Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000210

RESUMO

Neurodegeneration diseases (NDs) are a group of complex diseases primarily characterized by progressive loss of neurons affecting mental function and movement. Oxidative stress is one of the factors contributing to the pathogenesis of NDs, including Alzheimer's disease (AD). These reactive species disturb mitochondrial function and accelerate other undesirable conditions including tau phosphorylation, inflammation, and cell death. Therefore, preventing oxidative stress is one of the imperative methods in the treatment of NDs. To accomplish this, we prepared hexane and ethyl acetate extracts of Anethum graveolens (dill) and identified the major phyto-components (apiol, carvone, and dihydrocarvone) by GC-MS. The extracts and major bioactives were assessed for neuroprotective potential and mechanism in hydrogen peroxide-induced oxidative stress in the SH-SY5Y neuroblastoma cell model and other biochemical assays. The dill (extracts and bioactives) provided statistically significant neuroprotection from 0.1 to 30 µg/mL by mitigating ROS levels, restoring mitochondrial membrane potential, reducing lipid peroxidation, and reviving the glutathione ratio. They moderately inhibited acetylcholine esterase (IC50 dill extracts 400-500 µg/mL; carvone 275.7 µg/mL; apiole 388.3 µg/mL), displayed mild anti-Aß1-42 fibrilization (DHC 26.6%) and good anti-oligomerization activity (>40% by dill-EA, carvone, and apiole). Such multifactorial neuroprotective displayed by dill and bioactives would help develop a safe, low-cost, and small-molecule drug for NDs.


Assuntos
Anethum graveolens , Neuroblastoma , Fármacos Neuroprotetores , Estresse Oxidativo , Extratos Vegetais , Sementes , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neuroblastoma/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Estresse Oxidativo/efeitos dos fármacos , Anethum graveolens/química , Sementes/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Sobrevivência Celular/efeitos dos fármacos , Acetilcolinesterase/metabolismo
2.
Sci Rep ; 14(1): 10052, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698117

RESUMO

The Apiaceae family contains many species used as food, spice and medicinal purposes. Different parts of plants including seeds could be used to obtain essential (EO) oils from members of the Apiaceae family. In the present study, EOs were components obtained through hydrodistillation from the seeds of anise (Pimpinella anisum), carrot (Daucus carota), celery (Apium graveolens), dill (Anethum graveolens), coriander (Coriandrum sativum), fennel (Foeniculum vulgare), and cumin (Cuminum cyminum). EO constituents were determined with Gas Chromatography/Mass Spectrometry (GC-MS) and Gas Chromatography/Flame Ionization Detector (GC-FID) and their antioxidant capacities were determined with the cupric reducing antioxidant capacity (CUPRAC) and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) methods. The antimicrobial activity of EOs were tested against four pathogenic bacteria. Phenylpropanoids in anise (94.87%) and fennel (92.52%), oxygenated monoterpenes in dill (67.59%) and coriander (98.96%), monoterpene hydrocarbons in celery (75.42%), mono- (45.42%) and sesquiterpene- (43.25%) hydrocarbons in carrots, monoterpene hydrocarbon (34.30%) and aromatic hydrocarbons (32.92%) in cumin were the major compounds in the EOs. Anethole in anise and fennel, carotol in carrot, limonene in celery, carvone in dill, linalool in coriander, and cumin aldehyde in cumin were predominant compounds in these EOs. The high hydrocarbon content in cumin EO gave high CUPRAC activity (89.07 µmol Trolox g-1), and the moderate monoterpene hydrocarbon and oxygenated monoterpene content in dill EO resulted in higher DPPH activity (9.86 µmol Trolox g-1). The in vitro antibacterial activity of EOs against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli was evaluated using the agar diffusion method and the minimum bactericidal concentration was determined. Coriander, cumin and dill EOs showed inhibitory effect against all tested strains except P. aeruginosa. While fennel and celery EOs were effective against E. coli and B. cereus strains, respectively, anise and carrot EOs did not show any antibacterial effect against the tested bacteria. Hierarchical Cluster Analysis (HCA) produced four groups based on EO constituents of seven species. The potential adoption of the cultivated Apiaceae species for EO extraction could be beneficial for the wild species that are endangered by over collection and consumption.


Assuntos
Antioxidantes , Apiaceae , Daucus carota , Foeniculum , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/análise , Apiaceae/química , Daucus carota/química , Foeniculum/química , Cuminum/química , Cromatografia Gasosa-Espectrometria de Massas , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Coriandrum/química , Sementes/química , Anethum graveolens/química , Pimpinella/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Apium/química
3.
Int J Biol Macromol ; 263(Pt 2): 129991, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331078

RESUMO

This study developed a composite film for packaging refrigerated common carp fillets using carboxymethyl cellulose (CMC) (1.5 % w/v)/Myrrh gum (MG) (0.25 % w/v) base with the addition of titanium dioxide nanoparticles (TiO2 NPs) (0.25 %, 0.5 %, and 1 %) and Dill essential oil (DEO) (1.5 %, 2.25 %, and 3 %). The film was produced using a casting method and optimized for mechanical and barrier properties. The incorporation of DEO and TiO2 NPs into CMC/MG composite films significantly reduced moisture content (MC) and water vapor permeability (WVP), improved their tensile strength (TS), and increased their antimicrobial and antioxidant properties. Moreover, MG can improve the physicomechanical properties of the CMC/MG composite films. The film components had good compatibility without significant aggregation or cracks. In conclusion, the optimized CMC/MG (1.5 %/0.25 %) film containing TiO2 NPs (0.5 %), and DEO (2.25 %) has the best overall performance and can be a good source for making edible film. Functionally, this bioactive nanocomposite film significantly increased the shelf life of refrigerated fish fillet samples for 12 days by inhibiting microbial growth and reducing the oxidation rate compared to the control sample. The knowledge obtained from this study can guide the development of bio-nanocomposite and biodegradable food packaging films based on CMC/MG to increase the shelf life of food products and environmental protection.


Assuntos
Anethum graveolens , Carpas , Commiphora , Nanocompostos , Nanopartículas , Óleos Voláteis , Resinas Vegetais , Animais , Carboximetilcelulose Sódica/farmacologia , Carne , Embalagem de Alimentos/métodos , Óleos Voláteis/farmacologia
4.
ACS Appl Mater Interfaces ; 15(50): 58815-58827, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051792

RESUMO

This study aimed to create long-lasting carriers by producing electrospun nanofibers loaded with dill seed (Anethum graveolens L.) essential oil (DSEO), using cactus mucilage (CM) and poly(vinyl alcohol) (PVA). Continuous and uniform electrospun nanofibers with a diameter of 158 ± 18 to 230 ± 26 nm were successfully made from the CM/PVA blend solution and the CM/PVA/DSEO emulsion. Atomic force microscopy topographic images revealed that the electrospun nanofibers had a tubular morphology. The thermogravimetric curves of DSEO, CM, pure PVA, and electrospun nanofibers demonstrate that the polymers used and the essential oil have effective chemical interactions. The water contact angle results suggest that the manufactured nanofibers are hydrophilic. CM/PVA consistently achieves a remarkable encapsulation efficiency of 100% DSEO. The electrospun nanofibers enabled the controlled release of free and encapsulated DSEO, resulting in sustained long-term release. The agar disk diffusion technique was used to study the antimicrobial activity of electrospun nanofibers and nanofibers containing DSEO against Gram-positive and Gram-negative bacteria. With a minimum inhibitory concentration of 2.5 mg/mL and a minimum bactericidal concentration of 5 mg/mL, electrospun nanofibers containing DSEO demonstrated bacteriostatic and bactericidal activities against foodborne pathogenic bacteria (Staphylococcus aureus and Pseudomonas aeruginosa). The DSEO-loaded electrospun nanofibers derived from carbohydrates show promise as an active interior coating for use in biomedical and food packaging applications.


Assuntos
Anethum graveolens , Nanofibras , Óleos Voláteis , Antibacterianos/farmacologia , Álcool de Polivinil , Óleos Voláteis/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Cloreto de Polivinila , Etanol , Polissacarídeos
5.
J Photochem Photobiol B ; 249: 112812, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37972447

RESUMO

Light-Emitting Diodes (LED) play a major role in manipulating light spectra that helps in regulating the growth and specialized metabolite synthesis relevant to the plant defence system. In this study, we assessed photosynthetic performance, phytonutrients, and anatomical variations of an aromatic herb Anethum graveolens (also known as dill), grown under various combinations of LED lights viz. red (100R:0B), red:blue (50R:50B); blue (0R:100B) and warm white (WW, served as control). Exposure to 0R:100B LED lights led to the tallest stem height, whereas, the number of leaves were highest under 50R:50B LED lights. The photosynthetic performance was observed to be highest under 50R:50B LED lights. HPLC analysis revealed chlorogenic acid and rosmarinic acid as the major phenolic compounds accumulated under different spectral irradiations. The highest chlorogenic acid content was observed in 50R:50B LED treated dill plants, while 100R:0B light showed the highest accumulation of rosmarinic acid. Dill plants grown under 50R:50B light displayed a relatively higher content of volatile compounds including, myristicin (phenylpropene), psi-limonene, and α-phellandrene (monoterpenoids). Expression analyses of candidate genes of phenylpropanoid and monoterpenoid biosynthetic pathways showed good correlations with the enhanced phenolic compounds and monoterpenes detected under appropriate light treatments. Further, the stem anatomy revealed higher vascularization under the influence of 0R:100B LED lights, whereas, intense histochemical localization of specialized metabolites could be correlated with enhanced accumulation of phenolic compounds and terpenoids observed in this study. Taken together, these studies suggest that proper combinations of blue and red spectra of light could play important role to augment the growth and phytochemical characteristics of dill, thus improving its value addition in the food industry.


Assuntos
Anethum graveolens , Anethum graveolens/química , Ácido Clorogênico/análise , Depsídeos/análise , Monoterpenos , Compostos Fitoquímicos/análise , Fenóis/análise , Valor Nutritivo , Ácido Rosmarínico
6.
Skin Pharmacol Physiol ; 36(5): 249-258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37788642

RESUMO

INTRODUCTION: Elastic skin fibers lose their mechanical properties during aging due to enzymatic degradation, lack of maturation, or posttranslational modifications. Dill extract has been observed to increase elastin protein expression and maturation in a 3D skin model, to improve mechanical properties of the skin, to increase elastin protein expression in vascular smooth muscle cells, to preserve aortic elastic lamella, and to prevent glycation. OBJECTIVE: The aim of the study was to highlight dill actions on elastin fibers during aging thanks to elastase digestion model and the underlying mechanism. METHODS: In this study, elastic fibers produced by dermal fibroblasts in 2D culture model were injured by elastase, and we observed the action of dill extract on elastic network by elastin immunofluorescence. Then action of dill extract was examined on mice skin by injuring elastin fibers by intradermal injection of elastase. Then elastin fibers were observed by second harmonic generation microscopy, and their functionality was evaluated by oscillatory shear stress tests. In order to understand mechanism by which dill acted on elastin fibers, enzymatic tests and real-time qPCR on cultured fibroblasts were performed. RESULTS: We evidence in vitro that dill extract is able to prevent elastin from elastase digestion. And we confirm in vivo that dill extract treatment prevents elastase digestion, allowing preservation of the cutaneous elastic network in mice and preservation of the cutaneous elastic properties. Although dill extract does not directly inhibit elastase activity, our results show that dill extract treatment increases mRNA expression of the endogenous inhibitor of elastase, elafin. CONCLUSION: Dill extract can thus be used to counteract the negative effects of elastase on the cutaneous elastic fiber network through modulation of PI3 gene expression.


Assuntos
Anethum graveolens , Tecido Elástico , Camundongos , Animais , Tecido Elástico/metabolismo , Elafina , Anethum graveolens/metabolismo , Elastina/metabolismo , Elastase Pancreática/metabolismo
7.
Nutrients ; 15(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37836586

RESUMO

Anethum graveolens L., known as European dill, is a versatile herb widely used in both traditional medicine and culinary practices. Despite its long-standing history, the potential impact of the water extract of A. graveolens seeds (WEAG) on bone health remains unexplored. In this study, we investigated the influence of WEAG on osteoclast differentiation and assessed its potential as an anti-osteoporotic agent. WEAG hindered osteoclast differentiation through the suppression of receptor activator of nuclear factor-κB ligand (RANKL) expression in osteoclast-supporting cells and by directly targeting osteoclast precursor cells. WEAG significantly reduced the expression of key osteoclastogenic transcription factors, namely c-Fos and NFATc1, typically induced by RANKL in osteoclast precursors. This reduction was attributed to the suppression of both MAPKs and NF-κB pathways in response to RANKL. In vivo experiments further revealed that WEAG administration effectively reduces trabecular bone loss and weight gain triggered by ovariectomy, mimicking postmenopausal osteoporosis. Furthermore, our comprehensive phytochemical analysis of WEAG identified a range of phytochemical constituents, associated with bone health and weight regulation. Notably, we discovered a specific compound, isorhamnetin-3-O-glucuronide, within WEAG that exhibits anti-osteoclastogenic potential. Overall, this research elucidated the beneficial effects and mechanistic basis of WEAG on osteoclast differentiation and bone loss, indicating its potential as a viable alternative to address bone loss in conditions like postmenopause.


Assuntos
Anethum graveolens , Reabsorção Óssea , Humanos , Feminino , Anethum graveolens/metabolismo , Diferenciação Celular , Fatores de Transcrição NFATC/metabolismo , Osteoclastos , Osteogênese , NF-kappa B/metabolismo , Compostos Fitoquímicos/farmacologia , Ligante RANK/metabolismo , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/metabolismo , Ovariectomia
8.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894818

RESUMO

Essential oils (EOs) are of commercial importance for medicine, food, cosmetics, the perfume industry, and agriculture. In plants, EOs, like the wax cover, serve as protection against abiotic stresses, such as high temperatures and water deficiency. The use of spraying with exogenous hormones of aromatic plants affects the accumulation and composition of volatile compounds, as well as tolerance to abiotic stress. As a result of cytokinin treatment with 6-BAP (6-benzylaminopurine) (200 mg L-l) of Anetum graveolens L. "Uzory" and "Rusich" varieties, several responses to its action were revealed: a change in the division of leaf blades, inhibition of flowering, an increase in the content of EO and its main components α-phellandrene and p-cymene in leaves, and limonene in umbels and fruits. It was revealed that the increased accumulation of EO in dill leaves was longer with sufficient moisture. In contrast, under conditions of heat and water deficiency, the effect of 6-BAP treatment on accumulations of the EO in leaves was short-lived and did not appear on umbels and fruits. The study of the cytokinin effect on a fine structure of a wax cover on the adaxial side of leaves by scanning electron microscopy revealed a change in its elements (from amorphous layers with scales to thin tubules), which probably increased the sensitivity of leaves to water deficiency and, consequently, led to a decrease in the biosynthetic activity of leaf tissue. Thus, 6-BAP had an impact on the adaptive properties of dill plants, prolonging the "youth" of vegetative organs and the ability to EO biosynthesis under conditions of sufficient moisture.


Assuntos
Anethum graveolens , Óleos Voláteis , Anethum graveolens/química , Óleos Voláteis/farmacologia , Folhas de Planta , Frutas , Citocininas , Água
9.
Int J Biol Macromol ; 243: 125244, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290550

RESUMO

Biodegradable material incorporated with antifungal essential oil has become an alternative food preservation approach to reduce plastic waste. Essential oils of Amomum testaceum, Anethum graveolens, Piper longum, Kaempferia galanga, and Zanthoxylum limonella were tested for their antifungal activity against Aspergillus niger. A. graveolens essential oil demonstrated the highest inhibition zone diameter of 43.51 mm against A. niger after seven days comparing to those obtained from other essential oils ranging from 10.02 mm to 26.13 mm. The volatile compounds of A. graveolens essential oil were identified with major compounds such as carvone, trans-dihydrocarvone, limonene, and α-acorenol. The pineapple nanocellulose-gellan gum (PNC-GG) films incorporated with A. graveolens oil were formulated and tested for its physical and chemical properties. Addition of A. graveolens essential oil in PNC-GG films improved mechanical strength and decreased flexibility while solubility, water vapour permeability, and thermal stability slightly changed. PNC-GG films incorporated with A. graveolens essential oil were also tested as bread packaging inhibiting A. niger. The results indicated that no visible mycelial growth of A. niger was detected during 3-week storage. Therefore, the PNC-GG films incorporated with A. graveolens essential oil were recommended as biodegradable packaging material against A. niger in bread also extending its shelf life.


Assuntos
Anethum graveolens , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antifúngicos/farmacologia , Antifúngicos/química , Anethum graveolens/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Pão , Embalagem de Alimentos
10.
J Agric Food Chem ; 71(20): 7744-7751, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37172111

RESUMO

Among the monoterpenoid aroma compounds formed by the basidiomycete Cystostereum murrayi are highly potent bicyclic benzofuran derivatives. In addition to the dill ethers previously described in a few fungi, two stereoisomers of the rare 3,6-dimethyl-3a,4,5,6,7,7a-hexahydro-3H-1-benzofuran-2-one (1a and 2c), also known as dihydromenthofurolactones, and a C3-unsaturated analogue (3a) are formed by C. murrayi. The analysis of synthesized reference standards of the lactones allowed an unambiguous assignment of the stereoisomers formed by the fungus. Despite a similar structure, two key differences in the stereochemistry of the lactones and dill ethers emerged. The analysis of submerged cultures further revealed the formation of additional, so far unknown, fungal terpenoids, including limonen-10-ol (7) and the corresponding aldehyde limonen-10-al (8). Analysis of chiral terpenoids as well as supplementation studies, including stable isotope-labeled compounds, indicated independent biogenesis pathways for dill ethers and lactones.


Assuntos
Anethum graveolens , Benzofuranos , Odorantes/análise , Lactonas/química , Monoterpenos , Éteres
11.
Trop Anim Health Prod ; 55(3): 216, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212936

RESUMO

In the present study, we evaluated the antihyperlipidemic and antioxidant effects of garlic and dill in comparison with atorvastatin to combat lipogenesis in broiler chickens. A total of 400 1-day-old chicks (Ross 308 strain) were randomly distributed into four experimental diets. Dietary treatments included a control diet, the control diet plus atorvastatin at 20 mg/kg, the control diet plus garlic dry powder (GDP) at 7.5 g/kg, and the control diet plus dill dry powder (DDP) at 7.5 g/kg. Chicks were maintained on experimental diets for 42 days under the recommended environmental conditions set out by the strain management manual. The results showed that weight gain, feed conversion ratio (FCR), and duodenal, jejunal, and ileal dimensions of villi (height, width, and the surface absorptive area) were improved by in-feed atorvastatin, GDP, or DDP when compared to the control (P < 0.05). The inclusion of atorvastatin or phytobiotic products increased circulatory levels of nitric oxide (NO) but decreased circulatory levels of malondialdehyde (MDA), triacylglycerol (TAG), and low-density lipoproteins cholesterol (LDL), with concomitant reductions in the T, R, and S waves amplitudes in the Lead 2 electrocardiogram (ECG) (P < 0.05). Dietary supplements caused an up-regulation of inducible nitric oxide synthase (iNOS), superoxide dismutase 1 (SOD1), and glutathione peroxidase (GPX) but reduced the expression of key hepatic lipogenic enzymes (fatty acid synthase (FAS) and hydroxy-methylglutaryl-CoA reductase (HMGCR) (P < 0.05). In conclusion, feed supplementation with atorvastatin, GDP, or DDP suppressed lipogenesis, enhanced antioxidant response, and improved gut and cardio-pulmonary function in broiler chicks subjected to hypobaric hypoxia.


Assuntos
Anethum graveolens , Alho , Animais , Antioxidantes/metabolismo , Galinhas , Anethum graveolens/metabolismo , Atorvastatina/farmacologia , Atorvastatina/metabolismo , Lipogênese , Pós/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal
12.
PeerJ ; 11: e15043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37013148

RESUMO

Dill (Anethum graveolens L.) is an aromatic herb widely used in the food industry, with several commercial cultivars available with different qualitative characteristics. Commercial cultivars are usually preferred over landraces due to their higher yield and also the lack of improved landraces than can be commercialized. In Greece, however, traditional dill landraces are cultivated by local communities. Many are conserved in the Greek Gene Bank and the aim here was to investigate and compare the morphological, genetic, and chemical biodiversity of twenty-two Greek landraces and nine modern/commercial cultivars. Multivariate analysis of the morphological descriptors, molecular markers, and essential oil and polyphenol composition revealed that the Greek landraces were clearly distinguished compared with modern cultivars at the level of phenological, molecular and chemical traits. Landraces were typically taller, with larger umbels, denser foliage, and larger leaves. Plant height, density of foliage, density of feathering as well as aroma characteristics were desirable traits observed for some landraces, such as T538/06 and GRC-1348/04, which were similar or superior to those of some commercial cultivars. Polymorphic loci for inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) molecular markers were 76.47% and 72.41% for landraces, and 68.24% and 43.10% for the modern cultivars, respectively. Genetic divergence was shown, but not complete isolation, indicating that some gene flow may have occurred between landraces and cultivars. The major constituent in all dill leaf essential oils was α-phellandrene (54.42-70.25%). Landraces had a higher α-phellandrene and dill ether content than cultivars. Two dill landraces were rich in chlorogenic acid, the main polyphenolic compound determined. The study highlighted for the first-time Greek landraces with desirable characteristics regarding quality, yield, and harvest time suitable for breeding programs to develop new dill cultivars with superior features.


Assuntos
Anethum graveolens , Essências Florais , Óleos Voláteis , Anethum graveolens/genética , Genótipo , Melhoramento Vegetal , Óleos Voláteis/química , Análise Multivariada
13.
Environ Sci Pollut Res Int ; 30(25): 67458-67471, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37115437

RESUMO

Biochar-based nanocomposites (BNCs) with a high level of sodium sorption capacity may improve salinity tolerance and seedling establishment of dill. Thus, a pot experiment was conducted to evaluate the effects of solid biochar (30 g solid biochar kg-1 soil) and biochar-based nanocomposites of iron (BNC-FeO) and zinc (BNC-ZnO) in individual (30 g BNC kg-1 soil) and a combined form (15 g BNC-FeO + 15 g BNC-ZnO kg-1 soil) on dill seedling growth in different levels of salt stress (non-saline, 6 and 12 dSm-1). Salinity caused a decrease in emergence percentage and emergence rate of seedlings. Increasing salinity of soil up to 12 dSm-1 decreased the biomass of dill seedlings by about 77%. Application of biochar and particularly BNCs increased the content of potassium, calcium, magnesium, iron, and zinc, reducing and non-reducing sugars, total sugars, invertase and sucrose synthase activities, leaf water content, gibberellic acid, and indole-3-acetic acid in dill plants, leading to an improvement in seedling growth (shoot length, root length, and dry weight) under saline conditions. Sodium content was noticeably decreased by BNC treatments (9-21%), which reduced mean emergence rate and stress phytohormones such as abscisic acid (31-43%), jasmonic acid (21-42%), and salicylic acid (16-23%). Therefore, BNCs especially in combined form can potentially improve emergence and growth of dill seedlings under salt stress, through reducing sodium content and endogenous stress hormones, and enhancing sugars and growth promoting hormones.


Assuntos
Anethum graveolens , Óxido de Zinco , Açúcares , Plântula , Reguladores de Crescimento de Plantas , Salinidade , Sódio , Zinco , Solo , Hormônios , Ferro
14.
J Ethnopharmacol ; 303: 115995, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509255

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Different parts of Malvaviscus arboreus Dill. Ex Cav. (M. arboreus) are traditionally used in the West Region of Cameroon to treat many diseases, including epilepsy. AIM OF THE STUDY: To determine which part of M. arboreus offers the best anticonvulsant effect, and to assess the acute and sub-acute toxicity of the part of interest. MATERIALS AND METHODS: the anticonvulsant effect of the aqueous lyophilisate of the decoction of flowers, leaves, stems and roots of M. arboreus at various doses was evaluated and compared on the model of acute epileptic seizures induced by pentylenetetrazole (PTZ) (70 mg/kg), injected 1 h after oral administration of the various extracts. Out of these plant parts, the leaves were then selected to prepare the hydroethanolic extract and its anticonvulsant effect against PTZ at the doses of 122.5, 245 and 490 mg/kg, as well as its acute toxicity were compared with those of the aqueous lyophilisate of the leaves. The anticonvulsant effect of the aqueous lyophilisate of M. arboreus leaves was further evaluated on models of acute epileptic seizures induced by picrotoxin (PIC) (7.5 mg/kg), strychnine (STR) (2.5 mg/kg) and pilocarpine (350 mg/kg). The 28 days sub-acute toxicity, as well as the quantitative phytochemistry and the in vitro antioxidant potential (FRAP, DPPH, ABTS+) of the aqueous lyophilisate of the leaves of M. arboreus were also evaluated. RESULTS: M. arboreus leaves showed the best anticonvulsant effect and the aqueous lyophilisate was the best extract. The latter significantly protected the animals against convulsions induced by PTZ (71.43%) (p < 0.01), PIC (57.14%) (p < 0.05) and STR (42%) and had no effect on pilocarpine-induced seizures. Furthermore, it showed no acute or sub-acute toxicity, and revealed a high content of flavonoids, saponins, tannins and alkaloids, and antioxidant activity in vitro. CONCLUSION: The aqueous lyophilisate of the leaves of M. arboreus offers the best anticonvulsant effect on the extraction solvent used, and it would act mainly via a potentiation of the inhibitory systems of the brain (GABA, Glycine). In addition, its richness in bioactive compounds gives it an antioxidant potential, and it is not toxic in acute and sub-acute toxicity. All this justifies at least in part its empirical uses, and makes M. arboreus a candidate for the alternative treatment of epilepsy.


Assuntos
Anethum graveolens , Epilepsia , Animais , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/toxicidade , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Antioxidantes/uso terapêutico , Pilocarpina/toxicidade , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Picrotoxina/uso terapêutico , Pentilenotetrazol/toxicidade , Epilepsia/tratamento farmacológico , Estricnina/uso terapêutico , Água
15.
Plant J ; 113(3): 562-575, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36534115

RESUMO

The phenylpropene volatiles dillapiole and apiole impart one of the characteristic aromas of dill (Anethum graveolens) weeds. However, very few studies have been conducted to investigate the chemical composition of volatile compounds from different developmental stages and plant parts of A. graveolens. In this study, we examined the distribution of volatile phenylpropenes, including dillapiole, in dill plants at various developmental stages. We observed that young dill seedlings accumulate high levels of dillapiole and apiole, whereas a negligible proportion was found in the flowering plants and dry seeds. Based on transcriptomics and co-expression approaches with phenylpropene biosynthesis genes, we identified dill cDNA encoding S-adenosyl-L-methionine-dependent O-methyltransferase 1 (AgOMT1), an enzyme that can convert 6- and 2-hydroxymyristicin to dillapiole and apiole, respectively, via the methylation of the ortho-hydroxy group. The AgOMT1 protein shows an apparent Km value of 3.5 µm for 6-hydroxymyristicin and is 75% identical to the anise (Pimpinella anisum) O-methyltransferase (PaAIMT1) that can convert isoeugenol to methylisoeugenol via methylation of the hydroxy group at the para-position of the benzene ring. AgOMT1 showed a preference for 6-hydroxymyristicin, whereas PaAIMT1 displayed a large preference for isoeugenol. In vitro mutagenesis experiments demonstrated that substituting only a few residues can substantially affect the substrate specificity of these enzymes. Other plants belonging to the Apiaceae family contained homologous O-methyltransferase (OMT) proteins highly similar to AgOMT1, converting 6-hydroxymyristicin to dillapiole. Our results indicate that apiaceous phenylpropene OMTs with ortho-methylating activity evolved independently of phenylpropene OMTs of other plants and the enzymatic function of AgOMT1 and PaAIMT1 diverged recently.


Assuntos
Anethum graveolens , Anethum graveolens/química , Anethum graveolens/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
16.
Environ Geochem Health ; 45(6): 3089-3111, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36153765

RESUMO

Biochar-supported metal oxide nanocomposites as functional materials could help to improve the production and stress tolerance of plants by enhancing the physicochemical properties of biochar. This experiment was carried out to assess the effects of unmodified biochar (30 g kg-1 soil) and biochar-based nanocomposites (BNCs) of iron (30 g BNC-FeO kg-1 soil), zinc (30 g BNC-ZnO kg-1 soil), and a combined form (15 g BNC-FeO + 15 g BNC-ZnO kg-1 soil) on dill (Anethum graveolens L.) plants under various salinity levels (non-saline, 6 and 12 dS m-1). The biochar-related treatments reduced sodium content of the plants, leading to a decline in osmolytes, antioxidant enzymes activities, reactive oxygen species (ROS), lipid peroxidation, NADP reduction, abscisic acid, jasmonic acid, and salicylic acid in dill leaf tissues. The combined form of BNCs reduced sodium content of leaf tissue by about 22% and 26% under 6 and 12 dS m-1 salinities, respectively. In contrast, addition of biochar, particularly biochar-based nanocomposites to the saline soil, enhanced potassium, iron, and zinc contents of leaf tissue, photosynthetic pigments, leaf water content, oxygen evolution rate, hill reaction and ATPase activities, endogenous indole-3-acetic acid, plant organs biomass, and consequently essential oil yield of plant organs. The combined form of BNCs in comparison with unmodified biochar improved vegetative, inflorescence, and seed biomass under 12 dS m-1 salinity by about 33%, 25%, and 6%, respectively. These findings revealed that BNCs with novel structure can potentially enhance salt tolerance, plant biomass, and essential oil yield of different organs in salt-stressed dill plants through decreasing leaf sodium content and ROS generation and increasing nutrient availability, water status, and photosynthetic pigments.


Assuntos
Anethum graveolens , Óxido de Zinco , Espécies Reativas de Oxigênio , Antioxidantes , Sódio , Zinco , Solo/química , Ferro , Água
17.
Braz. J. Pharm. Sci. (Online) ; 59: e20060, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1439526

RESUMO

Abstract Dill (Anethum graveolens L.) essential oil is wide spread in the food, beverage and pharmaceutical sectors. Dill is a member of the Apiaceae (Umbelliferae) family. It has the following biological activities: antioxidant, antifungal, antibacterial, antimicrobial, antihyperlipidemic, antihypercholesterolemic, antispasmodic, antiproliferative and anti-inflammatory. Aqueous extract of dill seed has reported effects on sex hormones and infertility potential. Moreover, boiled dill seed has an impact on reducing labor duration in giving birth. Implantation and placentation are necessary for a healthy pregnancy in the early stages. Angiogenesis is responsible for these essential processes. This study aimed to investigate dill seed oil's cytotoxic and antiangiogenic effects on rat adipose tissue endothelial cells (RATECs). Dill seed oil showed dose-dependent cytotoxicity on RATECs. It disrupted endothelial tube formation and depolymerized F-actin stress fibers. According to this study, depolymerization of F-actin stress fiber by dill seed oil could inhibit angiogenesis by suppressing endothelial cell proliferation, tube formation and motility. In other words, dill seed oil can be a new anti-angiogenic agent and a novel contraceptive.


Assuntos
Sementes/anatomia & histologia , Óleos Voláteis/análise , Inibidores da Angiogênese/efeitos adversos , Anethum graveolens/efeitos adversos , Células Endoteliais/metabolismo , Anticoncepcionais/classificação , Infertilidade/patologia
18.
Sci Rep ; 12(1): 21903, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536073

RESUMO

The essential oil content and composition of medicinal plants may be influenced by eco-friendly products for nutrient availability under abiotic stresses. This research was conducted to determine the effects of biochar (30 g kg-1 soil) and biochar-based nanocomposites (BNCs) of iron (30 g BNC-FeO kg-1 soil), zinc (30 g BNC-ZnO kg-1 soil), and their combined form (15 + 15 g) on dill (Anethum graveolens L.) under salinity levels (non-saline, 6 and 12 dS m-1). Application of biochar, particularly BNCs increased iron and zinc content and decreased sodium accumulation in leaf tissues. The seed essential oil content increased under high salinity. Salinity changed the values of major compounds in essential oil and induced the formation of compounds such as alpha,2-dimethylstyrene, cuminyl alcohol, p-cymene, and linalool. Biochar treatments especially BNCs with a higher production of monoterpenes increased the levels of limonene, carvone, apiol, and dillapioll. All extracts showed a considerable DPPH-inhibitory effect with application of BNCs under salinity. The maximum antioxidant activity was observed under high level of salinity with application of the combined form. Therefore, the combined form of nanocomposite was the best treatment to improve the content of basic commercial monoterpenes and consequently antioxidant activity of essential oil in salt-stressed dill plants.


Assuntos
Anethum graveolens , Óleos Voláteis , Óleos Voláteis/farmacologia , Antioxidantes , Monoterpenos , Solo , Estresse Salino , Sementes
19.
Sci Rep ; 12(1): 14349, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999251

RESUMO

The performance of dill plant may be affected by adverse environments such as salinity. Thus, this research was designed to evaluate changes in chemical composition and antioxidant activity of seed essential oil of dill (Anethum graveolens L.) in response to salinity (0, 5, 10 and 15 dS/m) and 1 mM of each hormonal treatments (gibberellic acid, salicylic acid, and cytokinin). Salicylic acid (SA) reduced Na+ content of roots and leaves by 15.4%, 30.9% and 12.4%, 24.3%, but enhanced K+ content by 29.8%, 51.6% and 76.6%, 73.4% under moderate and severe salinities, respectively. Essential oil yield was enhanced with progressing seed filling, despite decreasing essential oil percentage. Percentage of essential oil was increased under low and moderate salinities. Hormonal treatments, particularly SA enhanced seed mass and essential oil percentage, leading to enhanced essential oil yield. The amounts of most constituents were enhanced under moderate salinity. Foliar spray of SA and CK (cytokinin) increased almost all essential oil components, except dill ether and dill apiole, while the GA3 (gibberellic acid) treatment reduced most of the constituents. The α-fenchol was only induced by salt stress. The ß-pinene, 1-terpineol, cryptone, oxypeucedanin hydrate, α-thujene and P-α-dimethylstyrene were also specifically synthesized in SA treated plants under salinity. The highest TPC (total phenolic content) and antioxidant activity were recorded for essential oil of SA treated plants at mass maturity under moderate salinity. In general, the SA spray was the most effective treatment for improving essential oil quantity and quality of dill plants.


Assuntos
Anethum graveolens , Óleos Voláteis , Anethum graveolens/química , Antioxidantes/química , Antioxidantes/farmacologia , Citocininas , Hormônios , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Ácido Salicílico/farmacologia , Estresse Salino
20.
Sci Rep ; 12(1): 13134, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908078

RESUMO

Dill seeds (Anethum graveolens L.) is the most valuable medicinal seed spice crop of Apiaceae. It bears small yellow flowers in the form of umbels. Being a cross-pollinated crop, floral visitors play vital role in pollination and seed sets. Hence, the present study was conducted at the ICAR-National Research Centre on Seed Spices, Ajmer (Rajasthan), India to discover the pollinator's community, foraging behaviour and abundance of most frequent pollinators and different modes of pollination on seed yield and quality of this seed spice crop. The insect visitors community of dill seeds was composed of 28 insect species belonging to 14 families of 6 orders. Most of floral visitors started their foraging activity at 8.00 h, reached peak activity between 12.00 and 14.00 h and their activity ceased at 18.00 h. Apis florea, A. dorsata, A. mellifera, solitary bee, Halictus sp. and two unidentified species of Hymenoptera; Episyrphus balteatus (DeGeer), Episyrphus sp., Eristalis sp and two other Musca species of Diptera were identified as potential and regular floral visitors of dill seeds. The highest seed yield of 1505.63 kg/ha was recorded in the treated plots provided with only 10% jaggery solution and was at par with the open pollination. A lower seed yield of 1432.5 kg/ha was recorded in plots pollinated only with A. mellifera inside insect cages. Open pollination with 10% jaggery solution spray increased the seed yield of dill seed crop by 57%, one-thousand seed test weight by 96% and the essential oil content by 27% over control plots. These results show that managed pollination is a much better way to enhance yields and quality of dill seed crop than other treatments including only honeybee-based pollination.


Assuntos
Anethum graveolens , Dípteros , Óleos Voláteis , Animais , Abelhas , Flores , Índia , Insetos , Polinização , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA