Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.812.190
Filtrar
1.
Sci Total Environ ; 803: 149875, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478901

RESUMO

Invasive alien fishes have had pernicious ecological and economic impacts on both aquatic ecosystems and human societies. However, a comprehensive and collective assessment of their monetary costs is still lacking. In this study, we collected and reviewed reported data on the economic impacts of invasive alien fishes using InvaCost, the most comprehensive global database of invasion costs. We analysed how total (i.e. both observed and potential/predicted) and observed (i.e. empirically incurred only) costs of fish invasions are distributed geographically and temporally and assessed which socioeconomic sectors are most affected. Fish invasions have potentially caused the economic loss of at least US$37.08 billion (US2017 value) globally, from just 27 reported species. North America reported the highest costs (>85% of the total economic loss), followed by Europe, Oceania and Asia, with no costs yet reported from Africa or South America. Only 6.6% of the total reported costs were from invasive alien marine fish. The costs that were observed amounted to US$2.28 billion (6.1% of total costs), indicating that the costs of damage caused by invasive alien fishes are often extrapolated and/or difficult to quantify. Most of the observed costs were related to damage and resource losses (89%). Observed costs mainly affected public and social welfare (63%), with the remainder borne by fisheries, authorities and stakeholders through management actions, environmental, and mixed sectors. Total costs related to fish invasions have increased significantly over time, from

Assuntos
Ecossistema , Espécies Introduzidas , Animais , Europa (Continente) , Pesqueiros , Peixes , Humanos
2.
Sci Total Environ ; 803: 149921, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482135

RESUMO

Plastic pollution poses a global threat to aquatic organisms, yet its effect on many species remains poorly documented and understood. This study addresses the impact caused by different sizes of polyethylene (PE) plastics on the common carp and evaluates their multi-biomarkers response. We investigated the histological structure and measurement of biochemical alterations, antioxidant enzymes, immunological responses, and fluctuations in blood profiles of the organisms after 15 days of exposure to a concentration of 100 mg/L of nano- (NPs), micro- (MPs) and macroplastics (MaPs). The fish health status was altered in the sole presence of PE particles. All biomarkers changed after exposure compared to the control group, with larger changes being observed with the decreasing size of particles (NPs > MPs > MaPs) compared to their absence. A synergistic effect resulting from the individual impact of plastics penetration in the circulatory system, bursting biochemical responses, and lesions in tissues, might explain the more considerable impact of NPs compared to MPs and/or MaPs.


Assuntos
Carpas , Poluentes Químicos da Água , Animais , Biomarcadores , Microplásticos , Plásticos , Polietileno , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Sci Total Environ ; 803: 150027, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482139

RESUMO

This study aims to evaluate the ecotoxicity effects of single tetracycline (TC) exposure and mixture exposure in presence of polystyrene nanoplastics (PS-NPs, 80 nm) on juvenile Ctenopharyngodon idella. We carried out single and combined exposure of TC (5000 µg/L) and PS-NPs (20, 200, 2000 µg/L) for 7 days. Compared to TC single exposure, co-exposure to PS-NPs and TC significantly changed the levels of antioxidant entities, including T-AOC, SOD, and CAT in the liver and intestine of C. idella, indicating that PS-NPs might enhance the oxidative damage caused by TC. Further, the co-exposure significantly upregulated the mRNA expression levels of MMP2, MMP9, and IL-8 in a concentration-dependent manner in the liver and intestine tissues of C. idella, compared to the control and TC single exposure groups. Moreover, the phylogenetic tree showed that MMP2 and MMP9 in C. idella are relatively conservative, and the mRNA expressions of MMP2 are significantly positively correlated with TGFß1, IL8, and MMP9 in Liver hepatocellular carcinoma (LIHC) and Colon adenocarcinoma (COAD). The above genes in LIHC and COAD were significantly correlated with various immune cells. Further, histopathological analysis revealed tissue lesions in the intestine and gill of fish in all the exposed groups, compared to the control group. In short, the present study illustrated that the toxicological effects of organic pollutants such as TC could be influenced by the presence of NPs in the C. idella.


Assuntos
Carpas , Doenças dos Peixes , Ração Animal/análise , Animais , Dieta , Proteínas de Peixes/genética , Microplásticos , Filogenia , Poliestirenos/toxicidade , Tetraciclina
4.
Sci Total Environ ; 803: 149933, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482141

RESUMO

To ensure global food security, agriculture must increase productivity while reducing environmental impacts associated with chemical nitrogen (N) fertilisation. This necessitates towards more sustainable practices such as recycling organic waste to substitute chemical fertiliser N inputs. However, hitherto how such strategy controls the succession of microbial communities and their relationship with crop yields and environmental impacts have not been comprehensively investigated. We conducted a field experiment with vegetable production in China examining partial substitution (25-50%) of chemical fertiliser with organic forms (pig manure or municipal sludge compost) considering key sustainability metrics: productivity, soil health, environmental impacts and microbial communities. We demonstrate that partial organic substitution improved crop yields, prevented soil acidification and improved soil fertility. Treatments also reduced detrimental environmental impacts with lower N2O emission, N leaching and runoff, likely due to reduced inorganic nitrogen surplus. Microbial communities, including key genes involved in the N cycle, were dynamic and time-dependent in response to partial organic substitution, and were also important in regulating crop yields and environmental impacts. Partial organic substitution increased bacterial diversity and the relative abundance of several specific microbial groups (e.g. Sphingomonadales, Myxococcales, Planctomycetes, and Rhizobiales) involved in N cycling. Additionally, partial organic substitution reduced the number of bacterial ammonia oxidizers and increased the number of denitrifiers, with the proportion of N2O-reducers being more pronounced, suggesting a mechanism for reducing N2O emissions. Comprehensive economic cost-benefit evaluation showed that partial organic substitution increased economic benefit per unit area by 37-46%, and reduced agricultural inputs and environmental impacts per unit product by 22-44%. Among them, 50% substitution of pig manure was the most profitable strategy. The study is crucial to policy-making as it highlights the potential advantages of shifting towards systems balancing chemical and organic fertilisers with economic benefits for farmers, reduced environmental damage and an efficient way for organic waste disposal.


Assuntos
Agricultura , Fertilizantes , Animais , Fertilizantes/análise , Esterco , Nitrogênio , Solo , Suínos
5.
Sci Total Environ ; 803: 149744, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482147

RESUMO

Pharmaceuticals (PhACs) are considered emerging contaminants with potential accumulation in aquatic organisms. Thus, seafood consumption may cause long-term effects and health risk for consumers. In the present study, the occurrence of PhACs in seafood from two Brazilian coastal areas, Sepetiba Bay (n = 43) and Parnaiba Delta River (n = 48), was determined for the first time, and their potential risk for human health was assessed. An eco-friendly multi-analytes method was used, after being validated for the different types of matrices (mussels, fatty and lean fish). All compounds under study were detected at least in four seafood species, including chloramphenicol, an antibiotic prohibited in animal foods. Most PhACs had mean concentrations below limit of quantification. Ibuprofen and other nonsteroidal anti-inflammatory drugs (NSAIDs), as well as simvastatin and carbamazepine were the main PhACs bioaccumulated in edible parts of seafood species from Brazil. The high trophic level carnivorous species, snook, was the most contaminated by NSAIDs, while bivalves were the seafood more contaminated by lipid regulators. The profile of contamination did not vary among different types of matrix, except in relation to carbamazepine and ketoprofen. These PhACs were more abundant in species from Sepetiba Bay, an area highly impacted by human influence. The estimated daily exposure for Brazilian population that consumes the studied species was up to 20.3 ng/kg bw/day via carib pointed-venus and 25.7 ng/kg bw/day via snooks, lower than acceptable daily intake. Thus, consumption of seafood species from Sepetiba Bay and Parnaiba Delta River seems to be safe to the population in what concerns the PhACs studied.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Brasil , Monitoramento Ambiental , Humanos , Medição de Risco , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 803: 149858, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482148

RESUMO

Brevetoxins (PbTx) are a well-recognized group of neurotoxins associated with harmful algal blooms, and specifically recurrent "Florida Red Tides," in marine waters that are linked to impacts on both human and ecosystem health including well-documented "fish kills" and marine mammal mortalities in affected coastal waters. Understanding mechanisms and pathways of PbTx toxicity enables identification of relevant biomarkers to better understand these environmental impacts, and improve monitoring efforts, in relation to this toxin. Toward a systems-level understanding of toxicity, and identification of potential biomarkers, high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) was utilized for metabolic profiling of zebrafish (Danio rerio) embryos, as an established toxicological model, exposed to PbTx-2 (the most common congener in marine waters). Metabolomics studies were, furthermore, complemented by an assessment of the toxicity of PbTx-2 in embryonic stages of zebrafish and mahi-mahi (Coryphaena hippurus), the latter representing an ecologically and geographically relevant marine species of fish, which identified acute embryotoxicity at environmentally relevant (i.e., parts-per-billion) concentrations in both species. HRMAS NMR analysis of intact zebrafish embryos exposed to sub-lethal concentrations of PbTx-2 afforded well-resolved spectra, and in turn, identification of 38 metabolites of which 28 were found to be significantly altered, relative to controls. Metabolites altered by PbTx-2 exposure specifically included those associated with (1) neuronal excitotoxicity, as well as associated neural homeostasis, and (2) interrelated pathways of carbohydrate and energy metabolism. Metabolomics studies, thereby, enabled a systems-level model of PbTx toxicity which integrated multiple metabolic, molecular and cellular pathways, in relation to environmentally relevant concentrations of the toxin, providing insight to not only targets and mechanisms, but potential biomarkers pertinent to environmental risk assessment and monitoring strategies.


Assuntos
Ecossistema , Peixe-Zebra , Animais , Humanos , Espectroscopia de Ressonância Magnética , Toxinas Marinhas , Metabolômica , Oxocinas
7.
Sci Total Environ ; 803: 149923, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34487898

RESUMO

While it is often assumed that oncogenic processes in metazoans can influence species interactions, empirical evidence is lacking. Here, we use the cnidarian Hydra oligactis to experimentally explore the consequences of tumor associated phenotypic alterations for its predation ability, relationship with commensal ciliates and vulnerability to predators. Unexpectedly, hydra's predation ability was higher in tumorous polyps compared to non-tumorous ones. Commensal ciliates colonized preferentially tumorous hydras than non-tumorous ones, and had a higher replication rate on the former. Finally, in a choice experiment, tumorous hydras were preferentially eaten by a fish predator. This study, for the first time, provides evidence that neoplastic growth has the potential, through effect(s) on host phenotype, to alter biotic interactions within ecosystems and should thus be taken into account by ecologists.


Assuntos
Cnidários , Hydra , Neoplasias , Animais , Ecossistema , Água Doce
8.
J Colloid Interface Sci ; 607(Pt 1): 16-23, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34492349

RESUMO

The exploration of carbon dots (CDs) with high quantum yield, facile synthesis path and satisfying output for their multiple applications remains a challenge. Thus, a silicon-doped orange-emitting carbon dots (O-CDs) is synthesized via a one-step hydrothermal method o-phenylenediamine and ethyl orthosilicate as raw materials. The O-CDs exhibits a bright and non-excitation-dependent emission peaking at 580 nm, and the corresponding quantum yield could be greatly boosted from 39.2 % to 64.1 % by silicon doping. The obtained O-CDs possess good biocompatibility and promising luminescence stability with varying solvents, ionic concentrations and temperatures. Its bio-imaging ability is performed by incubating zebrafish embryos with O-CDs aqueous solution, and clear in-vivo fluorescent images are obtained. Furthermore, due to its high-efficient and specific pH-sensitive emission with excellent dispersibility, the O-CDs can be used as a fluorescent ink for dual-model data encry/decryption in both hand-writing and stamp printing. Therefore, the as-prepared O-CDs show the potential as promising candidate for biomedical diagnosis, data encryption, and anti-counterfeiting.


Assuntos
Citrus sinensis , Pontos Quânticos , Animais , Carbono , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Luminescência , Silício , Peixe-Zebra
9.
Sci Total Environ ; 803: 149622, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34496346

RESUMO

Global ocean warming, wave extreme events, and accelerating sea-level rise are challenges that coastal communities must address to anticipate damages in coming decades. The objective of this study is to undertake a time-series analysis of climate change (CC) indicators within the Bay of Biscay, including the Basque coast. We used an integrated and flexible methodology, based on Generalized Additive Mixed Models, to detect trends on 19 indicators (including marine physics, chemistry, atmosphere, hydrology, geomorphology, biodiversity, and commercial species). The results of 87 long-term time series analysed (~512,000 observations), in the last four decades, indicate four groups of climate regime shifts: 1) A gradual shift associated with CC starting in the 1980s, with a warming of the sea surface down to 100 m depth in the bay (0.10-0.25 °C per decade), increase in air temperature and insolation. This warming may have impacted on benthic community redistribution in the Basque coast, favouring warm-water species relative to cold-water species. Weight at age for anchovy and sardine decreased in the last two decades. 2) Deepening of the winter mixed layer depth in the south-eastern bay that probably led to increases in nutrients, surface oxygen, and chlorophyll concentration. Current increases on chlorophyll and zooplankton (i.e., copepods) biomass are contrary to those expected under CC scenarios in the region. 3) Sea-level rise (1.5-3.5 cm per decade since 1990s), associated with CC. 4) Increase of extreme wave height events of 16.8 cm per decade in the south-eastern bay, probably related to stormy conditions in the last decade, with impacts on beach erosion. Estimating accurate rates of sea warming, sea-level rise, extreme events, and foreseeing the future pathways of marine productivity, are key to define the best adaptation measures to minimize negative CC impacts in the region.


Assuntos
Baías , Biodiversidade , Animais , Biomassa , Mudança Climática , Ecossistema , Zooplâncton
10.
Sci Total Environ ; 803: 150023, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500268

RESUMO

Application of organic wastes as soil fertilizers represents an important route of agricultural soil contamination by antibiotics such as sulfamethoxazole (SMX). Soil contamination may be influenced by the storage time of organic wastes before soil spreading. The objective of this work was to study the fate of SMX in two organic wastes, a co-compost of green waste and sewage sludge and a bovine manure, which were stored between 0 and 28 days, then incorporated in an agricultural soil that has never received organic waste and monitored for 28 days under laboratory conditions. Organic wastes were spiked with 14C-labelled SMX at two concentrations (4.77 and 48.03 mg kg-1 dry organic waste). The fate of SMX in organic wastes and soil-organic waste mixtures was monitored through the distribution of radioactivity in the mineralised, available (2-hydroxypropyl-ß-cyclodextrin extracts), extractable (acetonitrile extracts) and non-extractable fractions. SMX dissipation in organic wastes, although partial, was due to i) incomplete degradation, which led to the formation of metabolites detected by high performance liquid chromatography, ii) weak adsorption and iii) formation of non-extractable residues. Such processes varied with the organic wastes, the manure promoting non-extractable residues, and the compost leading to an increase in extractable and non-extractable residues. Short storage does not lead to complete SMX elimination; thus, environmental contamination may occur after incorporating organic wastes into soil. After addition of organic wastes to the soil, SMX residues in the available fraction decreased quickly and were transferred to the extractable and mostly non-extractable fractions. The fate of SMX in the soil also depended on the organic wastes and on the prior storage time for manure. However the fate of SMX in the organic wastes and soil-organic waste mixtures was independent on the initial spiked concentration.


Assuntos
Compostagem , Poluentes do Solo , Animais , Bovinos , Esterco , Esgotos , Solo , Sulfametoxazol
11.
Sci Total Environ ; 803: 150041, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500270

RESUMO

Legacy landmines in post-conflict areas are a non-discriminatory lethal hazard and can still be triggered decades after the conflict has ended. Efforts to detect these explosive devices are expensive, time-consuming, and dangerous to humans and animals involved. While methods such as metal detectors and sniffer dogs have successfully been used in humanitarian demining, more tools are required for both site surveying and accurate mine detection. Honeybees have emerged in recent years as efficient bioaccumulation and biomonitoring animals. The system reported here uses two complementary landmine detection methods: passive sampling and active search. Passive sampling aims to confirm the presence of explosive materials in a mine-suspected area by the analysis of explosive material brought back to the colony on honeybee bodies returning from foraging trips. Analysis is performed by light-emitting chemical sensors detecting explosives thermally desorbed from a preconcentrator strip. The active search is intended to be able to pinpoint the place where individual landmines are most likely to be present. Used together, both methods are anticipated to be useful in an end-to-end process for area surveying, suspected hazardous area reduction, and post-clearing internal and external quality control in humanitarian demining.


Assuntos
Substâncias Explosivas , Animais , Abelhas , Bioacumulação , Monitoramento Biológico , Cães , Manejo de Espécimes , Inquéritos e Questionários
12.
Sci Total Environ ; 803: 150087, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500276

RESUMO

We reported a new strategy for efficient phosphate removal from wastewaters, it relies on the discarded Artemia Cyst-shell in-situ growth of Al(OH)3 nanocluster, the charged amino-acids components of skeleton make available for the small size of Al(OH)3 formation (< 10 nm) with high activity, and the three-dimensional porous structure of discarded matrix provides fast kinetics and efficient Al(OH)3 nanoparticles utilization. These hybrid adsorbents exhibit ultrahigh capacity (850.5 mg/g) and fast kinetics (~2 min) by recent ten-years (2011-2020) survey, the superior selectivity against various foreign ions, with a distribution coefficient (Kd) as high as 4820 mL/g, the porous structure and fast kinetics also accelerate the phosphate accessibility, yielding a satisfactory capacity of ~3000 L/kg sorbent (Artemia CS-Al) for the application, even varying at high feeding-speeds. The saturated adsorbent can be readily regenerated and reused without decrease in performance, this technology is promising for mitigating the contamination problem of excess phosphate worldwide.


Assuntos
Cistos , Nanopartículas , Poluentes Químicos da Água , Adsorção , Animais , Artemia , Fosfatos , Água , Poluentes Químicos da Água/análise
13.
Sci Total Environ ; 803: 150026, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500277

RESUMO

Pesticides are extensively used to control pests, diseases, and weeds in order to increase agricultural production. Usage of indiscriminate doses and persistent pesticides has not only caused resistance issues in insect pests but has also had deleterious effects on non-target organisms (beneficial insects, fish, and wildlife) and caused environmental contamination (soil, water, and air) through leaching, overflow, and insecticide spray drift. Exposure from eating food and drinking water contaminated to pesticide residues is also affecting human health. This study was conducted to obtain information to reduce pesticide resistance and environmental pollution. A cotton dusky bug (Oxycarenus hyalinipennis) population was collected from a farmer's field and exposed to fipronil for 18 generations. In comparison to an unselected strain (XYZ-FS) and a field population (Field-Popn), the fipronil-selected strain of O. hyalinipennis (XYZ-FR) developed a 2631.50-fold level of resistance and a 202.42-fold resistance level respectively. Significantly higher fecundity was observed in the XYZ-FS (24.93) compared to that of Hybrid2 (XYZ-FR ♀ XYZ-FS ♂) (17.60), Hybrid1 (XYZ-FR ♂ × XYZ-FS ♀) (17.13), and XYZ-FR (12.6). The intrinsic rate of natural increase, relative fitness and biotic potential were highest in XYZ-FS, followed by Hybrid2, Hybrid1, and XYZ-FR. The XYZ-FR strain of O. hyalinipennis had very low cross-resistance to profenofos (1.15-2.83-fold), and emamectin benzoate (1.09-2.86-fold) and moderate resistance to bifenthrin (5.49-24.54-fold) when selection progressed from G4 to G19. The proper use of this pesticide, along with rotation and a high-dose strategy may helpful to reduce the risk of resistance development and also its negative impacts on the environment and humans.


Assuntos
Heterópteros , Inseticidas , Animais , Humanos , Resistência a Inseticidas , Inseticidas/toxicidade , Pirazóis , Medição de Risco
14.
Sci Total Environ ; 803: 150017, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500278

RESUMO

Circular economy principle aims to achieve sustainable production systems, focusing on the waste valorisation and the reduction of gaseous losses to the atmosphere. Nitrogen (N) compounds in terms of ammonia (NH3) and nitrous oxide (N2O) represent the major losses to the atmosphere of laying hen manure management chain. We present a study aimed to evaluate NH3 and N2O emission and mitigation strategies at housing, storage and land spreading stages. The whole manure management chain was evaluated under different scenarios which combined mitigation strategies of each stage. Two intensive laying hen facilities were involved in the study. Evaluated mitigation strategies were: (i) frequency of manure removal from housing facility, (ii) dried manure storage after passing throughout a manure drying tunnel (MDT) compared to fresh manure storage and (iii) fresh or dried manure incorporation versus surface land application. Increasing the frequency of manure removal from 4 days to 1/3 daily, reduced N losses around 68%. Dried manure storage achieved around 75% reduction in N losses compared to fresh manure storage. Spreading dried manure on grassland surface reduced ≈77% NH3 losses in relation to the emission level reached by fresh manure. The reduction was similar when dried manure was incorporated compared to surface application of fresh manure (≈79%). A 40% reduction in N losses was achieved using the MDT compared to no drying strategy. In the whole manure management chain, the combination of strategies that most reduced N losses was: removal frequency of 1/3 daily, dry storage after passing through the MDT and incorporated land application. These strategies reduced N losses between 40 and 60% compared to the 4 days of removal frequency, fresh storage and surface application of fresh manure.


Assuntos
Esterco , Óxido Nitroso , Amônia/análise , Animais , Galinhas , Fazendas , Feminino , Óxido Nitroso/análise
15.
Sci Total Environ ; 803: 150034, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500279

RESUMO

Land use change alters wildlife critical animal behaviours such as movement, becoming the main driver threatening wildlife ecological functions (WEF) and nature's contribution to people (NCP) provided by terrestrial species. Despite the negative impacts of current rates of terrestrial fragmentation on WEF, many ecological processes can be still occurring through aerial habitats. Here, we propose and discuss that the movement capabilities of aerial species, as well their functional redundancy with non-flying wildlife, are the mechanisms by which some ecological processes can be still occurring. We show examples of how the movements of aerial wildlife may be masking the loss of important functions and contributions by compensating for the lost ecosystem functions previously provided by terrestrial wildlife. We also highlight the implications of losing aerial wildlife in areas where that functional redundancy was already lost due to the impacts of land use change on terrestrial wildlife. We suggest to consider flying wildlife as a biological insurance against the loss of WEF and NCP due to terrestrial fragmentation and proposed some aeroconservation measures.


Assuntos
Ecossistema , Esportes , Animais , Animais Selvagens , Conservação dos Recursos Naturais , Humanos , Movimento
16.
Food Chem ; 370: 131012, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34500293

RESUMO

Peumus boldus is an endemic tree species from Chile whose leaves have been the focus of study for decades given that their infusions are reported to relieve rheumatic symptoms, headache, dyspepsia, urinary tract inflammation, and symptoms of other illnesses. These health properties have been studied mainly using leaves and bark, then it is relevant to know more about these properties in different parts of the plant. Considering the importance of P. boldus fruits in the diet of some rural populations, we analyzed their properties to explore its impact on the Chilean population health. Liquid chromatography and mass spectrometry analysis confirmed the presence of alkaloids such as boldine, although aporphine N-methyl-laurotetanine was the most abundant. In addition, flavonoids catechin, chrysin and quercetin were also found in the extract. Cytotoxicity and anti-inflammatory activities of the fruit extract were invitro tested by using a murine macrophage cell model, observing that a diluted fraction of the extract was not cytotoxic, but showed anti-inflammatory activity, which is likely attributed to antioxidants activities. By means of quantum chemical calculations, we calculated the redox potential of the respective alkaloids and flavonoids found in the extract. Results suggest a synergistic effect between alkaloids and flavonoids, where boldine and N-methyl-laurotetanine showed similar antioxidant properties. Finally, we present a description of the oxidation mechanisms for both groups of molecules which will sustain P. boldus fruit biological properties, in order to give this kind of fruits scientific value focusing on human health.


Assuntos
Peumus , Animais , Antioxidantes/farmacologia , Frutas , Humanos , Camundongos , Extratos Vegetais/farmacologia , Folhas de Planta
17.
J Colloid Interface Sci ; 607(Pt 1): 1-15, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34500412

RESUMO

The intracellular O2-supply not only can relieve tumor hypoxia but also enhance the effects of photodynamic therapy (PDT). In this work, metallic Mo2C@N-carbon@PEG nanoparticles were constructed to reveal the near infrared (NIR)-photocatalytic O2 generation and promote photodynamic therapy (PDT). Here, (NH4)6Mo7O24·4H2O nanorods and urea were adopted as resources that were calcined to obtain Mo2C@N-carbon nanoparticles (20 nm). All samples displayed high NIR absorption as well as photothermal conversion efficiency of up to 52.7 % (Mo2C@N-Carbon-3@PEG). The density functional theory calculations demonstrated the metallic characteristic of Mo2C and that the consecutive interband/intraband charge-transition was responsible for the high NIR harvest and redox ability of electron-hole pairs, making the NIR-photocatalytic O2 and reactive oxygen species (ROS) generation. In comparison with the pure Mo2C, the heterostructure displayed twice the performance due to the enhanced charge-segregation between Mo2C and N-carbon. Given the high X-ray absorption coefficient and photothermal ability, the nanocomposite could be used in novel computer tomography and photothermal imaging contrast. Furthermore, the novel biodegradation and metabolism behaviors of nanocomposites were investigated, which were reflected as elimination from the body (mouse) via feces and urine within 14 days. The as-synthesized Mo2C@N-Carbon@PEG nanocomposites integrated the dual-model imaging, intracellular O2-supply, and phototherapy into one nanoplatform, revealing its potential for anti-cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Carbono , Linhagem Celular Tumoral , Camundongos , Molibdênio , Neoplasias/tratamento farmacológico , Oxigênio , Fototerapia
18.
Food Chem ; 370: 131006, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509144

RESUMO

The contents and profiles of small molecules in a food can provide information about quality-related properties. Processing methods and deterioration during storage, e.g. from bacterial proliferation and degradation, might also lead to changes in the metabolome, which can be determined by mass spectrometry-based metabolomics. By measuring as many metabolites as possible in differently treated pre-cooked chicken fillets in an untargeted approach, we studied individual and combined effects of vacuum packaging (VP), soluble gas stabilisation (SGS), high pressure processing (HPP), and microwave volumetric heating (MW) on the quality and shelf-life of the finished product. The extensive dataset was processed using an optimised workflow of consecutive software tools with stringent statistical analysis to prevent over-interpretation, which is an inherent risk of metabolomics data. Our results showed the predominant influence of VP on storage quality since SGS, HPP, and MW did not have the potential to extent shelf-life.


Assuntos
Galinhas , Culinária , Animais , Embalagem de Alimentos , Metabolômica , Controle de Qualidade , Fluxo de Trabalho
19.
Food Chem ; 370: 131031, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509153

RESUMO

To determine whether high spraying concentrations of Zn sources increase the Zn concentration in waxy corn (Zea mays L. var. ceratina Kulesh) seeds without compromising agronomic performance, field experiments were conducted between 2018 and 2020. Excess ZnSO4 application caused foliar burn, barren ear tip, and grain yield loss. ZnEDTA and Glycine-chelated Zn (ZnGly) caused less foliar burn, but Glycine-mixed Zn caused more foliar burn than ZnSO4. The seed Zn concentration increased with spraying Zn concentration. ZnEDTA (≤0.8%) had a higher threshold concentration than ZnGly (≤0.4%). Nevertheless, Zn biofortification efficacy did not significantly differ between 0.4% ZnGly and 0.8% ZnEDTA, and the grain Zn recovery rate of 0.4% ZnGly was much higher than that of 0.8% ZnEDTA. Additionally, dual-isotope labelling tests confirmed that 15N-glycine and 68Zn in ZnGly interacted. In the future, chelating technology is essential for developing new Zn fertilizers to optimize Zn biofortification efficacy.


Assuntos
Biofortificação , Sulfato de Zinco , Animais , Abelhas , Glicina/toxicidade , Ceras , Zea mays , Zinco
20.
Food Chem ; 370: 131026, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509938

RESUMO

Cyclodextrins are garnering increasing attention because they offer several benefits. For instance, cyclodextrins can form several complexes and supramolecular structures not only for food packaging but also for applications in other fields of science. In this review, we discussed the physical and chemical properties of cyclodextrins and the mechanism of their inclusion complex formation. The use of cyclodextrins in various types of food packaging is elaborated upon. We also explain the effects of cyclodextrins on the packaging of fruits, vegetables, meat, fish, and processed foods. Furthermore, some feasible suggestions for future applications are provided. In addition to the positive attributes of cyclodextrins, there are some limitations and drawbacks, which are discussed briefly in this review. In summary, this review can serve as a guide for researchers exploring cyclodextrins for the development of various packaging films.


Assuntos
Ciclodextrinas , Animais , Embalagem de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...