Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.442
Filtrar
1.
Molecules ; 27(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36364188

RESUMO

Mayaro virus (MAYV) is an emerging arbovirus with an increasing circulation across the Americas. In the present study, we evaluated the potential antiviral activity of the following natural compounds against MAYV and other arboviruses: Sanguinarine, (R)-Shikonin, Fisetin, Honokiol, Tanshinone IIA, and α-Mangostin. Sanguinarine and Shikonin showed significant cytotoxicity, whereas Fisetin, Honokiol, Tanshinone IIA, and α-Mangostin were well tolerated in all the cell lines tested. Honokiol and α-Mangostin treatment protected Vero-E6 cells against MAYV-induced damage and resulted in a dose-dependent reduction in viral progeny yields for each of the MAYV strains and human cell lines assessed. These compounds also reduced MAYV viral RNA replication in HeLa cells. In addition, Honokiol and α-Mangostin disrupted MAYV infection at different stages of the virus life cycle. Moreover, Honokiol and α-Mangostin decreased Una, Chikungunya, and Zika viral titers and downmodulated the expression of E1 and nsP1 viral proteins from MAYV, Una, and Chikungunya. Finally, in Honokiol- and α-Mangostin-treated HeLa cells, we observed an upregulation in the expression of type I interferon and specific interferon-stimulated genes, including IFNα, IFNß, MxA, ISG15, OAS2, MDA-5, TNFα, and IL-1ß, which may promote an antiviral cellular state. Our results indicate that Honokiol and α-Mangostin present potential broad-spectrum activity against different arboviruses through different mechanisms.


Assuntos
Alphavirus , Arbovírus , Febre de Chikungunya , Infecção por Zika virus , Zika virus , Humanos , Células HeLa , Alphavirus/genética , Replicação Viral , Antivirais/farmacologia
2.
Viruses ; 14(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36366489

RESUMO

Understanding the interaction between viruses and ecosystems in areas with or without anthropic interference can contribute to the organization of public health services, as well as prevention and disease control. An arbovirus survey was conducted at Caxiuanã National Forest, Pará, Brazil, where 632 local residents, 338 vertebrates and 15,774 pools of hematophagous arthropods were investigated. Neutralization antibodies of the Venezuelan Equine Encephalitis virus, subtype IIIA, Mucambo virus (MUCV) were detected in 57.3% and 61.5% of humans and wild vertebrates, respectively; in addition, genomic fragments of MUCV were detected in pool of Uranotaenia (Ura.) geometrica. The obtained data suggest an enzootic circulation of MUCV in the area. Understanding the circulation of endemic and neglected arboviruses, such as MUCV, represents an important health problem for the local residents and for the people living in the nearby urban centers.


Assuntos
Alphavirus , Arbovírus , Culicidae , Vírus da Encefalite Equina Venezuelana , Animais , Humanos , Vírus da Encefalite Equina Venezuelana/genética , Brasil/epidemiologia , Ecossistema , Vertebrados
3.
Adv Virus Res ; 113: 25-88, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36307168

RESUMO

Alphaviruses are a large group (>30 species) of enveloped, positive-strand RNA viruses. The re-emergence of mosquito-transmitted alphaviruses associated with human diseases ranging from severe and potentially fatal neurological disease to chronic arthritic disease highlights the need to understand the biology and pathogenesis of alphaviruses. Here, we review the development and use of animal models of alphavirus transmission and human disease, and discuss areas for continued refinement of these models including possible avenues for future investigation.


Assuntos
Infecções por Alphavirus , Alphavirus , Animais , Humanos , Infecções por Alphavirus/patologia , Alphavirus/genética , Modelos Animais de Doenças
4.
Virol J ; 19(1): 170, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309730

RESUMO

BACKGROUND: Several studies have demonstrated neutralizing antibodies to be highly effective against alphavirus infection in animal models, both prophylactically and remedially. In most studies, neutralizing antibodies have been evaluated for their ability to block viral entry in vitro but recent evidence suggests that antibody inhibition through other mechanisms, including viral budding/release, significantly contributes to viral control in vivo for a number of alphaviruses. RESULTS: We describe a BSL-2, cell-based, high-throughput screening system that specifically screens for inhibitors of alphavirus egress using chikungunya virus (CHIKV) and Mayaro virus (MAYV) novel replication competent nano-luciferase (nLuc) reporter viruses. Screening of both polyclonal sera and memory B-cell clones from CHIKV immune individuals using the optimized assay detected several antibodies that display potent anti-budding activity. CONCLUSIONS: We describe an "anti-budding assay" to specifically screen for inhibitors of viral egress using novel CHIKV and MAYV nLuc reporter viruses. This BSL-2 safe, high-throughput system can be utilized to explore neutralizing "anti-budding" antibodies to yield potent candidates for CHIKV and MAYV therapeutics and prophylaxis.


Assuntos
Infecções por Alphavirus , Alphavirus , Febre de Chikungunya , Vírus Chikungunya , Animais , Ensaios de Triagem em Larga Escala , Vírus Chikungunya/fisiologia , Anticorpos Neutralizantes , Internalização do Vírus , Anticorpos Antivirais
5.
Viruses ; 14(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36298726

RESUMO

Getah virus (GETV), in the genus Alphavirus and the family Togaviridae, has been detected throughout the world. GETV causes high morbidity and mortality in newborn piglets, entailing serious economic losses. Therefore, the experimental work on GETV detection is necessary. However, due to the influence of a variety of unavoidable factors, the ELISA test for the primary screening of animal diseases has low accuracy in detection results. Therefore, we optimized a recombinant E2 (rE2) protein-based enzyme-linked immunosorbent assay (ELISA) for the detection of GETV antibodies in pig serum. The E2 protein was successfully expressed and purified with SDS-PAGE. A Western blotting analysis of sera from infected pigs showed strong reaction with a viral antigen of ~46 KDa corresponding to the E2 glycoproteins. By using chessboard titration and comparing the P/N values, we found that the optimal concentration of coated antigen was found to be 24.5 µg/mL, and the optimal dilution of serum specimens was 1:100. The best working dilution of the horseradish peroxidase (HRP)-conjugated goat anti-pig immunoglobulin (IgG) was 1:5000. The optimal coating conditions were 12 h at 4 °C. The optimal incubation conditions for serum specimens, blocking, and reaction with the secondary antibody were all 1 h at 37 °C. We also investigated the seroprevalence of GETV in 133 serum specimens collected in Eastern China, and 37.59% of the samples tested positive for anti-GETV IgG antibodies, indicating that the seroprevalence of GETV is high in pig populations in China. The seroprevalence was significantly lower in spring (April; 24.24%, 16/66) than in autumn (October; 50.75%, 34/67), which suggested that the presence of anti-GETV antibodies in pigs was seasonal. In conclusion, we improved an rE2 ELISA that detected pig antibodies against GETV after experimental and natural infections. This should be useful in the diagnosis and surveillance of GETV infections.


Assuntos
Alphavirus , Suínos , Animais , Estudos Soroepidemiológicos , Ensaio de Imunoadsorção Enzimática/métodos , Antígenos Virais , Anticorpos Antivirais , Proteínas Recombinantes , Peroxidase do Rábano Silvestre , Imunoglobulina G
6.
Viruses ; 14(10)2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36298749

RESUMO

Since the intricate and complex steps in pathogenesis and host-viral interactions of arthropod-borne viruses or arboviruses are not completely understood, the multi-omics approaches, which encompass proteomics, transcriptomics, genomics and metabolomics network analysis, are of great importance. We have reviewed the omics studies on mosquito-borne viruses of the Togaviridae, Peribuyaviridae and Phenuiviridae families, specifically for Chikungunya, Mayaro, Oropouche and Rift Valley Fever viruses. Omics studies can potentially provide a new perspective on the pathophysiology of arboviruses, contributing to a better comprehension of these diseases and their effects and, hence, provide novel insights for the development of new antiviral drugs or therapies.


Assuntos
Alphavirus , Arbovírus , Orthobunyavirus , Phlebovirus , Animais , Humanos , Arbovírus/genética , Alphavirus/genética , Orthobunyavirus/genética , Antivirais/farmacologia
7.
J Gen Virol ; 103(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215156

RESUMO

Mayaro virus (MAYV) is an emerging New World alphavirus (genus Alphavirus, family Togaviridae) that causes acute multiphasic febrile illness, skin rash, polyarthritis and occasional severe clinical phenotypes. The virus lifecycle alternates between invertebrate and vertebrate hosts. Here we characterize the replication features, cell entry, lifecycle and virus-related cell pathology of MAYV using vertebrate and invertebrate in vitro models. Electron-dense clathrin-coated pits in infected cells and reduced viral production in the presence of dynasore, ammonium chloride and bafilomycin indicate that viral entry occurs through pH-dependent endocytosis. Increase in FITC-dextran uptake (an indicator of macropinocytosis) in MAYV-infected cells, and dose-dependent infection inhibition by 5-(N-ethyl-N-isopropyl) amiloride (a macropinocytosis inhibitor), indicated that macropinocytosis is an additional entry mechanism of MAYV in vertebrate cells. Acutely infected vertebrate and invertebrate cells formed cytoplasmic or membrane-associated extracytoplasmic replication complexes. Mosquito cells showed modified hybrid cytoplasmic vesicles that supported virus replication, nucleocapsid production and maturation. Mature virus particles were released from cells by both exocytosis and budding from the cell membrane. MAYV replication was cytopathic and associated with induction of apoptosis by the intrinsic pathway, and later by the extrinsic pathway in infected vertebrate cells. Given that MAYV is expanding its geographical existence as a potential public health problem, this study lays the foundation for biological understanding that will be valuable for therapeutic and preventive interventions.


Assuntos
Alphavirus , Culicidae , Alphavirus/genética , Amilorida/farmacologia , Cloreto de Amônio , Animais , Biologia , Clatrina , Vertebrados
8.
J Vet Med Sci ; 84(12): 1605-1609, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36310045

RESUMO

Getah virus (GETV), an arthropod-borne virus transmitted by mosquitoes, has been isolated from several animals. GETV infection in horses shows clinical signs such as fever, rash, and edema in the leg. Noma horses are one of the eight Japanese native horses. The present study aimed to clarify the occurrence of GETV infection in Noma horses. Serum samples collected from Noma horses were analyzed using a virus neutralization test and enzyme-linked immunosorbent assay and showed that the anti-GETV antibody titers in the samples collected in 2017 were significantly higher than those collected in 2012. We concluded that a seroconversion of anti-GETV antibodies was occurred in the Noma horse population around 2012, providing evidence of the GETV epidemic in Japan circa 2012.


Assuntos
Infecções por Alphavirus , Alphavirus , Culicidae , Doenças dos Cavalos , Noma , Cavalos , Animais , Infecções por Alphavirus/diagnóstico , Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/veterinária , Japão/epidemiologia , Soroconversão , Noma/veterinária , Anticorpos Antivirais
9.
Expert Rev Anti Infect Ther ; 20(12): 1551-1566, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36305549

RESUMO

INTRODUCTION: Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV) are mosquito-borne New World alphaviruses that cause encephalitis in equids and humans. These viruses can cause severe disease and death, as well as long-term severe neurological symptoms in survivors. Despite the pathogenesis and weaponization of these viruses, there are no approved therapeutics for treating infection. AREAS COVERED: In this review, we describe the molecular pathogenesis of these viruses, discuss host-pathogen interactions needed for viral replication, and highlight new avenues for drug development with a focus on host-targeted approaches. EXPERT OPINION: Current approaches have yielded some promising therapeutics, but additional emphasis should be placed on advanced development of existing small molecules and pursuit of pan-encephalitic alphavirus drugs. More research should be conducted on EEEV and WEEV, given their high lethality rates.


Assuntos
Alphavirus , Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina , Viroses , Animais , Humanos , Cavalos , Vírus da Encefalite Equina Venezuelana/fisiologia , Vírus da Encefalite Equina do Oeste/fisiologia , Encefalomielite Equina/tratamento farmacológico
10.
Life Sci Alliance ; 5(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36137747

RESUMO

The Golgi apparatus (GA) in mammalian cells is pericentrosomally anchored and exhibits a stacked architecture. During infections by members of the alphavirus genus, the host cell GA is thought to give rise to distinct mobile pleomorphic vacuoles known as CPV-II (cytopathic vesicle-II) via unknown morphological steps. To dissect this, we adopted a phased electron tomography approach to image multiple overlapping volumes of a cell infected with Venezuelan equine encephalitis virus (VEEV) and complemented it with localization of a peroxidase-tagged Golgi marker. Analysis of the tomograms revealed a pattern of progressive cisternal bending into double-lamellar vesicles as a central process underpinning the biogenesis and the morphological complexity of this vacuolar system. Here, we propose a model for the conversion of the GA to CPV-II that reveals a unique pathway of intracellular virus envelopment. Our results have implications for alphavirus-induced displacement of Golgi cisternae to the plasma membrane to aid viral egress operating late in the infection cycle.


Assuntos
Alphavirus , Vírus da Encefalite Equina Venezuelana , Animais , Complexo de Golgi , Cavalos , Mamíferos , Morfogênese , Peroxidases , Vacúolos
11.
Int Rev Cell Mol Biol ; 372: 97-157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36064268

RESUMO

Self-replicating RNA viral vectors have been engineered for both prophylactic and therapeutic applications. Mainly the areas of infectious diseases and cancer have been targeted. Both positive and negative strand RNA viruses have been utilized including alphaviruses, flaviviruses, measles viruses and rhabdoviruses. The high-level of RNA amplification has provided efficient expression of viral surface proteins and tumor antigens. Immunization studies in animal models have elicit robust neutralizing antibody responses. In the context of infectious diseases, immunization with self-replicating RNA viral vectors has provided protection against challenges with lethal doses of pathogens in animal models. Similarly, immunization with vectors expressing tumor antigens has resulted in tumor regression and eradication and protection against tumor challenges in animal models. The transient nature and non-integration of viral RNA into the host genome are ideal features for vaccine development. Moreover, self-replicating RNA viral vectors show great flexibility as they can be applied as recombinant viral particles, RNA replicons or DNA replicon plasmids. Several clinical trials have been conducted especially in the area of cancer immunotherapy.


Assuntos
Alphavirus , Neoplasias , Alphavirus/genética , Animais , Antígenos de Neoplasias , Vetores Genéticos , Neoplasias/terapia , RNA
12.
Front Immunol ; 13: 1005586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172361

RESUMO

Alphaviruses contain many human and animal pathogens, such as CHIKV, SINV, and VEEV. Accumulating evidence indicates that innate immunity plays an important role in response to alphaviruses infection. In parallel, alphaviruses have evolved many strategies to evade host antiviral innate immunity. In the current review, we focus on the underlying mechanisms employed by alphaviruses to evade cGAS-STING, IFN, transcriptional host shutoff, translational host shutoff, and RNAi. Dissecting the detailed antiviral immune evasion mechanisms by alphaviruses will enhance our understanding of the pathogenesis of alphaviruses and may provide more effective strategies to control alphaviruses infection.


Assuntos
Infecções por Alphavirus , Alphavirus , Animais , Antivirais , Humanos , Evasão da Resposta Imune , Nucleotidiltransferases
13.
Viruses ; 14(9)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36146651

RESUMO

The increased frequency of extreme weather events due to climate change has complicated the epidemiological pattern of mosquito-borne diseases, as the host and vector dynamics shift to adapt. However, little is known about the seroprevalence of common mosquito-borne virus infections in horses in Australia. In this study, serological surveys for multiple alphaviruses were performed on samples taken from 622 horses across two horse populations (racehorses and horses residing on The University of Queensland (UQ) campus) in Queensland using the gold standard virus neutralization test. As is the case in humans across Australia, Ross River virus (RRV) is the most common arbovirus infection in horses, followed by Barmah Forest virus, with an overall apparent seroprevalence of 48.6% (302/622) and 4.3% (26/607), respectively. Horses aged over 6 years old (OR 1.86, p = 0.01) and residing at UQ (OR 5.8, p < 0.001) were significantly associated with seroconversion to RRV. A significant medium correlation (r = 0.626, p < 0.001) between RRV and Getah virus (GETV) neutralizing antibody titers was identified. Collectively, these results advance the current epidemiological knowledge of arbovirus exposure in a susceptible host in Australia. The potential use of horses as sentinels for arbovirus monitoring should be considered. Furthermore, since GETV is currently exotic to Australia, antibodies cross-reactivity between RRV and GETV should be further investigated for cross-protection, which may also help to inform vaccine developments.


Assuntos
Infecções por Alphavirus , Alphavirus , Culicidae , Vacinas , Idoso , Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/veterinária , Animais , Anticorpos Neutralizantes , Austrália , Criança , Cavalos , Humanos , Mosquitos Vetores , Queensland/epidemiologia , Vírus do Rio Ross , Estudos Soroepidemiológicos
14.
Fish Shellfish Immunol ; 129: 182-190, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36058437

RESUMO

Salmonid alphavirus (SAV) infection of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) causes pancreas disease (PD) with typical inflammatory responses, such as necrosis of the exocrine pancreas, cardiomyopathy and skeletal myopathy. However, the pathogenic mechanism underlying SAV infection is still unclear. Inflammation may cause damage to the body, but it is a defense response against infection by pathogenic microorganisms, of which nuclear factor-kappa B (NF-κB) is the main regulator. This study revealed that SAV can activate NF-κB, of which the viral nonstructural protein Nsp2 is the major activating protein. SAV activates the NF-κB signaling pathway by simultaneously up-regulating TLR3, 7, 8 and then the expression of the signaling molecule myeloid differentiation factor 88 (Myd88) and tumor necrosis factor receptor-associated factor 6 (TRAF6). We found that Nsp2 can induce IκB degradation and p65 phosphorylation and transnucleation, and activate NF-κB downstream inflammatory cytokines. Nsp2 may simultaneously activate NF-κB through TLR3,7,8-dependent signaling pathways. Overexpression of Nsp2 can up-regulate mitochondrial antiviral signaling protein (MAVS) and then promote the expression of IFNa1 and antiviral protein Mx, which inhibits viral replication. This study shows that Nsp2 acts as a key activator protein for the NF-κB signaling pathway, which induces inflammation post-SAV infection. This study systematically analyzes the molecular mechanism of SAV activation of the NF-κB signaling pathway, and provides a theoretical basis for revealing the mechanism of innate immune response and inflammatory injury caused by SAV.


Assuntos
Infecções por Alphavirus , Alphavirus , Doenças dos Peixes , Oncorhynchus mykiss , Salmo salar , Alphavirus/fisiologia , Infecções por Alphavirus/veterinária , Animais , Antivirais , Citocinas/metabolismo , Inflamação/veterinária , Fator 88 de Diferenciação Mieloide/metabolismo , Proteínas de Resistência a Myxovirus/metabolismo , NF-kappa B/metabolismo , Oncorhynchus mykiss/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 3 Toll-Like/metabolismo , Proteínas não Estruturais Virais
15.
J Ethnopharmacol ; 299: 115685, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36067840

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mayaro fever is a neglected tropical disease. The region of the most significant circulation of the Mayaro virus (MAYV) is the Amazon rainforest, situated in remote areas that are difficult to access and where medicine is scarce. Thus, the regional population uses plants as an alternative for the treatment of various diseases. Fridericia chica is an endemic plant of tropical regions used in traditional medicine to treat fever, malaise, inflammation, and infectious diseases such as hepatitis B. However, its antiviral activity is poorly understood. AIM OF THE STUDY: This study aimed to investigate the anti-MAYV activity of the hydroethanolic extract of the leaves of Fridericia chica (HEFc) in mammalian cells and its possible mechanism of action. MATERIALS AND METHODS: The antiviral activity of HEFc was studied using Vero cell lines against MAYV. The cytotoxicity and antiviral activity of the extract were evaluated by the 3-(4, 5- dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. The overall antiviral activity was confirmed by the plaque forming units (PFU) method. Then, the effects of HEFc on MAYV multiplication kinetics, virus adsorption, penetration, and post-penetration, and its virucidal activity were determined in Vero cells using standard experimental procedures. RESULTS: HEFc exerted a effect against viral infection in Vero cells at a non-cytotoxic concentration, and no virion was detected in the supernatant in a dose-dependent and selective manner. HEFc inhibited MAYV in the early and late stages of the viral multiplication cycle. The extract showed significant virucidal activity at low concentrations and did not affect adsorption or viral internalization stages. In addition, HEFc reduced virions at all post-infection times investigated. CONCLUSIONS: HEFc has good antiviral activity against MAYV, acting directly on the viral particles. This plant extract possesses an excellent and promising potential for developing effective herbal antiviral drugs.


Assuntos
Alphavirus , Bignoniaceae , Animais , Antivirais/farmacologia , Brometos/farmacologia , Chlorocebus aethiops , Mamíferos , Extratos Vegetais/farmacologia , Células Vero
16.
J Vector Borne Dis ; 59(2): 115-126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36124477

RESUMO

BACKGROUND & OBJECTIVES: Weather and climate are directly linked to human health including the distribution and occurrence of vector-borne diseases which are of significant concern for public health. METHODS: In this review, studies on spatiotemporal distribution of dengue, Barmah Forest Virus (BFV) and Ross River Virus (RRV) in Australia and malaria in Papua New Guinea (PNG) under the influence of climate change and/ or human society conducted in the past two decades were analysed and summarised. Environmental factors such as temperature, rainfall, relative humidity and tides were the main contributors from climate. RESULTS: The Socio-Economic Indexes for Areas (SEIFA) index (a product from the Australian Bureau of Statistics that ranks areas in Australia according to relative socio-economic advantage and disadvantage) was important in evaluating contribution from human society. INTERPRETATION & CONCLUSION: For future studies, more emphasis on evaluation of impact of the El Niño-Southern Oscillation (ENSO) and human society on spatio-temporal distribution of vector borne diseases is recommended to highlight importance of the environmental factors in spreading mosquito-borne diseases in Australia and PNG.


Assuntos
Infecções por Alphavirus , Alphavirus , Doenças Transmitidas por Vetores , Infecções por Alphavirus/epidemiologia , Animais , Austrália/epidemiologia , Humanos , Papua Nova Guiné/epidemiologia , Doenças Transmitidas por Vetores/epidemiologia
17.
Sci Rep ; 12(1): 14556, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008558

RESUMO

Pixuna virus (PIXV) and Río Negro virus (RNV) are mosquito-borne alphaviruses belonging to the Venezuelan Equine Encephalitis (VEE) complex, which includes pathogenic epizootic and enzootic subtypes responsible for life-threatening diseases in equines. Considering that the first steps in viral infection are crucial for the efficient production of new progeny, the aim of this study was to elucidate the early events of the replication cycle of these two viruses. To this end, we used chemical inhibitors and the expression of dominant-negative constructs to study the dependence of clathrin and endosomal pH on PIXV and RNV internalization mechanisms. We demonstrated that both viruses are internalized primarily via clathrin-mediated endocytosis, where the low pH in endosomes is crucial for viral replication. Contributing knowledge regarding the entry route of VEE complex members is important to understand the pathogenesis of these viruses and also to develop new antiviral strategies.


Assuntos
Alphavirus , Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina Venezuelana , Animais , Clatrina , Endocitose , Cavalos , Concentração de Íons de Hidrogênio
18.
Vet Clin North Am Equine Pract ; 38(2): 299-321, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35953146

RESUMO

A number of viruses transmitted by biological vectors or through direct contact, air, or ingestion cause neurologic disease in equids. Of interest are viruses of the Togaviridae, Flaviviridae, Rhabdoviridae, Herpesviridae, Bornaviridae, and Bunyaviridae families. Many are classified as arboviruses because they use arthropod vectors, whereas others are transmitted directly via ingestion, inhalation, or integument damage. The goal of this article is to provide an overview on pathophysiologic and clinical aspects of arboviruses of equine importance, including alphaviruses (Togaviridae) and flaviviruses (Flaviviridae).


Assuntos
Alphavirus , Arbovírus , Flavivirus , Doenças dos Cavalos , Animais , Doenças dos Cavalos/epidemiologia , Cavalos
19.
Dis Aquat Organ ; 150: 153-159, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35979989

RESUMO

Sleeping disease is a highly infectious viral disease caused by salmonid alphavirus subtype 2 (SAV2 FW), affecting mainly rainbow trout Oncorhynchus mykiss farmed in freshwater. During March to May 2014, disease episodes with clinical signs of sleeping disease in rainbow trout fingerlings occurred almost simultaneously in 2 trout farms located in Bosnia and Herzegovina (BiH) and Serbia. The infection of rainbow trout with SAV2 FW in 2 farms was confirmed by virus isolation and molecular methods. This is the first isolation and molecular characterization of SAV2 FW in BiH and Serbia.


Assuntos
Infecções por Alphavirus , Alphavirus , Doenças dos Peixes , Oncorhynchus mykiss , Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/veterinária , Animais , Bósnia e Herzegóvina/epidemiologia , Doenças dos Peixes/epidemiologia , Sérvia
20.
Viruses ; 14(8)2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-36016409

RESUMO

Mayaro virus is an emerging arbovirus that causes nonspecific febrile illness or arthralgia syndromes similar to the Chikungunya virus, a virus closely related from the Togaviridae family. MAYV outbreaks occur more frequently in the northern and central-western states of Brazil; however, in recent years, virus circulation has been spreading to other regions. Due to the undifferentiated initial clinical symptoms between MAYV and other endemic pathogenic arboviruses with geographic overlapping, identification of patients infected by MAYV might be underreported. Additionally, the lack of specific prophylactic approaches or antiviral drugs limits the pharmacological management of patients to treat symptoms like pain and inflammation, as is the case with most pathogenic alphaviruses. In this context, this review aims to present the state-of-the-art regarding the screening and development of compounds/molecules which may present anti-MAYV activity and infection inhibition.


Assuntos
Infecções por Alphavirus , Alphavirus , Arbovírus , Vírus Chikungunya , Alphavirus/fisiologia , Infecções por Alphavirus/tratamento farmacológico , Infecções por Alphavirus/epidemiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus Chikungunya/fisiologia , Desenvolvimento de Medicamentos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...