RESUMO
While protein synthesis is vital for the majority of cell types of the human body, diversely differentiated cells require specific translation regulation. This suggests the specialization of translation machinery across tissues and organs. Using transcriptomic data from GTEx, FANTOM, and Gene Atlas, we systematically explored the abundance of transcripts encoding translation factors and aminoacyl-tRNA synthetases (ARSases) in human tissues. We revised a few known and identified several novel translation-related genes exhibiting strict tissue-specific expression. The proteins they encode include eEF1A1, eEF1A2, PABPC1L, PABPC3, eIF1B, eIF4E1B, eIF4ENIF1, and eIF5AL1. Furthermore, our analysis revealed a pervasive tissue-specific relative abundance of translation machinery components (e.g., PABP and eRF3 paralogs, eIF2B and eIF3 subunits, eIF5MPs, and some ARSases), suggesting presumptive variance in the composition of translation initiation, elongation, and termination complexes. These conclusions were largely confirmed by the analysis of proteomic data. Finally, we paid attention to sexual dimorphism in the repertoire of translation factors encoded in sex chromosomes (eIF1A, eIF2γ, and DDX3), and identified the testis and brain as organs with the most diverged expression of translation-associated genes.
Assuntos
Aminoacil-tRNA Sintetases , Proteômica , Humanos , Fatores de Iniciação de Peptídeos , Fator 1 de Elongação de PeptídeosRESUMO
Macrocyclization has been touted as an effective strategy to enhance the in vivo stability and efficacy of protein therapeutics. Herein, we describe a scalable and robust system based on the endogenous biosynthesis of a noncanonical amino acid coupled to the pyrrolysine translational machinery for the generation of lasso-grafted proteins. The in cellulo biosynthesis of the noncanonical amino acid d-Cys-ε-Lys was achieved by hijacking the pyrrolysine biosynthesis pathway, and then, its genetical incorporation into proteins was performed using an optimized PylRS/tRNAPyl pair and cell line. This system was then applied to the structurally inspired cyclization of a 23-mer therapeutic P16 peptide engrafted on a fusion protein, resulting in near-complete cyclization of the target cyclic subunit in under 3 h. The resulting cyclic P16 peptide fusion protein possessed much higher CDK4 binding affinity than its linear counterpart. Furthermore, a bifunctional bicyclic protein harboring a cyclic cancer cell targeting RGD motif on the one end and the cyclic P16 peptide on the other is produced and shown to be a potent cell cycle arrestor with improved serum stability.
Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Proteínas/metabolismo , Biossíntese de Proteínas , Peptídeos/metabolismoRESUMO
The in vitro reconstruction of life-like self-reproducing systems is a major challenge in in vitro synthetic biology. Self-reproduction requires regeneration of all molecules involved in DNA replication, transcription, and translation. This study demonstrated the continuous DNA replication and partial regeneration of major translation factors, 20 aminoacyl-tRNA synthetases (aaRS), in a reconstituted transcription/translation system (PURE system) for the first time. First, we replicated each DNA that encodes one of the 20 aaRSs through aaRS expression from the DNA by serial transfer experiments. Thereafter, we successively increased the number of aaRS genes and achieved simultaneous, continuous replication of DNA that encodes all 20 aaRSs, which comprised approximately half the number of protein factors in the PURE system, except for ribosomes, by employing dialyzed reaction and sequence optimization. This study provides a step-by-step methodology for continuous DNA replication with an increasing number of self-regenerative genes toward self-reproducing artificial systems.
Assuntos
Aminoacil-tRNA Sintetases , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , DNA , RNA de Transferência/genética , Replicação do DNA/genéticaRESUMO
The prognosis of patients with colorectal cancer (CRC) is affected by invasion and metastasis. Leucyl-tRNA synthetase (LARS) was shown to be related to the growth and migration of lung cancer cells. Dickkopf 4 (DKK4) is known as a Wnt/ß-catenin pathway inhibitor, and its upregulation was reported in several cancers. However, the clinical significance of LARS and DKK4 in human CRC has not been clearly defined. We investigated the expression of LARS and DKK4 by immunohistochemical staining in tissue microarrays from 642 primary CRC patients and analyzed the relationship between their expression and the clinicopathological characteristics of CRC patients. LARS and DKK4 expressions were not related to gender, age at surgery, histologic grade, size, tumor location, tumor invasion, or metastasis, but LARS expression was significantly correlated with TNM stage, N stage, and lymph node metastasis. DKK4 expression was inversely related to the TNM stage and N stage. Survival analysis demonstrated that the OS and DFS in the LARS high expression group were not different compared to the LARS low expression group. OS and DFS in the DKK4 high expression group were significantly higher than in the DKK4 low expression group. In addition, OS and DFS in the group with the combination of the LARS high/DKK4 low expression were significantly lower than in the LARS high/DKK4 high expression group. The low expression of DKK4 alone can be used as a predictor of relapse in CRC patients. In addition, DKK4 low expression in the case of LARS high expression can be used as a poor prognostic factor in CRC patients. Thus, our findings suggest that DKK4 alone or in combination with LARS at diagnosis may be a useful prognostic factor for CRC.
Assuntos
Aminoacil-tRNA Sintetases , Neoplasias Colorretais , Humanos , Prognóstico , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Neoplasias Colorretais/genética , BiomarcadoresRESUMO
The availability of an expanded genetic code opens exciting new opportunities in enzyme design and engineering. In this regard histidine analogues have proven particularly versatile, serving as ligands to augment metalloenzyme function and as catalytic nucleophiles in designed enzymes. The ability to genetically encode multiple functional residues could greatly expand the range of chemistry accessible within enzyme active sites. Here, we develop mutually orthogonal translation components to selectively encode two structurally similar histidine analogues. Transplanting known mutations from a promiscuous Methanosarcina mazei pyrrolysyl-tRNA synthetase (MmPylRSIFGFF ) into a single domain PylRS from Methanomethylophilus alvus (MaPylRSIFGFF ) provided a variant with improved efficiency and specificity for 3-methyl-L-histidine (MeHis) incorporation. The MaPylRSIFGFF clone was further characterized using in vitro biochemical assays and x-ray crystallography. We subsequently engineered the orthogonal MmPylRS for activity and selectivity for 3-(3-pyridyl)-L-alanine (3-Pyr), which was used in combination with MaPylRSIFGFF to produce proteins containing both 3-Pyr and MeHis. Given the versatile roles played by histidine in enzyme mechanisms, we anticipate that the tools developed within this study will underpin the development of enzymes with new and enhanced functions.
Assuntos
Aminoacil-tRNA Sintetases , Histidina , Histidina/genética , Lisina/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Aminoacil-tRNA Sintetases/química , Methanosarcina/genética , Methanosarcina/metabolismoRESUMO
Here, we describe the procedure for the expression and purification of recombinant ATE1 from E. coli. This method is easy and convenient and can result in one-step isolation of milligram amounts of soluble enzymatically active ATE1 at nearly 99% purity. We also describe a procedure for the expression and purification of E. coli Arg-tRNA synthetase essential for the arginylation assays described in the next two chapters.
Assuntos
Aminoacil-tRNA Sintetases , Aminoaciltransferases , Processamento de Proteína Pós-Traducional , Escherichia coli/genética , Escherichia coli/metabolismo , Aminoaciltransferases/genética , Aminoacil-tRNA Sintetases/metabolismo , Arginina/metabolismoRESUMO
This chapter describes the preparation of pre-charged Arg-tRNA that can be used in arginylation reaction. While in a typical arginylation reaction arginyl-tRNA synthetase (RARS) is normally included as a component of the reaction and continually charges tRNA during arginylation, it is sometimes necessary to separate the charging and the arginylation step, in order to perform each reaction under controlled conditions, e.g., for measuring the kinetics or determining the effect of different compounds and chemicals on the reaction. In such cases, tRNAArg can be pre-charged with Arg and purified away from the RARS enzyme prior to arginylation.
Assuntos
Aminoacil-tRNA Sintetases , Arginina-tRNA Ligase , Arginina-tRNA Ligase/química , Arginina-tRNA Ligase/genética , Arginina-tRNA Ligase/metabolismo , RNA de Transferência de Arginina/química , RNA de Transferência de Arginina/genética , RNA de Transferência de Arginina/metabolismo , Aminoacilação , RNA de Transferência/genética , Aminoacilação de RNA de Transferência , Cinética , Aminoacil-tRNA Sintetases/metabolismoRESUMO
Central nervous system projection neurons fail to spontaneously regenerate injured axons. Targeting developmentally regulated genes in order to reactivate embryonic intrinsic axon growth capacity or targeting pro-growth tumor suppressor genes such as Pten promotes long-distance axon regeneration in only a small subset of injured retinal ganglion cells (RGCs), despite many RGCs regenerating short-distance axons. A recent study identified αRGCs as the primary type that regenerates short-distance axons in response to Pten inhibition, but the rare types which regenerate long-distance axons, and cellular features that enable such response, remained unknown. Here, we used a new method for capturing specifically the rare long-distance axon-regenerating RGCs, and also compared their transcriptomes with embryonic RGCs, in order to answer these questions. We found the existence of adult non-α intrinsically photosensitive M1 RGC subtypes that retained features of embryonic cell state, and showed that these subtypes partially dedifferentiated towards an embryonic state and regenerated long-distance axons in response to Pten inhibition. We also identified Pten inhibition-upregulated mitochondria-associated genes, Dynlt1a and Lars2, which promote axon regeneration on their own, and thus present novel therapeutic targets.
Assuntos
Aminoacil-tRNA Sintetases , Traumatismos do Nervo Óptico , Aminoacil-tRNA Sintetases/metabolismo , Axônios/fisiologia , Mitocôndrias , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Células Ganglionares da Retina/metabolismoRESUMO
Aminoacyl-tRNA synthetases (aaRSs) are essential components for mRNA translation. Two sets of aaRSs are required for cytoplasmic and mitochondrial translation in vertebrates. Interestingly, TARSL2 is a recently evolved duplicated gene of TARS1 (encoding cytoplasmic threonyl-tRNA synthetase) and represents the only duplicated aaRS gene in vertebrates. Although TARSL2 retains the canonical aminoacylation and editing activities in vitro, whether it is a true tRNA synthetase for mRNA translation in vivo is unclear. In this study, we showed that Tars1 is an essential gene since homozygous Tars1 KO mice were lethal. In contrast, when Tarsl2 was deleted in mice and zebrafish, neither the abundance nor the charging levels of tRNAThrs were changed, indicating that cells relied on Tars1 but not on Tarsl2 for mRNA translation. Furthermore, Tarsl2 deletion did not influence the integrity of the multiple tRNA synthetase complex, suggesting that Tarsl2 is a peripheral member of the multiple tRNA synthetase complex. Finally, we observed that Tarsl2-deleted mice exhibited severe developmental retardation, elevated metabolic capacity, and abnormal bone and muscle development after 3 weeks. Collectively, these data suggest that, despite its intrinsic activity, loss of Tarsl2 has little influence on protein synthesis but does affect mouse development.
Assuntos
Aminoacil-tRNA Sintetases , Treonina-tRNA Ligase , Animais , Camundongos , Treonina-tRNA Ligase/genética , Treonina-tRNA Ligase/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Biossíntese de Proteínas , RNA de Transferência/metabolismoRESUMO
Cells respond to perturbations such as inflammation by sensing changes in metabolite levels. Especially prominent is arginine, which has known connections to the inflammatory response. Aminoacyl-tRNA synthetases, enzymes that catalyse the first step of protein synthesis, can also mediate cell signalling. Here we show that depletion of arginine during inflammation decreased levels of nuclear-localized arginyl-tRNA synthetase (ArgRS). Surprisingly, we found that nuclear ArgRS interacts and co-localizes with serine/arginine repetitive matrix protein 2 (SRRM2), a spliceosomal and nuclear speckle protein, and that decreased levels of nuclear ArgRS correlated with changes in condensate-like nuclear trafficking of SRRM2 and splice-site usage in certain genes. These splice-site usage changes cumulated in the synthesis of different protein isoforms that altered cellular metabolism and peptide presentation to immune cells. Our findings uncover a mechanism whereby an aminoacyl-tRNA synthetase cognate to a key amino acid that is metabolically controlled during inflammation modulates the splicing machinery.
Assuntos
Aminoacil-tRNA Sintetases , Arginina-tRNA Ligase , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Arginina/química , Arginina/genética , Arginina/metabolismo , Arginina-tRNA Ligase/química , Arginina-tRNA Ligase/genética , Arginina-tRNA Ligase/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismoRESUMO
Pairs of pyrrolysyl-tRNA synthetase (PylRS) and tRNAPyl from Methanosarcina mazei and Methanosarcina barkeri are widely used for site-specific incorporations of non-canonical amino acids into proteins (genetic code expansion). Previously, we achieved full productivity of cell-free protein synthesis for bulky non-canonical amino acids, including Nε-((((E)-cyclooct-2-en-1-yl)oxy)carbonyl)-L-lysine (TCO*Lys), by using Methanomethylophilus alvus PylRS with structure-based mutations in and around the amino acid binding pocket (first-layer and second-layer mutations, respectively). Recently, the PylRS·tRNAPyl pair from a methanogenic archaeon ISO4-G1 was used for genetic code expansion. In the present study, we determined the crystal structure of the methanogenic archaeon ISO4-G1 PylRS (ISO4-G1 PylRS) and compared it with those of structure-known PylRSs. Based on the ISO4-G1 PylRS structure, we attempted the site-specific incorporation of Nε-(p-ethynylbenzyloxycarbonyl)-L-lysine (pEtZLys) into proteins, but it was much less efficient than that of TCO*Lys with M. alvus PylRS mutants. Thus, the first-layer mutations (Y125A and M128L) of ISO4-G1 PylRS, with no additional second-layer mutations, increased the protein productivity with pEtZLys up to 57 ± 8% of that with TCO*Lys at high enzyme concentrations in the cell-free protein synthesis.
Assuntos
Aminoacil-tRNA Sintetases , Aminoacil-tRNA Sintetases/metabolismo , Aminoácidos/genética , Lisina/metabolismo , Código Genético , RNA de Transferência/genética , RNA de Transferência/metabolismo , Methanosarcina/genéticaRESUMO
We propose an improved transfer entropy approach called the dynamic version of the force constant fitted Gaussian network model based on molecular dynamics ensemble (dfcfGNMMD) to explore the allosteric mechanism of human mitochondrial phenylalanyl-tRNA synthetase (hmPheRS), one of the aminoacyl-tRNA synthetases that play a crucial role in translation of the genetic code. The dfcfGNMMD method can provide reliable estimates of the transfer entropy and give new insights into the role of the anticodon binding domain in driving the catalytic domain in aminoacylation activity and into the effects of tRNA binding and residue mutation on the enzyme activity, revealing the causal mechanism of the allosteric communication in hmPheRS. In addition, we incorporate the residue dynamic and co-evolutionary information to further investigate the key residues in hmPheRS allostery. This study sheds light on the mechanisms of hmPheRS allostery and can provide important information for related drug design.
Assuntos
Aminoacil-tRNA Sintetases , Fenilalanina-tRNA Ligase , Humanos , Fenilalanina-tRNA Ligase/química , Fenilalanina-tRNA Ligase/genética , Fenilalanina-tRNA Ligase/metabolismo , Entropia , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Anticódon , Domínio CatalíticoRESUMO
Homochirality of the cellular proteome is attributed to the L-chiral bias of the translation apparatus. The chiral specificity of enzymes was elegantly explained using the 'four-location' model by Koshland two decades ago. In accordance with the model, it was envisaged and noted that some aminoacyl-tRNA synthetases (aaRS) that charge larger amino acids are porous to D-amino acids. However, a recent study showed that alanyl-tRNA synthetase (AlaRS) can mischarge D-alanine and that its editing domain, but not the universally present D-aminoacyl-tRNA deacylase (DTD), is responsible for correcting the chirality-based error. Here, using in vitro and in vivo data coupled with structural analysis, we show that AlaRS catalytic site is a strict D-chiral rejection system and therefore does not activate D-alanine. It obviates the need for AlaRS editing domain to be active against D-Ala-tRNAAla and we show that it is indeed the case as it only corrects L-serine and glycine mischarging. We further provide direct biochemical evidence showing activity of DTD on smaller D-aa-tRNAs that corroborates with the L-chiral rejection mode of action proposed earlier. Overall, while removing anomalies in the fundamental recognition mechanisms, the current study further substantiates how chiral fidelity is perpetuated during protein biosynthesis.
Assuntos
Alanina-tRNA Ligase , Biossíntese de Proteínas , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , RNA de Transferência/metabolismo , AnimaisRESUMO
Eukaryotes maintain separate protein translation systems for nuclear and organellar genes, including distinct sets of tRNAs and aminoacyl-tRNA synthetases (aaRSs). In animals, mitochondrial-targeted aaRSs are expressed at lower levels and are less conserved in sequence than cytosolic aaRSs involved in translation of nuclear mRNAs, likely reflecting lower translational demands in mitochondria. In plants, translation is further complicated by the presence of plastids, which share most aaRSs with mitochondria. In addition, plant mitochondrial tRNA pools have a dynamic history of gene loss and functional replacement by tRNAs from other compartments. To investigate the consequences of these distinctive features of translation in plants, we analyzed sequence evolution in angiosperm aaRSs. In contrast to previously studied eukaryotic systems, we found that plant organellar and cytosolic aaRSs exhibit only a small difference in expression levels, and organellar aaRSs are slightly more conserved than cytosolic aaRSs. We hypothesize that these patterns result from high translational demands associated with photosynthesis in mature chloroplasts. We also investigated aaRS evolution in Sileneae, an angiosperm lineage with extensive mitochondrial tRNA replacement and aaRS retargeting. We predicted positive selection for changes in aaRS sequence resulting from these recent changes in subcellular localization and tRNA substrates but found little evidence for accelerated sequence divergence. Overall, the complex tripartite translation system in plant cells appears to have imposed more constraints on the long-term evolutionary rates of organellar aaRSs compared with other eukaryotic lineages, and plant aaRS protein sequences appear largely robust to more recent perturbations in subcellular localization and tRNA interactions.
Assuntos
Aminoacil-tRNA Sintetases , Animais , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Células Vegetais/metabolismo , Sequência de Aminoácidos , Citosol/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismoRESUMO
Aminoacyl-tRNA synthetases are crucial enzymes for cellular protein metabolism and have been considered as an attractive target for development of new antimicrobials. In the current study, seryl tRNA synthetase of Leishmania donovani (LdSerRS) and its mutants were purified and characterized through biochemical and structural methods. Purified LdSerRS was found to be enzymatically active and exhibited more alpha helices in secondary structure. The enzymatic activity of purified protein was observed as highest near physiological temperature and pH. Mutation in ATP binding residues (R295 and E297) demonstrated reduction in the affinity for cofactor with no significant deviation in secondary structure. In vitro inhibition studies with ureidosulfocoumarin derivatives helped to identify Comp 5l as a specific inhibitor for leishmanial SerRS that showed lesser potency towards purified HsSerRS. The identified compound presented competitive mode of inhibition for LdSerRS and also revealed druglikeness along with very low toxicity for human macrophages. Structural analysis of protein and ligand complex depicted the binding of Comp 5l into the cofactor binding site of LdSerRS with high affinity succeeded by validation employing molecular dynamics simulations. Altogether, our study presents a promising scaffold to explore small molecules to target the enzymatic activity of leishmanial SerRS to develop the specific therapeutics.
Assuntos
Aminoacil-tRNA Sintetases , Leishmania donovani , Parasitos , Serina-tRNA Ligase , Animais , Humanos , Serina-tRNA Ligase/química , Serina-tRNA Ligase/genética , Serina-tRNA Ligase/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Sítios de LigaçãoRESUMO
High fidelity tRNA aminoacylation by aminoacyl-tRNA synthetases is essential for cell viability. ProXp-ala is a trans-editing protein that is present in all three domains of life and is responsible for hydrolyzing mischarged Ala-tRNAPro and preventing mistranslation of proline codons. Previous studies have shown that, like bacterial prolyl-tRNA synthetase, Caulobacter crescentus ProXp-ala recognizes the unique C1:G72 terminal base pair of the tRNAPro acceptor stem, helping to ensure deacylation of Ala-tRNAPro but not Ala-tRNAAla. The structural basis for C1:G72 recognition by ProXp-ala is still unknown and was investigated here. NMR spectroscopy, binding, and activity assays revealed two conserved residues, K50 and R80, that likely interact with the first base pair, stabilizing the initial protein-RNA encounter complex. Modeling studies are consistent with direct interaction between R80 and the major groove of G72. A third key contact between A76 of tRNAPro and K45 of ProXp-ala was essential for binding and accommodating the CCA-3' end in the active site. We also demonstrated the essential role that the 2'OH of A76 plays in catalysis. Eukaryotic ProXp-ala proteins recognize the same acceptor stem positions as their bacterial counterparts, albeit with different nucleotide base identities. ProXp-ala is encoded in some human pathogens; thus, these results have the potential to inform new antibiotic drug design.
Assuntos
Aminoacil-tRNA Sintetases , RNA de Transferência de Prolina , Humanos , RNA de Transferência de Prolina/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Prolina/química , Aminoacilação de RNA de Transferência , Códon , Domínio CatalíticoRESUMO
Site-specific incorporation of multiple distinct noncanonical amino acids (ncAAs) into proteins in mammalian cells is a promising technology, where each ncAA must be assigned to a different orthogonal aminoacyl-tRNA synthetase (aaRS)/tRNA pair that reads a distinct nonsense codon. Available pairs suppress TGA or TAA codons at a considerably lower efficiency than TAG, limiting the scope of this technology. Here we show that the E. coli tryptophanyl (EcTrp) pair is an excellent TGA-suppressor in mammalian cells, which can be combined with the three other established pairs to develop three new routes for dual-ncAA incorporation. Using these platforms, we site-specifically incorporated two different bioconjugation handles into an antibody with excellent efficiency, and subsequently labeled it with two distinct cytotoxic payloads. Additionally, we combined the EcTrp pair with other pairs to site-specifically incorporate three distinct ncAAs into a reporter protein in mammalian cells.
Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases , Aminoácidos/química , Aminoacil-tRNA Sintetases/metabolismo , Códon sem Sentido/metabolismo , Códon de Terminação , Escherichia coli/genética , Escherichia coli/metabolismo , RNA de Transferência/química , AnimaisRESUMO
The introduction of an engineered aminoacyl-tRNA synthetase/tRNA pair enables site-specific incorporation of unnatural amino acids (uAAs) with functionalized side chains into proteins of interest. Genetic Code Expansion (GCE) via amber codon suppression confers functionalities to proteins but can also be used to temporally control the incorporation of genetically encoded elements into proteins. Here, we report an optimized GCE system (GCEXpress) for efficient and fast uAA incorporation. We demonstrate that GCEXpress can be used to efficiently alter the subcellular localization of proteins within living cells. We show that click labeling can resolve co-labeling problems of intercellular adhesive protein complexes. We apply this strategy to study the adhesion G protein-coupled receptor (aGPCR) ADGRE5/CD97 and its ligand CD55/DAF that play central roles in immune functions and oncological processes. Furthermore, we use GCEXpress to analyze the time course of ADGRE5-CD55 ligation and replenishment of mature receptor-ligand complexes. Supported by fluorescence recovery after photobleaching (FRAP) experiments our results show that ADGRE5 and CD55 form stable intercellular contacts that may support transmission of mechanical forces onto ADGRE5 in a ligand-dependent manner. We conclude that GCE in combination with biophysical measurements can be a useful approach to analyze the adhesive, mechanical and signaling properties of aGPCRs and their ligand interactions.
Assuntos
Aminoacil-tRNA Sintetases , Código Genético , Ligantes , Aminoácidos/química , Clonagem Molecular , Aminoacil-tRNA Sintetases/química , RNA de Transferência/genética , RNA de Transferência/metabolismoRESUMO
Developing an understanding of the interactions between an antibiotic and its binding site in a pathogen cell is the key to antibiotic design-an important cost-saving methodology compared to the costly and time-consuming random trial-and-error approach. The rapid development of antibiotic resistance provides an impetus for such studies. Recent years have witnessed the beginning of the use of combined computational techniques, including computer simulations and quantum mechanical computations, to understand how antibiotics bind at the active site of aminoacyl tRNA synthetases (aaRSs) from pathogens. Such computational protocols assist the knowledge-based design of antibiotics targeting aaRSs, which are their validated targets. After the ideas behind the protocols and their strategic planning are discussed, the protocols are described along with their major outcomes. This is followed by an integration of results from the different basic protocols. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Analysis of active-site residues from primary sequence of synthetase and transfer RNAs Basic Protocol 2: Molecular dynamics simulation-based protocol to study the structure and dynamics of the aaRS active site:antibiotic complex Basic Protocol 3: Quantum mechanical method-based protocol to study the structure and dynamics of the aaRS active site:antibiotic complex.
Assuntos
Aminoacil-tRNA Sintetases , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Antibacterianos/farmacologia , Sítios de Ligação , Domínio Catalítico , Simulação de Dinâmica MolecularRESUMO
When microbes grow in foreign nutritional environments, selection may enrich mutations in unexpected pathways connecting growth and homeostasis. An evolution experiment designed to identify beneficial mutations in Burkholderia cenocepacia captured six independent nonsynonymous substitutions in the essential gene tilS, which modifies tRNAIle2 by adding a lysine to the anticodon for faithful AUA recognition. Further, five additional mutants acquired mutations in tRNAIle2, which strongly suggests that disrupting the TilS-tRNAIle2 interaction was subject to strong positive selection. Mutated TilS incurred greatly reduced enzymatic function but retained capacity for tRNAIle2 binding. However, both mutant sets outcompeted the wild type by decreasing the lag phase duration by ~3.5 h. We hypothesized that lysine demand could underlie fitness in the experimental conditions. As predicted, supplemental lysine complemented the ancestral fitness deficit, but so did the additions of several other amino acids. Mutant fitness advantages were also specific to rapid growth on galactose using oxidative overflow metabolism that generates redox imbalance, not resources favoring more balanced metabolism. Remarkably, 13 tilS mutations also evolved in the long-term evolution experiment with Escherichia coli, including four fixed mutations. These results suggest that TilS or unknown binding partners contribute to improved growth under conditions of rapid sugar oxidation at the predicted expense of translational accuracy. IMPORTANCE There is growing evidence that the fundamental components of protein translation can play multiple roles in maintaining cellular homeostasis. Enzymes that interact with transfer RNAs not only ensure faithful decoding of the genetic code but also help signal the metabolic state by reacting to imbalances in essential building blocks like free amino acids and cofactors. Here, we present evidence of a secondary function for the essential enzyme TilS, whose only prior known function is to modify tRNAIle(CAU) to ensure accurate translation. Multiple nonsynonymous substitutions in tilS, as well as its cognate tRNA, were selected in evolution experiments favoring rapid, redox-imbalanced growth. These mutations alone decreased lag phase and created a competitive advantage, but at the expense of most primary enzyme function. These results imply that TilS interacts with other factors related to the timing of exponential growth and that tRNA-modifying enzymes may serve multiple roles in monitoring metabolic health.