RESUMO
MAIN CONCLUSION: Two isoforms of phenylalanine ammonia-lyase (PAL) have been isolated as cDNA sequences from the hornwort Anthoceros agrestis. The encoded enzymes convert L-phenylalanine and to lower extents L-tyrosine and L-histidine. Thus, the functional presence of the general phenylpropanoid pathway in one of the earliest land plant groups is established. The hornwort Anthoceros agrestis has an elaborated phenolic metabolism resulting in phenolic compounds, such as rosmarinic acid or megacerotonic acid. The general phenylpropanoid pathway is involved in the biosynthesis of these compounds. Two phenylalanine ammonia-lyase (PAL) genes, AaPAL1 and AaPAL2, have been identified in Anthoceros agrestis and the protein with an N-terminal 6xHis-tag heterologously synthesized in Escherichia coli for a full biochemical characterization. Both PAL proteins accept L-phenylalanine, L-tyrosine as well as L-histidine as substrates, although the activity is explicitly the highest with L-phenylalanine. Km values as well as catalytic efficiencies were determined for phenylalanine (Km AaPAL1 39 µM, AaPAL2 18 µM) and tyrosine (Km AaPAL1 3.3 mM, AaPAL2 3.5 mM). In suspension cultures of Anthoceros agrestis, PAL genes were transcribed in parallel to rosmarinic acid (RA) accumulation and both showed highest abundance in the early growth phase. In a phylogenetic tree, both AaPAL amino acid sequences grouped within a clade with PAL amino acid sequences of diverse origin ranging from non-vascular to vascular plants, while most PALs from eudicots and monocots were mainly found in two other clades. The similarity of the hornwort PAL amino acid sequences to PAL sequences from vascular plants is more than 80% showing a strong conservation within the land plants. With this characterization of PALs from Anthoceros agrestis together with former investigations concerning cinnamic acid 4-hydroxylase and 4-coumaric acid CoA-ligase, the functional presence of the general phenylpropanoid pathway in this hornwort is proven.
Assuntos
Anthocerotophyta , Fenilalanina Amônia-Liase , Anthocerotophyta/metabolismo , Histidina , Fenóis , Fenilalanina , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Filogenia , Isoformas de Proteínas/genética , TirosinaRESUMO
Endosymbiotic associations between hornworts and nitrogen-fixing cyanobacteria form when the plant is limited for combined nitrogen (N). We generated RNA-seq data to examine temporal gene expression patterns during the culturing of N-starved Anthoceros punctatus in the absence and the presence of symbiotic cyanobacterium Nostoc punctiforme. In symbiont-free A. punctatus gametophytes, N starvation caused downregulation of chlorophyll content and chlorophyll fluorescence characteristics as well as transcription of photosynthesis-related genes. This downregulation was reversed in A. punctatus cocultured with N. punctiforme, corresponding to the provision by the symbiont of N2-derived NH4+, which commenced within 5 days of coculture and reached a maximum by 14 days. We also observed transient increases in transcription of ammonium and nitrate transporters in a N. punctiforme-dependent manner as well as that of a SWEET transporter that was initially independent of N2-derived NH4+. The temporal patterns of differential gene expression indicated that N. punctiforme transmits signals that impact gene expression to A. punctatus both prior to and after its provision of fixed N. This study is the first illustrating the temporal patterns of gene expression during establishment of an endosymbiotic nitrogen-fixing association in this monophyletic evolutionary lineage of land plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Compostos de Amônio , Anthocerotophyta , Nostoc , Anthocerotophyta/genética , Clorofila , Expressão Gênica , Nitrogênio , Nostoc/genética , Simbiose/genéticaRESUMO
An important step for plant diversification was the transition from freshwater to terrestrial habitats. The bryophytes and all vascular plants share a common ancestor that was probably the first to adapt to life on land. A polysaccharide-rich cell wall was necessary to cope with newly faced environmental conditions. Therefore, some pre-requisites for terrestrial life have to be shared in the lineages of modern bryophytes and vascular plants. This review focuses on hornwort and liverwort cell walls and aims to provide an overview on shared and divergent polysaccharide features between these two groups of bryophytes and vascular plants. Analytical, immunocytochemical, and bioinformatic data were analysed. The major classes of polysaccharides-cellulose, hemicelluloses, and pectins-seem to be present but have diversified structurally during evolution. Some polysaccharide groups show structural characteristics which separate hornworts from the other bryophytes or are too poorly studied in detail to be able to draw absolute conclusions. Hydroxyproline-rich glycoprotein backbones are found in hornworts and liverworts, and show differences in, for example, the occurrence of glycosylphosphatidylinositol (GPI)-anchored arabinogalactan-proteins, while glycosylation is practically unstudied. Overall, the data are an appeal to researchers in the field to gain more knowledge on cell wall structures in order to understand the changes with regard to bryophyte evolution.
Assuntos
Anthocerotophyta , Briófitas , Hepatófitas , Briófitas/genética , Parede Celular/química , Hepatófitas/genética , Filogenia , PolissacarídeosRESUMO
MAIN CONCLUSION: Anthoceros agrestis hydroxycinnamoyltransferase accepts shikimic and 3-hydroxyanthranilic acids while hydroxycinnamoylester/amide 3-hydroxylase (CYP98A147) preferred p-coumaroyl-(3-hydroxy)anthranilic acid compared to the shikimic acid derivative. Alternative pathways towards rosmarinic acid have to be considered. Rosmarinic acid (RA) is a well-known ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. In the search for enzymes involved in RA biosynthesis in the hornwort Anthoceros agrestis, the hydroxycinnamoyltransferase sequence with the highest similarity to rosmarinic acid synthase from Lamiaceae has been amplified and heterologously expressed in Escherichia coli. In parallel, the single cytochrome P450 sequence belonging to the CYP98 group in Anthoceros agrestis was isolated and expressed in Saccharomyces cerevisiae which did not result in protein formation. Codon optimization and co-expression with NADPH:cytochrome P450 reductase (CPR) from Coleus blumei resulted in the formation of active enzymes. Both, the hydroxycinnamoyltransferase and CYP98 were characterized with respect to their temperature and pH optimum as well as their substrate acceptance. The hydroxycinnamoyltransferase (AaHCT6) readily accepted p-coumaroyl- and caffeoyl-CoA with a slightly higher affinity towards p-coumaroyl-CoA. The best acceptor substrate was shikimic acid (Km 25 µM with p-coumaroyl-CoA) followed by 3-hydroxyanthranilic acid (Km 153 µM with p-coumaroyl-CoA). Another accepted substrate was 2,3-dihydroxybenzoic acid. Anthranilic acid and 4-hydroxyphenyllactic acid (as precursor for RA) were not used as substrates. p-Coumaroylesters and -amides are substrates hydroxylated by CYP98 hydroxylases. The only CYP98 sequence from Anthoceros agrestis is CYP98A147. The best substrates for the NADPH-dependent hydroxylation were p-coumaroylanthranilic and p-coumaroyl-3-hydroxyanthranilic acids while p-coumaroylshikimic and p-coumaroyl-4-hydroxyphenyllactic acids were poor substrates. The biosynthetic pathway towards rosmarinic acid thus still remains open and other enzyme classes as well as an earlier introduction of the 3-hydroxyl group to afford the caffeic acid substitution pattern must be taken into consideration.
Assuntos
Anthocerotophyta , Anthocerotophyta/metabolismo , Cinamatos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Depsídeos/metabolismoRESUMO
The potential of oil palm ash (OPA) to enhance H2S and CO2 removal from biogas by scrubbing with maturation pond effluent (MPE), and further the treatment of biogas scrubber effluent (BSE) by Ceratophyllum demersum L. (hornwort) cultivation were investigated in this study. The results show that OPA + MPE solution with pH 9.3 and alkalinity 7525 mg CaCO3/L was obtained with 0.7 kg/L OPA loading. A pilot scale scrubber was used to study the effects of absorbent flow rates of 60-210 L/h on upgrading to 300 L/h field biogas stream. At 210 L/h, the CO2 removal efficiencies were 33% and 53% for MPE and OPA + MPE, respectively. To approach 100% H2S removal efficiency, the minimum flow rates were 120 L/h for MPE and 90 L/h for OPA + MPE. 50-150 g wet weight of hornwort in 30 L diluted POME were loaded to investigate appropriate initial hornwort loading level for hornwort cultivation. The highest specific growth rate of 0.045 day-1 with biomass production of 3.8 g/day were obtained with a 50 g initial loading. Among the wastewaters (MPE, OPA + MPE, and BSE) treatment using hornwort cultivation, the highest 0.035 day-1 specific growth rate and 2.6 g/day biomass production of hornwort were obtained in diluted BSE cultivation, and in 3 weeks of cultivation. COD, nitrate, phosphate, and alkalinity decreased by 76%, 76%, 55%, and 5%, respectively. The Eco-Efficiency concept for palm oil mill waste utilization proposed in this study has a high potential for enhanced biogas upgrading by using OPA + MPE, and hornwort is a good candidate for BSE post-treatment integrated with biomass production.
Assuntos
Anthocerotophyta , Biocombustíveis , Anaerobiose , Biocombustíveis/análise , Reatores Biológicos , Resíduos Industriais/análise , Óleo de Palmeira , Óleos de Plantas , Eliminação de Resíduos LíquidosRESUMO
Despite their key phylogenetic position and their unique biology, hornworts have been widely overlooked. Until recently there was no hornwort model species amenable to systematic experimental investigation. Anthoceros agrestis has been proposed as the model species to study hornwort biology. We have developed an Agrobacterium-mediated method for the stable transformation of A. agrestis, a hornwort model species for which a genetic manipulation technique was not yet available. High transformation efficiency was achieved by using thallus tissue grown under low light conditions. We generated a total of 274 transgenic A. agrestis lines expressing the ß-glucuronidase (GUS), cyan, green, and yellow fluorescent proteins under control of the CaMV 35S promoter and several endogenous promoters. Nuclear and plasma membrane localization with multiple color fluorescent proteins was also confirmed. The transformation technique described here should pave the way for detailed molecular and genetic studies of hornwort biology, providing much needed insight into the molecular mechanisms underlying symbiosis, carbon-concentrating mechanism, RNA editing and land plant evolution in general.
Assuntos
Anthocerotophyta , Embriófitas , Agrobacterium/genética , Glucuronidase , Filogenia , Edição de RNA , Transformação GenéticaRESUMO
The relationships among the four major embryophyte lineages (mosses, liverworts, hornworts, vascular plants) and the timing of the origin of land plants are enigmatic problems in plant evolution. Here, we resolve the monophyly of bryophytes by improving taxon sampling of hornworts and eliminating the effect of synonymous substitutions. We then estimate the divergence time of crown embryophytes based on three fossil calibration strategies, and reveal that maximum calibration constraints have a major effect on estimating the time of origin of land plants. Moreover, comparison of priors and posteriors provides a guide for evaluating the optimal calibration strategy. By considering the reliability of fossil calibrations and the influences of molecular data, we estimate that land plants originated in the Precambrian (980-682 Ma), much older than widely recognized. Our study highlights the important contribution of molecular data when faced with contentious fossil evidence, and that fossil calibrations used in estimating the timescale of plant evolution require critical scrutiny.
Assuntos
Anthocerotophyta/genética , Briófitas/genética , Fósseis , Genoma de Planta , FilogeniaRESUMO
MAIN CONCLUSION: Tyrosine aminotransferase (AaTAT) from the hornwort Anthoceros agrestis Paton (Anthocerotaceae) was amplified and expressed in E. coli. The active enzyme is able to accept a wide range of substrates with distinct preference for L-tyrosine, therefore, possibly catalysing the initial step in rosmarinic acid biosynthesis. The presence of rosmarinic acid (RA) in the hornwort A. agrestis is well known, and some attempts have been made to clarify the biosynthesis of this caffeic acid ester in lower plants. Parallel to the biosynthesis in vascular plants, the involvement of tyrosine aminotransferase (EC 2.6.1.5; TAT) as the initial step was assumed. The amplification of a nucleotide sequence putatively encoding AaTAT (Genbank MN922307) and expression in E. coli were successful. The enzyme proved to have a high acceptance of L-tyrosine (Km 0.53 mM) whilst slightly preferring 2-oxoglutarate over phenylpyruvate as co-substrate. Applying L-phenylalanine as a potential amino donor or using oxaloacetate or pyruvate as a replacement for 2-oxoglutarate as amino acceptor resulted in significantly lower catalytic efficiencies in each of these cases. To facilitate further substrate search, two methods were introduced, one using ninhydrin after thin-layer chromatography and the other using derivatisation with o-phthalaldehyde followed by HPLC or LC-MS analysis. Both methods proved to be well applicable and helped to confirm the acceptance of further aromatic and aliphatic amino acids. This work presents the first description of a heterologously expressed TAT from a hornwort (A. agrestis) and describes the possible entry into the biosynthesis of RA and other specialised compounds in a so far neglected representative of terrestrial plants and upcoming new model organism.
Assuntos
Anthocerotophyta , Anthocerotophyta/metabolismo , Cinamatos , Depsídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Especificidade por Substrato , Tirosina Transaminase/genética , Tirosina Transaminase/metabolismoRESUMO
KEY MESSAGE: Identification of the subfamily X leucine-rich repeat receptor-like kinases in the recently sequenced moss and hornwort genomes points to their diversification into distinct groups during early evolution of land plants. Signal transduction mediated through receptor-ligand interactions plays key roles in controlling developmental and physiological processes of multicellular organisms, and plants employ diverse receptors in signaling. Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent one of the largest receptor classes in plants and are structurally classified into subfamilies. LRR-RLKs of the subfamily X are unique in the variety of their signaling roles; they include receptors for steroid or peptide hormones as well as negative regulators of signaling through binding to other LRR-RLKs, raising a question as to how they diversified. However, our understanding of diversification processes of LRR-RLKs has been hindered by the paucity of genomic data in non-seed plants and limited taxa sampling in previous phylogenetic analyses. Here we analyzed the phylogeny of LRR-RLK X sequences collected from all major land plant lineages and show that this subfamily diversified into six major clades before the divergence between bryophytes and vascular plants. Notably, we have identified homologues of the brassinosteroid receptor, BRASSINOSTEROID INSENSITIVE 1 (BRI1), in the genomes of Sphagnum mosses, hornworts, and ferns, contrary to earlier reports that postulate the origin of BRI1-like LRR-RLKs in the seed plant lineage. The phylogenetic distribution of major clades illustrates that the current receptor repertoire was shaped through lineage-specific gene family expansion and independent gene losses, highlighting dynamic changes in the evolution of LRR-RLKs.
Assuntos
Anthocerotophyta/genética , Variação Genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Proteínas Quinases/genética , Sphagnopsida/genética , Sequência de Aminoácidos , Simulação por Computador , Evolução Molecular , Genômica/métodos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Domínios Proteicos , Proteínas Quinases/química , Proteínas Quinases/classificação , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genéticaRESUMO
PREMISE: Nitrogen-fixing endosymbioses with cyanobacteria have evolved independently in five very different plant lineages. Expanding knowledge of these symbioses promises to improve the understanding of symbiosis evolution and broaden the toolkit for agricultural engineering to reduce artificial fertilizer use. Here we focused on hornworts, a bryophyte lineage in which all members host cyanobacteria, and investigated factors shaping the diversity of their cyanobiont communities. METHODS: We sampled hornworts and adjacent soils in upstate New York throughout the hornwort growing season. We included all three sympatric hornwort species in the area, allowing us to directly compare partner selectivity. To profile cyanobacteria communities, we established a metabarcoding protocol targeting rbcL-X with PacBio long reads. RESULTS: The hornwort cyanobionts detected were phylogenetically diverse, including clades that do not contain other known plant symbionts. We found significant overlap between hornwort cyanobionts and soil cyanobacteria, a pattern not previously reported in other plant-cyanobacteria symbioses. Cyanobiont communities differed between host plants only centimeters apart, but we did not detect an effect of sampling time or host species on the cyanobacterial community structure. CONCLUSIONS: This study expands the phylogenetic diversity of known symbiotic cyanobacteria. Our analyses suggest that hornwort cyanobionts have a tight connection to the soil background, and we found no evidence that time within growing season, host species, or distance at the scale of meters strongly govern cyanobacteria community assembly. This study provides a critical foundation for further study of the ecology, evolution, and interaction dynamics of plant-cyanobacteria symbiosis.
Assuntos
Anthocerotophyta , Briófitas , Cianobactérias , Cianobactérias/genética , Filogenia , SimbioseRESUMO
Extant land plants consist of two deeply divergent groups, tracheophytes and bryophytes, which shared a common ancestor some 500 million years ago. While information about vascular plants and the two of the three lineages of bryophytes, the mosses and liverworts, is steadily accumulating, the biology of hornworts remains poorly explored. Yet, as the sister group to liverworts and mosses, hornworts are critical in understanding the evolution of key land plant traits. Until recently, there was no hornwort model species amenable to systematic experimental investigation, which hampered detailed insight into the molecular biology and genetics of this unique group of land plants. The emerging hornwort model species, Anthoceros agrestis, is instrumental in our efforts to better understand not only hornwort biology but also fundamental questions of land plant evolution. To this end, here we provide an overview of hornwort biology and current research on the model plant A. agrestis to highlight its potential in answering key questions of land plant biology and evolution.
Assuntos
Anthocerotophyta , Briófitas , Embriófitas , Anthocerotophyta/genética , Briófitas/genética , Embriófitas/genética , Evolução Molecular , Filogenia , PlantasRESUMO
BACKGROUND: The amphibian, non-vascular, gametophyte-dominant, bio-indicator class, bryophytes; with their wide ranges of habitat have attained importance due to their promising medicinal attributions and therapeutic role; mostly aided by presence of aromatic bibenzyl and bisbybenzyl class of compounds. Bibenzyls are steroidal ethane derivatives, resembling the structural moiety of bioactive dihydro-stilbenoids or iso-quinoline alkaloids. These stress triggered secondary metabolites are the by-products of the flavonoid biosynthetic pathway. Different classes of bryophytes (Bryophyta, Marchantiophyta and Anthocerotophyta) possess different subtypes of bibenzyls and dimeric bisbibenzyls. Among the liverwort, hornwort and mosses, former one is mostly enriched with bibenzyl type constituents as per the extensive study conducted for phytochemical deposit. Considering macrocyclic and acyclic group of bibenzyls and bisbybenzyls, generally marchantin type compounds are reported vividly for significant biological activity that includes neuro-nephro-cardio-protection besides anti-allergic, anti-microbial, anti-apoptotic and cytotoxic activities studied on in-vitro and in-vivo models or on cell lines. RESULT: The critical analysis of reported chemical and pharmaceutical attributions of bibenzyls and bis-bibenzyls yielded detailed report on this compound class along with their application, mode of action, natural source, techniques of synthesis, extraction procedure, isolation and characterization. Further, the structure activity relationship studies and bioactivity of bibenzyls derived from non-bryophytic origin were also summarized. CONCLUSION: This review encompasses prospective biological application of botanical reservoir of this primarily ignored, primeval land plant group where recent technical advances has paved the way for qualitative and quantitative isolation and estimation of novel compounds as well as marker components to study their impact on environment, as bio-control agents and as key leads in future drug designing. Graphical abstract.
Assuntos
Anthocerotophyta/química , Bibenzilas/química , Briófitas/química , Hepatófitas/química , Bibenzilas/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Relação Estrutura-AtividadeRESUMO
KEY MESSAGE: 4-Coumarate coenzyme A ligase and 4-hydroxybenzoate coenzyme A ligase from the hornwort Anthoceros agrestis expressed in E. coli were characterized on biochemical and molecular levels and showed interesting substrate specificities. Acyl-activating enzymes are associated with the biosynthesis or degradation of various metabolic products such as lipids, amino acids, sugars, and natural compounds. In this work, cDNA sequences encoding 4-coumarate coenzyme A ligase (4CL) and 4-hydroxybenzoate coenzyme A ligase (4HBCL) were amplified from the hornwort Anthoceros agrestis. The coding sequences were expressed in E. coli and purified by Ni-chelate chromatography. The CoA ligases exhibited different substrate specificities. 4CL catalyzed the activation of 4-coumaric acid, 3-coumaric acid, 2-coumaric acid, caffeic acid, isoferulic acid, ferulic acid, and cinnamic acid but lacked activities towards sinapic acid and benzoic acids. In contrast, 4HBCL preferred 4-hydroxybenzoic acid and benzoic acid, but also accepted other benzoic acid derivatives except salicylic acid and 3-aminosalicylic acid. Furthermore, 4HBCL also activated isoferulic acid, cinnamic acid, 2-coumaric acid, 3-coumaric acid, 4-coumaric acid and caffeic acid, but lacked affinity for ferulic acid and sinapic acid. These substrate specificities could be related to the phenolic compounds identified in Anthoceros agrestis.
Assuntos
Anthocerotophyta/metabolismo , Coenzima A Ligases/metabolismo , Fenóis/metabolismo , Ácido Aminossalicílico/química , Ácido Aminossalicílico/metabolismo , Anthocerotophyta/genética , Ácidos Cafeicos/metabolismo , Cinamatos/metabolismo , Coenzima A Ligases/genética , Ácidos Cumáricos/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por SubstratoRESUMO
Hornworts comprise a bryophyte lineage that diverged from other extant land plants >400 million years ago and bears unique biological features, including a distinct sporophyte architecture, cyanobacterial symbiosis and a pyrenoid-based carbon-concentrating mechanism (CCM). Here, we provide three high-quality genomes of Anthoceros hornworts. Phylogenomic analyses place hornworts as a sister clade to liverworts plus mosses with high support. The Anthoceros genomes lack repeat-dense centromeres as well as whole-genome duplication, and contain a limited transcription factor repertoire. Several genes involved in angiosperm meristem and stomatal function are conserved in Anthoceros and upregulated during sporophyte development, suggesting possible homologies at the genetic level. We identified candidate genes involved in cyanobacterial symbiosis and found that LCIB, a Chlamydomonas CCM gene, is present in hornworts but absent in other plant lineages, implying a possible conserved role in CCM function. We anticipate that these hornwort genomes will serve as essential references for future hornwort research and comparative studies across land plants.
Assuntos
Anthocerotophyta/genética , Evolução Biológica , Embriófitas/fisiologia , Genoma de Planta , Traços de História de VidaRESUMO
KEY MESSAGE: Cinnamic acid 4-hydroxylase from the hornwort Anthoceros agrestis (AaC4H) was functionally expressed in the moss Physcomitrella patens and characterized at biochemical and molecular levels. Cinnamic acid 4-hydroxylase (C4H), a cytochrome P450-dependent hydroxylase, catalyzes the formation of 4-coumaric acid (=4-hydroxycinnamic acid) from trans-cinnamic acid. In the hornwort Anthoceros agrestis (Aa), this enzyme is supposed to be involved in the biosynthesis of rosmarinic acid (a caffeic acid ester of 3-(3,4-dihydroxyphenyl)lactic acid) and other related compounds. The coding sequence of AaC4H (CYP73A260) was expressed in the moss Physcomitrella patens (Pp_AaC4H). Protein extracts from the transformed moss showed considerably increased C4H activity driven by NADPH:cytochrome P450 reductase of the moss. Since Physcomitrella has own putative cinnamic acid 4-hydroxylases, enzyme characterization was carried out in parallel with the untransformed Physcomitrella wild type (Pp_WT). Apparent Km-values for cinnamic acid and NADPH were determined to be at 17.3 µM and 88.0 µM for Pp_AaC4H and 25.1 µM and 92.3 µM for Pp_WT, respectively. Expression levels of AaC4H as well as two Physcomitrella patens C4H isoforms were analyzed by quantitative real-time PCR. While PpC4H_1 displayed constantly low levels of expression during the whole 21-day culture period, AaC4H and PpC4H_2 increased their expression during the first 6-8 days of the culture period and then decreased again. This work describes the biochemical in vitro characterization of a cytochrome P450-dependent enzyme, namely C4H, heterologously expressed in the haploid model plant Physcomitrella patens.
Assuntos
Anthocerotophyta/enzimologia , Bryopsida/metabolismo , Transcinamato 4-Mono-Oxigenase/metabolismo , Anthocerotophyta/genética , Bryopsida/genética , Clonagem Molecular , Expressão Gênica , Cinética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Fenóis/análise , Filogenia , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transcinamato 4-Mono-Oxigenase/genética , Transformação GenéticaRESUMO
Hornworts, liverworts and mosses are three early diverging clades of land plants, and together comprise the bryophytes. Here, we report the draft genome sequence of the hornwort Anthoceros angustus. Phylogenomic inferences confirm the monophyly of bryophytes, with hornworts sister to liverworts and mosses. The simple morphology of hornworts correlates with low genetic redundancy in plant body plan, while the basic transcriptional regulation toolkit for plant development has already been established in this early land plant lineage. Although the Anthoceros genome is small and characterized by minimal redundancy, expansions are observed in gene families related to RNA editing, UV protection and desiccation tolerance. The genome of A. angustus bears the signatures of horizontally transferred genes from bacteria and fungi, in particular of genes operating in stress-response and metabolic pathways. Our study provides insight into the unique features of hornworts and their molecular adaptations to live on land.
Assuntos
Anthocerotophyta/genética , Evolução Biológica , Genoma de Planta , Família Multigênica , FilogeniaRESUMO
Hornworts are crucial to understand the phylogeny of early land plants. The emergence of 'reverse' U-to-C RNA editing accompanying the widespread C-to-U RNA editing in plant chloroplasts and mitochondria may be a molecular synapomorphy of a hornwort-tracheophyte clade. C-to-U RNA editing is well understood after identification of many editing factors in models like Arabidopsis thaliana and Physcomitrella patens, but there is no plant model yet to investigate U-to-C RNA editing. The hornwort Anthoceros agrestis is now emerging as such a model system. We report on the assembly and analyses of the A. agrestis chloroplast and mitochondrial genomes, their transcriptomes and editomes, and a large nuclear gene family encoding pentatricopeptide repeat (PPR) proteins likely acting as RNA editing factors. Both organelles in A. agrestis feature high amounts of RNA editing, with altogether > 1100 sites of C-to-U and 1300 sites of U-to-C editing. The nuclear genome reveals > 1400 genes for PPR proteins with variable carboxyterminal DYW domains. We observe significant variants of the 'classic' DYW domain, in the meantime confirmed as the cytidine deaminase for C-to-U editing, and discuss the first attractive candidates for reverse editing factors given their excellent matches to U-to-C editing targets according to the PPR-RNA binding code.
Assuntos
Anthocerotophyta , Bryopsida , Anthocerotophyta/metabolismo , Bryopsida/genética , Organelas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Edição de RNA/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Transcriptoma/genéticaRESUMO
Bryophytes, phylogenetically placed between the algae and pteridophytes, are divided into three classes: mosses, liverworts, and hornworts. Traditional system of medicine throughout the world has been utilizing this group of plants to treat various ailments. One of the outstanding features of these spore forming plants is their chemistry, especially that of the liverworts. Liverworts have yielded a rich array of terpenoids, especially sesqui- and diterpenoids. Many of these compounds are characterized by unprecedented structures, and some have not been found in any other plants, fungi or marine organisms. Among the bryophytes, the chemical constituents of liverworts and their biological activity have been studied in the most detail. In this review the chemistry of the terpenoids found in bryophytes have been presented, and their phytotoxic, antimicrobial, antifungal, cytotoxic, anti-inflammatory, piscicidal, insect repellent, antileishmanial and antitrypanosomal activities.
Assuntos
Anthocerotophyta/química , Briófitas/química , Hepatófitas/química , Terpenos/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Terpenos/química , Terpenos/isolamento & purificaçãoRESUMO
BACKGROUND AND AIMS: In seed plants, stomata regulate CO2 acquisition and water relations via transpiration, while minimizing water loss. Walls of guard cells are strong yet flexible because they open and close the pore by changing shape over the substomatal cavity. Pectins are necessary for wall flexibility and proper stomata functioning. This study investigates the differences in pectin composition in guard cells of two taxa that represent key lineages of plants with stomata: Arabidopsis, an angiosperm with diurnal stomatal activity, and Phaeoceros, a bryophyte that lacks active stomatal movement. METHODS: Using immunolocalization techniques in transmission electron microscopy, this study describes and compares the localization of pectin molecule epitopes essential to stomata function in guard cell walls of Arabidopsis and Phaeoceros. KEY RESULTS: In Arabidopsis, unesterified homogalacturonans very strongly localize throughout guard cell walls and are interspersed with arabinan pectins, while methyl-esterified homogalacturonans are restricted to the exterior of the wall, the ledges and the junction with adjacent epidermal cells. In contrast, arabinans are absent in Phaeoceros, and both unesterified and methyl-esterified homogalacturonans localize throughout guard cell walls. CONCLUSIONS: Arabinans and unesterified homogalacturonans are required for wall flexibility, which is consistent with active regulation of pore opening in Arabidopsis stomata. In contrast, the lack of arabinans and high levels of methyl-esterified homogalacturonans in guard cell walls of Phaeoceros are congruent with the inability of hornwort stomata to open and close with environmental change. Comparisons across groups demonstrate that variations in guard cell wall composition reflect different physiological activity of stomata in land plants.