Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.672
Filtrar
1.
BMC Genomics ; 24(1): 21, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641451

RESUMO

BACKGROUND: Salt-alkali stress represents one of the most stressful events with deleterious consequences for plant growth and crop productivity. Despite studies focusing on the effects of salt-alkali stress on morphology and physiology, its molecular mechanisms remain unclear. Here, we employed RNA-sequencing (RNA-seq) to understand how Na2CO3 stress inhibits rice seedling growth. RESULTS: Na2CO3 stress significantly inhibited the growth of rice seedlings. Through RNA-seq, many differentially expressed genes (DEGs) were shown to be potentially involved in the rice seedling response to salt-alkali stress. After 1-day and 5-day treatments, RNA-seq identified 1780 and 2315 DEGs in the Na2CO3-treated versus -untreated rice seedling shoots, respectively. According to the gene ontology enrichment and the Kyoto Encylopedia of Genes and Genomes annotation of DEGs, the growth-inhibition processes associated with salt-alkali stress involve a myriad of molecular events, including biosynthesis and metabolism, enzyme activity, and binding, etc. CONCLUSION: Collectively, the transcriptome analyses in the present work revealed several potential key regulators of plant response to salt-alkali stress, and might pave a way to improve salt-alkali stress tolerance in rice.


Assuntos
Oryza , Plântula , Oryza/metabolismo , Álcalis/farmacologia , Estresse Salino/genética , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Transcriptoma
2.
Nat Commun ; 14(1): 26, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596786

RESUMO

Although alkaline sensation is critical for survival, alkali-activated receptors are yet to be identified in vertebrates. Here, we showed that the OTOP1 channel can be directly activated by extracellular alkali. Notably, OTOP1 biphasically mediated proton influx and efflux with extracellular acid and base stimulation, respectively. Mutations of K221 and R554 at the S5-S6 and S11-S12 linkers significantly reduced alkali affinity without affecting acid activation, suggesting that different domains are responsible for acid- and alkali-activation of OTOP1. The selectivity for H+ was significantly higher in OTOP1 activated by alkali than that by acid, further suggesting that the two activations might be independent gating processes. Given that the alkali-activation of OTOP1 and the required key residues were conserved in the six representative vertebrates, we cautiously propose that OTOP1 participates in alkaline sensation in vertebrates. Thus, our study identified OTOP1 as an alkali-activated channel.


Assuntos
Álcalis , Proteínas de Membrana , Animais , Proteínas de Membrana/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Proteínas de Transporte
3.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614177

RESUMO

FROUNT is an intracellular protein that promotes pseudopodia formation by binding to the chemokine receptors CCR2 and CCR5 on macrophages. Recently, disulfiram (DSF), a drug treatment for alcoholism, was found to have FROUNT inhibitory activity. In this study, we investigated the effect of DSF eye drops in a rat corneal alkali burn model. After alkali burn, 0.5% DSF eye drops (DSF group) and vehicle eye drops (Vehicle group) were administered twice daily. Immunohistochemical observations and real-time reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed at 6 h and 1, 4, and 7 days after alkali burn. Results showed a significant decrease in macrophage accumulation in the cornea in the DSF group, but no difference in neutrophils. RT-PCR showed decreased expression of macrophage-associated cytokines in the DSF group. Corneal scarring and neovascularization were also suppressed in the DSF group. Low-vacuum scanning electron microscopy imaging showed that macrophage length was significantly shorter in the DSF group, reflecting the reduced extension of pseudopodia. These results suggest that DSF inhibited macrophage infiltration by suppressing macrophage pseudopodia formation.


Assuntos
Queimaduras Químicas , Lesões da Córnea , Neovascularização da Córnea , Queimaduras Oculares , Ratos , Animais , Dissulfiram/farmacologia , Dissulfiram/uso terapêutico , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Soluções Oftálmicas/farmacologia , Álcalis/farmacologia , Pseudópodes/metabolismo , Córnea/metabolismo , Macrófagos/metabolismo , Lesões da Córnea/tratamento farmacológico , Lesões da Córnea/metabolismo , Neovascularização da Córnea/tratamento farmacológico , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/tratamento farmacológico , Queimaduras Oculares/metabolismo , Modelos Animais de Doenças
4.
J Hazard Mater ; 446: 130712, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621296

RESUMO

With the intensification of microplastic (MP) pollution, the impact of MPs on soil ecosystems has garnered considerable attention. We investigated the effects of two commonly used MPs, polyethylene (PE) and polypropylene (PP), at different sizes and doses, on the properties and microbial communities in saline-alkali soil. We found that MP treatment significantly reduced the electrical conductivity but somewhat enhanced the enzyme activities and effective nutrient content of the soil. Microbial diversity is affected by the type, dose, size and interaction of MPs, with fungi being more sensitive than bacteria. Under high-dose PE treatment, the dominant bacteria and fungi enriched, and the diversity indexes declined significantly. Meanwhile, under high-dose PP treatment, several unique bacteria and fungi with low abundance were observed, which eventually increased the diversity indexes. Moreover, PE exerted a stronger effect on bacterial function than PP. High-dose PE treatment suppressed the nitrogen fixation potential of soil bacteria. However, high-dose PP treatment promoted that. In conclusion, our findings showed that PE exerts a stronger negative effect on saline-alkali soil ecosystems than PP. Our findings help bridge the knowledge gap in the impact of MPs on saline-alkaline soils and provide guidance for the rational use of agricultural plastics in saline-alkaline soils.


Assuntos
Microbiota , Poluentes do Solo , Microplásticos/farmacologia , Plásticos , Solo , Álcalis , Microbiologia do Solo , Poluentes do Solo/análise , Polipropilenos , Polietileno/farmacologia , Bactérias
5.
ACS Macro Lett ; 12(1): 20-25, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36538018

RESUMO

Poly(xanthene)s (PXs) carrying trimethylammonium, methylpiperidinium, and quinuclidinium cations were synthesized and studied as a new class of anion exchange membranes (AEMs). The polymers were prepared in a superacid-mediated polyhydroxyalkylation involving 4,4'-biphenol and 1-bromo-3-(trifluoroacetylphenyl)-propane, followed by quaternization reactions with the corresponding amines. The architecture with a rigid PX backbone decorated with cations via flexible alkyl spacer chains resulted in AEMs with high ionic conductivity, thermal stability and alkali-resistance. For example, hydroxide conductivities up to 129 mS cm-1 were reached at 80 °C, and all the AEMs showed excellent alkaline stability with less than 4% ionic loss after treatment in 2 M aq. NaOH at 90 °C during 720 h. Critically, the diaryl ether links of the PX backbone remained intact after the harsh alkaline treatment, as evidenced by both 1H NMR spectroscopy and thermogravimetry. Our combined findings suggest that PX AEMs are viable materials for application in alkaline fuel cells and electrolyzers.


Assuntos
Álcalis , Xantenos , Álcalis/química , Membranas Artificiais , Cátions
6.
Sci Total Environ ; 863: 160998, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36535479

RESUMO

Undoubtedly biochar has excellent remediation performance for Cd-contaminated soil. Nevertheless, the remediation performance may be not invariable considering highly variable soil conditions including soil properties and environmental conditions. This work investigated the fate of Cd in three typical Cd-contaminated soils (acidic, neutral and saline-alkali soils) treated with wheat straw biochar and its driving mechanisms under specific soil conditions through aging and remediation experiment, Cd availability experiment and leaching column experiment. The results indicated that biochar addition facilitated Cd immobilization and reduced the uptake of Cd by green vegetables in acidic, neutral and saline-alkali soils under wetting-drying conditions. In contrast to neutral and saline-alkali soils, the release of exchangeable aluminum from biochar-treated acidic soil under flooding-drying cycles lowered the pH of leachate, thus promoting the leaching of Cd from leaching column, especially at 7 and 14 days, when the leaching of Cd increased by 25.3 and 32.6 times, respectively. This result was further supported by the increase in the exchangeable fraction and total leaching amounts of Cd in the topsoil layer (0-20 cm) of biochar-treated acidic soil of leaching column. Additionally, the leaching of Cd was positively correlated with DOC contents of leachate in biochar-treated neutral and saline-alkali soils. In summary, the remediation performance of biochar for Cd-contaminated soils is conditional, and its remediation effect is better in neutral and saline-alkali soils. Notably, the inherent conditions of soil must be fully considered when applying biochar for Cd remediation, especially in acidic Cd-contaminated paddy soils in South China.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Cádmio/análise , Triticum , Poluentes do Solo/análise , Carvão Vegetal/química , Álcalis , Solo/química
7.
Int J Biol Macromol ; 228: 808-815, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549623

RESUMO

Composite functional materials offer promising opportunities for the development of tailored adsorbents with enhanced bioremediation potential towards toxic, carcinogenic endocrine disrupters such as Bisphenol A (BPA). Copyrolysis of microalga Chlorella sp. (CH) alkali lignin (L) with K2CO3 impregnation yielded a carbon-based composite (CHL-AC) with a micro-mesoporous structure of 0.643 cm3/g, surface area of 1414 m2/g, and BPA adsorption capacity of Qmax 316.858 mg/g. Enhanced BPA removal efficiency indicated a positive synergistic effect upon a combination of L and CH, resulting in a 73.24 % removal efficiency compared with the individual carbon components of 52.33 % for L-AC and 67.35 % for CH-AC. The kinetics and equilibrium results were described well by the pseudo second-order kinetic model and Freundlich isotherm, respectively. This paper elucidates the blending of microalgae and lignin into high-value carbon composite material, CHL-AC, with immense potential for the treatment of BPA-contaminated waters to contribute to Goal 6 (clean water and sanitation).


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água , Purificação da Água , Álcalis , Lignina , Plastificantes , Adsorção , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Carbono/química , Cinética , Concentração de Íons de Hidrogênio
8.
Int J Biol Macromol ; 226: 956-964, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36529210

RESUMO

The green synthesis of nanoparticles using biogenic approaches constitutes a challenge for effective applications. The massive aliphatic hydroxyl groups of lignin exhibited excellent reduction properties allowing the production of metallic nanoparticles. In this work, alkali lignin was extracted from virgin populus tremula and used for the preparation of copper oxide nanoparticles. The analysis of the prepared nanoparticles was assessed using Fourier Transform Infra-red (FT-IR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX), and Transmission Electron Microscopy (TEM). FT-IR results displayed that different phytochemicals constituents of lignin extract were responsible for the production of CuO nanoparticles. XRD information demonstrated monoclinic CuO nanoparticles with a mean size of 12.4 nm. SEM images showed that some nanoparticles were quite separated from each other and some of them were agglomerated due to the oxidation of metal nanoparticles. TEM photos indicated that the overlap of the nanoparticles resulted in rectangular patterns due to the presence of lignin on the surface of CuO nanoparticles. Finally, the prepared CuO nanoparticles were applied for the removal of methylene blue from water. The results showed that the maximum adsorption capacity reached 85 mg/g at the following conditions: T = 20 °C, pH = 6, and time = 60 min.


Assuntos
Nanopartículas Metálicas , Populus , Lignina/química , Cobre/química , Azul de Metileno/química , Álcalis , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química , Óxidos
9.
J Environ Sci (China) ; 126: 644-655, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503790

RESUMO

The catalytic oxidation effect of MnSO4 on As(III) by air in an alkaline solution was investigated. According to the X-ray diffraction (XRD), scanning electron microscope-energy dispersive spectrometer (SEM-EDS) and X-ray photoelectron spectroscopy (XPS) analysis results of the product, it was shown that the introduction of MnSO4 in the form of solution would generate Na0.55Mn2O4·1.5H2O with strong catalytic oxidation ability in the aerobic alkaline solution, whereas the catalytic effect of the other product MnOOH is not satisfactory. Under the optimal reaction conditions of temperature 90°C, As/Mn molar ratio 12.74:1, air flow rate 1.0 L/min, and stirring speed 300 r/min, As(III) can be completely oxidized after 2 hr reaction. The excellent catalytic oxidation ability of MnSO4 on As(III) was mainly attributed to the indirect oxidation of As(III) by the product Na0.55Mn2O4·1.5H2O. This study shows a convenient and efficient process for the oxidation of As(III) in alkali solutions, which has potential application value for the pre-oxidation of arsenic-containing solution or the detoxification of As(III).


Assuntos
Álcalis , Arsênio , Catálise , Oxirredução , Espectroscopia Fotoeletrônica
10.
Sci Total Environ ; 861: 161090, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36586767

RESUMO

This study investigated poplar pretreatments by chemi-mechanical pulping (CMP) under different beating degrees and alkali concentrations. The enzyme-mediated hydrolysis of pretreated poplar was enhanced by deacetylation and delignification. Meanwhile, the remaining lignin residues were used to produce lignin/polyacrylonitrile (PAN) fiber mats by electrospinning. These mats exhibited excellent mechanical and UV-blocking performance when the lignin was obtained from pulps under milder alkali concentrations (5 g/L). 31P nuclear magnetic resonance (31P NMR) and two-dimensional heteronuclear single-quantum correlation nuclear magnetic resonance (2D HSQC NMR) data revealed that increasing the beating degree at low alkali concentration during the CMP process led to the cleavage of ß-O-4' interunit linkages and re-condensation in lignin, releasing several phenolic groups. Lignin with more linear ß-O-4' interunit linkages and lesser phenolic groups, obtained from treatment of CMP with lower alkali concentration (5 g/L) and beating degree (20°SR), resulted in the corresponding lignin/PAN fiber mats exhibiting better mechanical performance. Further, lignin, along with the increased phenolic-OH and COOH, and p-hydroxybenzoate (PB) units with a more extended conjugate structure, derived from CMP under lower alkali concentration (5 g/L) and higher beating degree (45°SR), led to a stronger ultraviolet (UV) absorption in the corresponding lignin/PAN mats. To summarize, this study reports a mild and low-pollution biomass pretreatment method (CMP) that can efficiently regulate the lignin structure and exhibit efficient anti-ultraviolet properties. The corresponding UV-blocking fiber mats can be potentially used as materials for wearable fabrics.


Assuntos
Lignina , Populus , Lignina/química , Açúcares , Resinas Acrílicas , Hidrólise , Populus/química , Álcalis
11.
Environ Res ; 218: 115002, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509117

RESUMO

To remove contaminants and pollutants from wastewater systems, adsorbents are widely used. Geopolymers offer a convenient alternative as adsorbents in the wastewater treatment system as they are low-cost, environmentally friendly, and safer. A new adsorbent material prepared by coating nano copper oxide on the surface of alkali-activated metakaolin showed a higher ability to remove methylene blue (MB) dye from wastewater, thus making them attractive in dye removal applications. First, nano copper oxide was prepared by sol gel method and metakaolin geopolymer was produced using sodium silicate solution having a Ms value of 1.1 (M). Afterwards, nano copper oxide (MC) was coated on the surface of the geopolymer. The ability of MB dye to bind to both pristine (Mp, MCp) and powder forms (Mpr, MCpr) of the geopolymer was evaluated. X-ray diffraction revealed that the halo found at 27.40°-31.077° (2θvalue) in both samples related to amorphous gel's composition and the major peaks of copper oxide in MCpr were sited at a 2θ value of 35.45° and 38.88°.The dye removal efficiency can be inferred from the increased adsorption capacity of 11.9 mg/g (Mp) and 14.4 mg/g (MCp) for the monolith form and 81.43 mg/g (Mpr) and 87.82 mg/g (MCpr) for the powder form. The adsorption of reused active sites was 73% for Mpr and 83% for MCpr up to the fifth cycle after regeneration by heat treatment at 400 °C. The models that best suited the adsorption data were pseudo-second-order and Freundlich isotherms, which indicated possible chemisorption with intra-particle diffusion. Furthermore, the binding energy is shifted to lower value in XPS spectra due to dye adsorption arising from electrostatic attraction. A higher electron density is formed due to interaction with an equal contribution of silanol Si-O-H and Si-O-Na/Cu(O1s). The adsorbents are effective over a wide pH range and their improved recycling capability increases their applications for a wide range of uses.


Assuntos
Poluentes Químicos da Água , Pós , Poluentes Químicos da Água/análise , Álcalis , Adsorção , Cinética , Azul de Metileno/química , Óxidos/análise , Concentração de Íons de Hidrogênio
12.
Environ Res ; 216(Pt 1): 114436, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183791

RESUMO

Agro-waste having lignocellulosic biomass is considered most effective (heating value 16 MJ/kg) for energy production through anaerobic digestion (AD). However, recalcitrant lignocellulosic fraction in agro-waste obstructs its biotransformation and is a rate-limiting step of the process. This study investigated the effects of hydrothermal and thermal-alkaline pretreatment on anaerobic co-digestion of wheat straw (WS). The hydrothermal pretreatment of WS revealed that 60 min was the best pretreatment time to achieve the highest substrate solubilization. It was employed for thermal-alkali pretreatment at variable temperatures and NaOH doses. Thermal-alkali pretreatment at 125°C-7% NaOH shows the highest (34%) biogas yield of 662 mL/gVS, followed by 646 mL/gVS biogas yield at 150°C-1% NaOH assay (31% higher) over control. Although the 125°C-7% NaOH assay achieved the highest biogas yield, the 150°C-1% NaOH assay was found more feasible considering the cost of a 6% higher chemical used in the earlier assay. The thermal-alkali pretreatment was observed to reduce the formation of recalcitrant compounds (HMF, Furfural) and increase the buffering capacity of the slurry over hydrothermal pretreatment. Principal component analysis (PCA) of the various pretreatment and AD operational parameters was carried out to study their in-depth correlation. Moreover, a kinetic study of the experimental data was performed to observe the biodegradation trend and compare it with the Modified Gompertz (MG) and First Order (FO) models.


Assuntos
Biocombustíveis , Triticum , Triticum/química , Anaerobiose , Álcalis , Metano , Hidróxido de Sódio , Digestão
13.
Food Res Int ; 162(Pt A): 111989, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461296

RESUMO

This study was conducted to investigate the dynamic regulation of alkali infiltration by different metal compounds during the pickling of preserved eggs. With the increased pickling time, the alkalinity of the pickling solution decreased, while the pH of preserved egg white increased firstly, then decreased, and finally increased again. The metal ions corresponding to the added metal compounds (CuSO4, CuSO4/ZnSO4 and PbO) underwent a complex migration with pickling time, and their content gradually increased in eggshell and yolk, but showed complex changes in egg white. The addition of metal compounds could produce a plugging effect. The main components of the black spots on eggshells of preserved eggs pickled by CuSO4, CuSO4/ZnSO4, and PbO were Cu2S, Cu2S/ZnS and PbS, respectively. In short, different metal compounds were combined with H2S to form insoluble compounds to block eggshell stomata, mesh pores and corrosion pores, thereby dynamically regulating the penetration of alkali.


Assuntos
Álcalis , Ovos , Animais , Clara de Ovo , Casca de Ovo , Preservação Biológica
14.
Food Res Int ; 162(Pt B): 112066, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36461321

RESUMO

Oil-in-water emulsions are widely used in the food industry; however, lipids are often easily oxidized, which may adversely affect food quality. Herein, we investigated the effects of alkali treatment, free radical induction, and carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS)-mediated synthetic methods on the structures and antioxidant properties of soy protein isolate (SPI)-gallic acid (GA) conjugates and the physical stabilities and protein-lipid co-oxidation properties of the resulting emulsions. These three methods are well established; however, their effects on the same protein-phenolic compound system have not been directly compared. Additionally, the co-oxidation of proteins and oils in emulsions remains unexplored. Alkali treatment yielded superior antioxidant properties compared to those obtained using free radicals or EDC/NHS, as this method was more likely to yield CS bonds and resulted in an increased quantity of grafted GA. Spectroscopic analysis showed that alkali treatment promoted GA oxidation and thereby increased GA-protein interactions and the quenching of tryptophan fluorescence. Correspondingly, EDC/NHS-mediated conjugation retained the activity of the hydroxyl groups of GA to the largest extent. Moreover, the grafting of GA improved the physical and oxidative stabilities of the emulsions. In particular, EDC/NHS-mediated conjugation produced an emulsion with optimal oxidative stability owing to its effective inhibition of lipid and protein oxidation. Conversely, the conjugates synthesized via alkali treatment and free radical induction displayed less inhibition of lipid oxidation and promoted protein oxidation. In conclusion, optimized protein-phenolic compound conjugates for use in developing nutritional fortification products with longer shelf lives can be obtained by using appropriate synthetic methods.


Assuntos
Polifenóis , Proteínas de Soja , Emulsões , Antioxidantes , Ácido Gálico , Fenóis , Óleos Vegetais , Álcalis
15.
J Chem Phys ; 157(20): 204108, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36456245

RESUMO

Convolutional neural networks are constructed and validated for the crystal structure classification of simple binary salts such as the alkali halides. The inputs of the neural network classifiers are the local bond orientational order parameters of Steinhardt, Nelson, and Ronchetti [Phys. Rev. B 28, 784 (1983)], which are derived solely from the relative positions of atoms surrounding a central reference atom. This choice of input gives classifiers that are invariant to density, increasing their transferability. The neural networks are trained and validated on millions of data points generated from a large set of molecular dynamics (MD) simulations of model alkali halides in nine bulk phases (liquid, rock salt, wurtzite, CsCl, 5-5, sphalerite, NiAs, AntiNiAs, and ß-BeO) across a range of temperatures. One-dimensional time convolution is employed to filter out short-lived structural fluctuations. The trained neural networks perform extremely well, with accuracy up to 99.99% on a balanced validation dataset constructed from millions of labeled bulk phase structures. A typical analysis using the neural networks, including neighbor list generation, order parameter calculation, and class inference, is computationally inexpensive compared to MD simulations. As a demonstration of their accuracy and utility, the neural network classifiers are employed to follow the nucleation and crystal growth of two model alkali halide systems, crystallizing into distinct structures from the melt. We further demonstrate the classifiers by implementing them in automated MD melting point calculations. Melting points for model alkali halides using the most commonly employed rigid-ion interaction potentials are reported and discussed.


Assuntos
Redes Neurais de Computação , Cloreto de Sódio , Álcalis , Simulação de Dinâmica Molecular , Cristalização
16.
Cells ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497153

RESUMO

PURPOSE: To investigate the role of macrophage autophagy in the process of corneal neovascularization (CNV). METHODS: In vivo, mice CNV was induced by alkali injury and compared with rapamycin-treated alkaline burn mice. Western blot was used to determine the autophagic status of the macrophages. We quantified the levels of macrophage polarization markers (CD86, INOS, CD163, CD206) by RT-qPCR and measured inflammatory factors through ELISA (IL-6 and TNF-α) in the early phase after injury. In vitro, the human umbilical vein endothelial cells (HUVECs) were co-cultured with macrophage-conditioned medium (MCM) induced by the THP-1 cell line to simulate the neovascular microenvironment. The vascularization capacity of HUVECs was examined using the CCK-8 assay kit, tube formation assay, and scratch wound-healing assay. RESULTS: In vivo, the mRNA expression of Beclin-1 and ATG5 was increased, together with the upregulation of M1 macrophage markers (CD86 and INOS) in corneas after early alkali injury. The area of CNV is effectively relieved in the rapamycin-treated mice. In vitro, upregulation of autophagy level by pretreatment with 3-methyladenine (3-MA) could increase the mRNA expression of the M1 markers. Macrophage-conditioned medium with impaired autophagy contains more IL-6 and TNF-α compared to the M1 macrophage-conditioned medium, promoting HUVEC proliferation, migration, and tube formation capacity. Enhancing the autophagy level with rapamycin (RAPA) could reverse this phenomenon. CONCLUSIONS: Impaired autophagy promoted macrophage polarization toward M1 type and increased the expression of IL-6 and TNF-α, which led to severe CNV. Using the autophagy activator (RAPA) could effectively alleviate CNV by promoting autophagy.


Assuntos
Autofagia , Neovascularização da Córnea , Macrófagos , Animais , Humanos , Camundongos , Álcalis/efeitos adversos , Neovascularização da Córnea/induzido quimicamente , Neovascularização da Córnea/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Interleucina-6/metabolismo , RNA Mensageiro/metabolismo , Sirolimo/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Macrófagos/metabolismo
17.
BMC Genomics ; 23(1): 824, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513970

RESUMO

BACKGROUND: The solute carrier 4 (SLC4) gene family is involved in a variety of physiological processes in organisms and is essential for maintaining acid-base balance in the body. The slc4 genes have been extensively studied in mammals, and they play important roles in intracellular and extracellular pH regulation and in the secretion and uptake of HCO3- and other ions (Na+ and Cl-) between transepithelial cells in different tissues. This study identified and characterized the entire slc4 gene family of Triplophysa dalaica. RESULTS: Fifteen slc4 genes were identified in the whole genome of Triplophysa dalaica in this study, including five copies of Na+-independent Cl-/HCO3- transporters, eight members of Na+-dependent HCO3- transporters, and two genes coding Na+-coupled borate transporters. The chromosomal location information, isoelectric points, and molecular weights of the 15 slc4 genes were analyzed. The results for gene structure, domain analysis, and phylogenetic relationships of this gene family showed that the slc4 genes (except for slc4a9, which is missing in teleosts) are significantly expanded in teleosts compared to higher vertebrates. This phenomenon suggests that the slc4 gene family played an important role in the transition from aquatic to terrestrial animals. RT-PCR results showed that different slc4 genes showed diversified expression patterns in the tissues of T. dalaica. For osmotic pressure regulating organs, slc4a1b, slc4a4b, slc4a7, and slc4a11a were highly expressed in gills. In the kidney, slc4a1a, slc4a3, and slc4a10b were highly expressed, suggesting that the slc4 genes play a specific role in the salinity adaptation of T. dalaica. Our study has deciphered the biological roles of the slc4 genes in maintaining ionic and acid-base homeostasis in teleost fishes and provides a foundation for future exploration of the highly differentiated gene family in Triplophysa. CONCLUSIONS: The results are relevant for the breeding of alkali-tolerant varieties in saline-alkali areas for aquaculture. Our findings have important implications for the adaptation process of freshwater species to saline-alkali water.


Assuntos
Cipriniformes , Salinidade , Animais , Filogenia , Cipriniformes/genética , Sódio/metabolismo , Álcalis , Mamíferos/metabolismo
18.
BMC Plant Biol ; 22(1): 592, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36526980

RESUMO

BACKGROUND: Nitraria sibirica Pall. is a halophytic shrub with strong environmental adaptability that can survive in extremely saline-alkali and drought-impacted environments. Gene expression analysis aids in the exploration of the molecular mechanisms of plant responses to abiotic stresses. RT-qPCR is the most common technique for studying gene expression. Stable reference genes are a prerequisite for obtaining accurate target gene expression results in RT-qPCR analysis. RESULTS: In this study, a total of 10 candidate reference genes were selected from the transcriptome of N. sibirica, and their expression stability in leaves and roots under different treatment conditions (salt, alkali, drought, cold, heat and ABA) was evaluated with the geNorm, NormFinder, BestKeeper, comparative ΔCt and RefFinder programs. The results showed that the expression stability of the candidate reference genes was dependent on the tissue and experimental conditions tested. ACT7 combined with R3H, GAPDH, TUB or His were the most stable reference genes in the salt- or alkali-treated leaves, salt-treated roots and drought-treated roots, respectively; R3H and GAPDH were the most suitable combination for drought-treated leaves, heat-treated root samples and ABA-treated leaves; DIM1 and His maintained stable expression in roots under alkali stress; and TUB combined with R3H was stable in ABA-treated roots. TBCB and GAPDH exhibited stable expression in heat-treated leaves; TBCB, R3H, and ERF3A were stable in cold-treated leaves; and the three most stable reference genes for cold-treated roots were TBCB, ACT11 and DIM1. The reliability of the selected reference genes was further confirmed by evaluating the expression patterns of the NsP5CS gene under the six treatment conditions. CONCLUSION: This study provides a theoretical reference for N. sibirica gene expression standardization and quantification under various abiotic stress conditions and will help to reveal the molecular mechanisms that confer stress tolerance to N. sibirica.


Assuntos
Genes de Plantas , Magnoliopsida , Genes de Plantas/genética , Regulação da Expressão Gênica de Plantas , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase em Tempo Real/métodos , Estresse Fisiológico/genética , Padrões de Referência , Magnoliopsida/genética , Perfilação da Expressão Gênica/métodos , Cloreto de Sódio , Álcalis
19.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555693

RESUMO

Saline-alkali stress is a widespread adversity that severely affects plant growth and productivity. Saline-alkaline soils are characterized by high salt content and high pH values, which simultaneously cause combined damage from osmotic stress, ionic toxicity, high pH and HCO3-/CO32- stress. In recent years, many determinants of salt tolerance have been identified and their regulatory mechanisms are fairly well understood. However, the mechanism by which plants respond to comprehensive saline-alkali stress remains largely unknown. This review summarizes recent advances in the physiological, biochemical and molecular mechanisms of plants tolerance to salinity or salt- alkali stress. Focused on the progress made in elucidating the regulation mechanisms adopted by plants in response to saline-alkali stress and present some new views on the understanding of plants in the face of comprehensive stress. Plants generally promote saline-alkali tolerance by maintaining pH and Na+ homeostasis, while the plants responding to HCO3-/CO32- stress are not exactly the same as high pH stress. We proposed that pH-tolerant or sensitive plants have evolved distinct mechanisms to adapt to saline-alkaline stress. Finally, we highlight the areas that require further research to reveal the new components of saline-alkali tolerance in plants and present the current and potential application of key determinants in breed improvement and molecular breeding.


Assuntos
Álcalis , Tolerância ao Sal , Melhoramento Vegetal , Plantas , Estresse Salino , Solução Salina
20.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36555786

RESUMO

Saline-alkali soil has posed challenges to the growth of agricultural crops, while polyploidy often show greater adaptability in diverse and extreme environments including saline-alkali stress, but its defense mechanisms in rice remain elusive. Herein, we explored the mechanisms of enhanced saline-alkali tolerance of autotetraploid rice 93-11T relative to diploid rice 93-11D, based on physiological, hormonal and transcriptomic profilings. Physiologically, the enhanced saline-alkali tolerance in 93-11T was manifested in higher soluble sugar accumulation and stronger superoxide dismutase (SOD) and peroxidase (POD) activities in leaves during 24 h after saline-alkali shock. Furthermore, various hormone levels in leaves of 93-11T altered greatly, such as the negative correlation between salicylic acid (SA) and the other four hormones changed to positive correlation due to polyploidy. Global transcriptome profiling revealed that the upregulated differentially expressed genes (DEGs) in leaves and roots of 93-11T were more abundant than that in 93-11D, and there were more DEGs in roots than in leaves under saline-alkali stress. Genes related to phytohormone signal transduction of auxin (AUX) and SA in roots, lignin biosynthesis in leaves or roots, and wax biosynthesis in leaves were obviously upregulated in 93-11T compared with 93-11D under saline-alkali condition. Collectively, 93-11T subjected to saline-alkali stress possibly possesses higher osmotic regulation ability due to cuticular wax synthesis, stronger negative regulation of reactive oxygen species (ROS) production by increasing the SA levels and maintaining relative lower levels of IAA, and higher antioxidant capacity by increasing activities of SOD and POD, as well as lignin biosynthesis. Our research provides new insights for exploring the mechanisms of saline-alkali tolerance in polyploid rice and discovering new gene targets for rice genetic improvement.


Assuntos
Oryza , Transcriptoma , Lignina , Álcalis , Perfilação da Expressão Gênica , Antioxidantes , Superóxido Dismutase/metabolismo , Poliploidia , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...