nitrogen (NO3--N) concentrations. After 48 h of wastewater treatment, 26.2-89.4% of total nitrogen (TN) was removed by the immobilized Alcaligenes faecalis strain WT14. The response surface methodology revealed the highest TN removal efficiency by Alcaligenes faecalis strain WT14 occurred at the immobilized ratio of 9.3% of PVA, 2.2% of SA and 1.9% of CaCl2. Under the optimal ratio of PVA, SA, and CaCl2, the conditions for the maximum denitrification efficiency and TN removal were pH of 7, temperature of 40°C, and shaking speed of 60 rpm·min-1. Compared to the free cells, the immobilization cells had no obvious negative effect on denitrification efficiency, additionally reduced the nitrite accumulation, and thus improved the TN removal. Furthermore, the immobilized cells still maintained 95.4% of NO3--N removal after the eighth cycle reuse. These results demonstrated the immobilized Alcaligenes faecalis strain WT14 can remove TN effectively and additionally reduce nitrite accumulation in treating high strength NO3--N wastewater.


Assuntos
Alcaligenes faecalis , Nitritos , Desnitrificação , Nitratos , Nitrogênio , Águas Residuárias
11.
Int J Biol Macromol ; 196: 35-45, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34920076

RESUMO

The exploitation of chitinous materials seems to be an infinite treasure. To this end, using shellfish waste as the sole carbon/nitrogen source solves environmental challenges while lowering microbial chitinase production costs. Bioconversion of shellfish chitin wastes such as shrimp shells has recently been investigated for the production of enzymes and bioactive materials in order to maximize the utilization of chitin-containing seafood processing wastes. In this study, the bioconversion of chitin to chitosan by Alcaligenes faecalis Alca F2018 revealed the highest chitin deacetylase (CDA) activity of 40.6 U/µg. The resulted low Km and high Vmax values explain the high affinity of the purified CDA to the p-nitroacetanilide substrate. CDA with a molecular weight of 66 KDa was purified from F2018 strain, with a 14.5% yield. FT-IR revealed distinct chitosan peaks and XRD revealed that chitosan samples had lower crystallinity than chitin. TGA analysis revealed that the recovered chitosan samples were more thermally stable. The deacetylation degree percentages of the produced chitosan are in the same range as that of the commercial chitosan, suggesting the promising potential of A. faecalis Alca F2018 to utilize shrimp shells in their raw form in the fermentation media based on its CDA enzyme activity.


Assuntos
Alcaligenes faecalis/metabolismo , Organismos Aquáticos , Biotecnologia , Biotransformação , Quitina/metabolismo , Quitosana/metabolismo , Crustáceos/química , Alcaligenes faecalis/classificação , Alcaligenes faecalis/genética , Exoesqueleto/química , Animais , Quitina/química , Quitosana/química , Egito , Fermentação , Estrutura Molecular , RNA Ribossômico 16S , Análise Espectral
12.
Sci Rep ; 11(1): 23105, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845321

RESUMO

Alcaligenes faecalis is a heterotrophic nitrifying bacterium that oxidizes ammonia and generates nitrite and nitrate. When A. faecalis was cultivated in a medium containing pyruvate and ammonia as the sole carbon and nitrogen sources, respectively, high concentrations of nitrite accumulated in the medium whose carbon/nitrogen (C/N) ratio was lower than 10 during the exponential growth phase, while the accumulation was not observed in the medium whose C/N ratio was higher than 15. Comparative transcriptome analysis was performed using nitrifying and non-nitrifying cells of A. faecalis cultivated in media whose C/N ratios were 5 and 20, respectively, to evaluate the fluctuations of gene expression during induction of heterotrophic nitrification. Expression levels of genes involved in primary metabolism did not change significantly in the cells at the exponential growth phase under both conditions. We observed a significant increase in the expression levels of four gene clusters: pod cluster containing the gene encoding pyruvic oxime dioxygenase (POD), podh cluster containing the gene encoding a POD homolog (PODh), suf cluster involved in an iron-sulfur cluster biogenesis, and dnf cluster involved in a novel hydroxylamine oxidation pathway in the nitrifying cells. Our results provide valuable insight into the biochemical mechanism of heterotrophic nitrification.


Assuntos
Alcaligenes faecalis/genética , Alcaligenes faecalis/metabolismo , Regulação Bacteriana da Expressão Gênica , Processos Heterotróficos , Nitrificação , Amônia/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Hidroxilamina/química , Família Multigênica , Nitratos/metabolismo , Nitritos/metabolismo , Nitrogênio/metabolismo , Propionatos/metabolismo , Transcriptoma
13.
Braz J Biol ; 83: e250550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34730714

RESUMO

Vanillin is the major component which is responsible for flavor and aroma of vanilla extract and is produced by 3 ways: natural extraction from vanilla plant, chemical synthesis and from microbial transformation. Current research was aimed to study bacterial production of vanillin from native natural sources including sewage and soil from industrial areas. The main objective was vanillin bio-production by isolating bacteria from these native sources. Also to adapt methodologies to improve vanillin production by optimized fermentation media and growth conditions. 47 soil and 13 sewage samples were collected from different industrial regions of Lahore, Gujranwala, Faisalabad and Kasur. 67.7% bacterial isolates produced vanillin and 32.3% were non-producers. From these 279 producers, 4 bacterial isolates selected as significant producers were; A3, A4, A7 and A10. These isolates were identified by ribotyping as A3 Pseudomonas fluorescence (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) and A10 Bacillus subtilis (KT962919). Vanillin producers were further tested for improved production of vanillin and were grown in different fermentation media under optimized growth conditions for enhanced production of vanillin. The fermentation media (FM) were; clove oil based, rice bran waste (residues oil) based, wheat bran based and modified isoeugenol based. In FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36, and FM37, the selected 4 bacterial strains produced significant amounts of vanillin. A10 B. subtilis produced maximum amount of vanillin. This strain produced 17.3 g/L vanillin in FM36. Cost of this fermentation medium 36 was 131.5 rupees/L. This fermentation medium was modified isoeugenol based medium with 1% of isoeugenol and 2.5 g/L soybean meal. ech gene was amplified in A3 P. fluorescence using ech specific primers. As vanillin use as flavor has increased tremendously, the bioproduction of vanillin must be focused.


Assuntos
Benzaldeídos , Aromatizantes , Alcaligenes faecalis/metabolismo , Bacillus subtilis/metabolismo , Benzaldeídos/metabolismo , Meios de Cultura , Enterococcus faecium/metabolismo , Fermentação , Aromatizantes/metabolismo , Microbiologia Industrial , Pseudomonas fluorescens/metabolismo
14.
Front Immunol ; 12: 699349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276692

RESUMO

Alcaligenes spp., including A. faecalis, is a gram-negative facultative bacterium uniquely residing inside the Peyer's patches. We previously showed that A. faecalis-derived lipopolysaccharides (Alcaligenes LPS) acts as a weak agonist of toll-like receptor 4 to activate dendritic cells and shows adjuvant activity by enhancing IgG and Th17 responses to systemic vaccination. Here, we examined the efficacy of Alcaligenes LPS as a nasal vaccine adjuvant. Nasal immunization with ovalbumin (OVA) plus Alcaligenes LPS induced follicular T helper cells and germinal center formation in the nasopharynx-associated lymphoid tissue (NALT) and cervical lymph nodes (CLNs), and consequently enhanced OVA-specific IgA and IgG responses in the respiratory tract and serum. In addition, nasal immunization with OVA plus Alcaligenes LPS induced OVA-specific T cells producing IL-17 and/or IL-10, whereas nasal immunization with OVA plus cholera toxin (CT) induced OVA-specific T cells producing IFN-γ and IL-17, which are recognized as pathogenic type of Th17 cells. In addition, CT, but not Alcaligenes LPS, promoted the production of TNF-α and IL-5 by T cells. Nasal immunization with OVA plus CT, but not Alcaligenes LPS, led to increased numbers of neutrophils and eosinophils in the nasal cavity. Together, these findings indicate that the benign nature of Alcaligenes LPS is an effective nasal vaccine adjuvant that induces antigen-specific mucosal and systemic immune responses without activation of inflammatory cascade after nasal administration.


Assuntos
/farmacologia , Imunoglobulina A/imunologia , Lipopolissacarídeos/imunologia , Ovalbumina/imunologia , Células Th17/imunologia , /administração & dosagem , Administração Intranasal , Alcaligenes faecalis/imunologia , Animais , Feminino , Lipopolissacarídeos/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/administração & dosagem
15.
Environ Res ; 199: 111330, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34010625

RESUMO

Cadmium-contaminated wastewater has attracted increasing concerns due to its non-biodegradable properties and high toxicity. To explore eco-friendly and economically feasible strategies, the screened Alcaligenes faecalis K2 were employed for the biomineralization and recovery of Cd2+ from wastewater while producing considerable secretory organo-biominerals (SOBs) as bioadsorbents. At 75 mg/L Cd2+ exposure, 85.5% of Cd2+ was removed by K2, 43.0% of which was fixed in the granular SOBs. SOBs were convenient for separating from the solution. The adsorption capacity of granular sorbent made from SOBs was verified to be greater than 77.1 mg/g. Practically, 89.5% of 75 mg/L of Cd2+ could be stably removed while ereK2 continuously generated SOBs in a moving-bed biofilm reactor (MBBR). To sum up, the production of bioadsorbents can be achieved by K2, while removing Cd with live microorganisms, which was conducive to making full use of materials and improving Cd removal efficiency.


Assuntos
Alcaligenes faecalis , Poluentes Químicos da Água , Adsorção , Biofilmes , Biomineralização , Reatores Biológicos , Cádmio/análise , Poluentes Químicos da Água/análise
16.
Bioprocess Biosyst Eng ; 44(10): 2035-2050, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33978835

RESUMO

A new heterotrophic nitrifying bacterium was isolated from the compost of swine manure and rice husk and identified as Alcaligenes faecalis SDU20. Strain SDU20 had heterotrophic nitrification potential and could remove 99.7% of the initial NH4+-N. Nitrogen balance analysis revealed that 15.9 and 12.3% of the NH4+-N were converted into biological nitrogen and nitrate nitrogen, respectively. The remaining 71.44% could be converted into N2 or N2O. Single-factor experiments showed that the optimal conditions for ammonium removal were the carbon source of sodium succinate, C/N ratio 10, initial pH 8.0, and temperature 30 °C. Nitrification genes were determined to be upregulated when sodium succinate was used as the carbon source analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Strain SDU20 could tolerate 4% salinity and show resistance to some heavy metal ions. Strain SDU20 removed 72.6% high concentrated NH4+-N of 2000 mg/L within 216 h. In a batch experiment, the highest NH4+-N removal efficiency of 98.7% and COD removal efficiency of 93.7% were obtained in the treatment of unsterilized swine wastewater. Strain SDU20 is promising in high-ammonium wastewater treatment.


Assuntos
Alcaligenes faecalis/metabolismo , Genes Bacterianos , Nitrificação , Purificação da Água/métodos , Alcaligenes faecalis/genética , Alcaligenes faecalis/crescimento & desenvolvimento , Compostos de Amônio/isolamento & purificação , Animais , Expressão Gênica , Concentração de Íons de Hidrogênio , Esterco , Metais Pesados/análise , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Salinidade , Suínos , Temperatura , Águas Residuárias/microbiologia
17.
Bioprocess Biosyst Eng ; 44(9): 1943-1956, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33956220

RESUMO

Chemical extraction of chitin is very hazardous and costly which can be overwhelmed by microbial bioprocessing. In this study, potent protease and lactic acid-producing bacteria were screened and identified as Alcaligens faecalis S3 and Bacillus coagulans L2, respectively. Productions of protease and lactic acid by the respective bacterial strains were optimized. The shell of Litopenaeus vannamei was sequentially treated with the partially purified protease and lactic acid and the treatment conditions were optimized for betterment of chitin yield. Spectral characterization by SEM-EDS, IR, XRD, NMR, XPS and thermal characterization by TG and DTG analysis of the extracted chitin was made and compared with commercial one. It was revealed that both the chitin have similar characteristics. Therefore, it can be articulated that chitin can be extracted from crustacean shells in pure form by microbial bioprocessing which will be a good catch for biorefinary industries for chitin extraction through greener route.


Assuntos
Alcaligenes faecalis/crescimento & desenvolvimento , Bacillus coagulans/crescimento & desenvolvimento , Quitina , Penaeidae/química , Gerenciamento de Resíduos , Animais , Quitina/química , Quitina/metabolismo
18.
J Invertebr Pathol ; 183: 107597, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33945817

RESUMO

AfIP-1A/1B is a two-component insecticidal protein identified from the soil bacterium Alcaligenes faecalis that has high activity against western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte). Previous results revealed that AfIP-1A/1B is cross-resistant to the binary protein from Bacillus thuringiensis (Bt), Cry34Ab1/Cry35Ab1 (also known as Gpp34Ab1/Tpp35Ab1; Crickmore et al., 2020), which was attributed to shared binding sites in WCR gut tissue (Yalpani et al., 2017). To better understand the interaction of AfIP-1A/1B with its receptor, we have systematically evaluated the binding of these proteins with WCR brush border membrane vesicles (BBMVs). Our findings show that AfIP-1A binds directly to BBMVs, while AfIP-1B does not; AfIP-1B binding only occurred in the presence of AfIP-1A which was accompanied by the presence of stable, high molecular weight oligomers of AfIP-1B observed on denaturing protein gels. Additionally, we show that AfIP-1A/1B forms pores in artificial lipid membranes. Finally, binding of AfIP-1A/1B was found to be reduced in BBMVs from Cry34Ab1/Cry35Ab1-resistant WCR where Cry34Ab1/Cry35Ab1 binding was also reduced. The reduced binding of both proteins is consistent with recognition of a shared receptor that has been altered in the resistant strain. The coordination of AfIP-1B binding by AfIP-1A, the similar structures between AfIP-1A and Cry34Ab1, along with their shared binding sites and cross-resistance, suggest a similar role for AfIP1A and Cry34Ab1 in receptor recognition and docking site for their cognate partners, AfIP-1B and Cry35Ab1, respectively.


Assuntos
Alcaligenes faecalis/genética , Proteínas de Bactérias/genética , Inseticidas/farmacologia , Mariposas/genética , Alcaligenes faecalis/química , Alcaligenes faecalis/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Agentes de Controle Biológico/química , Agentes de Controle Biológico/metabolismo , Trato Gastrointestinal/microbiologia , Controle de Insetos , Inseticidas/química , Larva/genética , Larva/crescimento & desenvolvimento , Larva/microbiologia , Mariposas/crescimento & desenvolvimento , Mariposas/microbiologia , Controle Biológico de Vetores
19.
Water Sci Technol ; 83(7): 1764-1780, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33843758

RESUMO

Hospital wastewaters are produced in large volumes in Pakistan (∼362-745 L/bed.day) and are discharged without proper treatment. They are widely used by farmers for crop irrigation and induce a phytotoxic effect on plant growth. The study was conducted to evaluate the effect of untreated and treated hospital wastewater on seed germination of a fodder crop Trifolium alexandrinum (Berseem clover) and a food crop Solanum lycopersicum (tomato). A bacterial consortium was formed with three bacterial strains, i.e., Alcaligenes faecalis and Bacillus paramycoides spp., which were individually proven efficient in previous studies. The concentrations of untreated and treated hospital wastewater (25, 50, 75 and 100%) were used to irrigate these crop seeds. To assess the efficiency of treatment, the germination percentage, delay index, germination index, stress tolerance indices, seedling vigour index and phytotoxicity index were calculated and were statistically proven significant. The seeds grown in treated wastewater concentrations showed negative values of phytotoxicity indices (tomato: -0.36, -0.47, -0.78 and -1.11; Berseem clover: -0.23) which indicate a stimulatory or non-toxic effect on seedling growth. Our work proposes that this bacterial consortium is efficient for hospital wastewater treatment before crop irrigation.


Assuntos
Alcaligenes faecalis , Lycopersicon esculentum , Trifolium , Bacillus , Germinação , Hospitais , Medicago , Sementes , Águas Residuárias
20.
Sci Rep ; 11(1): 6606, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758248

RESUMO

High lead (Pb) concentration in soils is becoming a severe threat to human health. It also deteriorates plants, growth, yield and quality of food. Although the use of plant growth-promoting rhizobacteria (PGPR), biochar and compost can be effective environment-friendly amendments for decreasing Pb stress in crop plants, the impacts of their simultaneous co-application has not been well documented. Thus current study was carried, was conducted to investigate the role of rhizobacteria and compost mixed biochar (CB) under Pb stress on selected soil properties and agronomic parameters in mint (Mentha piperita L.) plants. To this end, six treatments were studied: Alcaligenes faecalis, Bacillus amyloliquefaciens, CB, PGPR1 + CB, PGPR2 + CB and control. Results showed that the application A. faecalis + CB significantly decreased soil pH and EC over control. However, OM, nitrogen, phosphorus and potassium concentration were significantly improved in the soil where A. faecalis + CB was applied over control. The A. faecalis + CB treatment significantly improved mint plant root dry weight (58%), leaves dry weight (32%), chlorophyll (37%), and N (46%), P (39%) and K (63%) leave concentration, while also decreasing the leaves Pb uptake by 13.5% when compared to the unamended control. In conclusion, A. faecalis + CB has a greater potential to improve overall soil quality, fertility and mint plant productivity under high Pb soil concentration compared to the sole application of CB and A. faecalis.


Assuntos
Carvão Vegetal/metabolismo , Compostagem/métodos , Chumbo/toxicidade , Mentha/efeitos dos fármacos , Rizosfera , Poluentes do Solo/toxicidade , Alcaligenes faecalis/enzimologia , Alcaligenes faecalis/metabolismo , Aminoidrolases/metabolismo , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Frutas/química , Chumbo/metabolismo , Mentha/microbiologia , Poluentes do Solo/metabolismo , Estresse Fisiológico , Verduras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...