Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68.009
Filtrar
1.
BMJ Open ; 14(7): e084734, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013652

RESUMO

OBJECTIVES: Identifying key barriers to accessing quality-assured and affordable antimicrobials among forcibly displaced persons in Uganda, Yemen and Colombia and investigating their (1) utilisation patterns of antibiotics, (2) knowledge about antimicrobial resistance (AMR) and (3) perception of the quality of antimicrobials received. DESIGN: Pilot cross-sectional survey. SETTING: Data were collected from five health facilities in the Kiryandongo refugee settlement (Bweyale, Uganda), three camps for internally displaced persons (IDPs) in the Dar Sad district (Aden, Yemen) and a district with a high population of Venezuelan migrants (Kennedy district, Bogotá, Colombia). Data collection took place between February and May 2021. The three countries were selected due to their high number of displaced people in their respective continents. PARTICIPANTS: South Sudanese refugees in Uganda, IDPs in Yemen and Venezuelan migrants in Colombia. OUTCOME MEASURE: The most common barriers to access to quality-assured and affordable antimicrobials. RESULTS: A total of 136 participants were enrolled in this study. Obtaining antimicrobials through informal pathways, either without a doctor's prescription or through family and friends, was common in Yemen (27/50, 54.0%) and Colombia (34/50, 68.0%). In Yemen and Uganda, respondents used antibiotics to treat (58/86, 67.4%) and prevent (39/86, 45.3%) a cold. Knowledge of AMR was generally low (24/136, 17.6%). Barriers to access included financial constraints in Colombia and Uganda, prescription requirements in Yemen and Colombia, and non-availability of drugs in Uganda and Yemen. CONCLUSION: Our multicentred research identified common barriers to accessing quality antimicrobials among refugees/IDPs/migrants and common use of informal pathways. The results suggest that knowledge gaps about AMR may lead to potential misuse of antimicrobials. Due to the study's small sample size and use of non-probability sampling, the results should be interpreted with caution, and larger-scale assessments on this topic are needed. Future interventions designed for similar humanitarian settings should consider the interlinked barriers identified.


Assuntos
Acessibilidade aos Serviços de Saúde , Refugiados , Humanos , Estudos Transversais , Uganda , Colômbia , Refugiados/estatística & dados numéricos , Iêmen , Projetos Piloto , Masculino , Adulto , Feminino , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , Pessoa de Meia-Idade , Adulto Jovem , Conhecimentos, Atitudes e Prática em Saúde , Antibacterianos/uso terapêutico , Antibacterianos/provisão & distribuição , Anti-Infecciosos/uso terapêutico , Adolescente
3.
Microb Ecol ; 87(1): 93, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008123

RESUMO

Huanglongbing, also known as citrus greening, is currently the most devastating citrus disease with limited success in prevention and mitigation. A promising strategy for Huanglongbing control is the use of antimicrobials fused to a carrier protein (phloem protein of 16 kDa or PP16) that targets vascular tissues. This study investigated the effects of genetically modified citrus trees expressing Citrus sinensis PP16 (CsPP16) fused to human lysozyme and ß-defensin-2 on the soil microbiome diversity using 16S amplicon analysis. The results indicated that there were no significant alterations in alpha diversity, beta diversity, phylogenetic diversity, differential abundance, or functional prediction between the antimicrobial phloem-overexpressing plants and the control group, suggesting minimal impact on microbial community structure. However, microbiota diversity analysis revealed distinct bacterial assemblages between the rhizosphere soil and root environments. This study helps to understand the ecological implications of crops expressing phloem-targeted antimicrobials for vascular disease management, with minimal impact on soil microbiota.


Assuntos
Bactérias , Citrus , Microbiota , Floema , Doenças das Plantas , Rizosfera , Microbiologia do Solo , Floema/microbiologia , Floema/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Doenças das Plantas/microbiologia , Citrus/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Plantas Geneticamente Modificadas/genética , Filogenia , Metagenômica , Muramidase/metabolismo , Muramidase/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , beta-Defensinas/genética , RNA Ribossômico 16S/genética , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Citrus sinensis/microbiologia , Raízes de Plantas/microbiologia
5.
Biointerphases ; 19(4)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39023091

RESUMO

Biofilms are groups of microorganisms protected by self-secreted extracellular substances. Biofilm formation on the surface of biomaterial or engineering materials becomes a severe challenge. It has caused significant health, environmental, and societal concerns. It is believed that biofilms lead to life-threatening infection, medical implant failure, foodborne disease, and marine biofouling. To address these issues, tremendous effort has been made to inhibit biofilm formation on materials. Biofilms are extremely difficult to treat once formed, so designing material and coating bearing functional groups that are capable of resisting biofilm formation has attracted increasing attention for the last two decades. Many types of antibiofilm strategies have been designed to target different stages of biofilm formation. Development of the antibiofilm material can be classified into antifouling material, antimicrobial material, fouling release material, and integrated antifouling/antimicrobial material. This review summarizes relevant research utilizing these four approaches and comments on their antibiofilm properties. The feature of each method was compared to reveal the research trend. Antibiofilm strategies in fundamental research and industrial applications were summarized.


Assuntos
Anti-Infecciosos , Biofilmes , Incrustação Biológica , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
6.
New Microbiol ; 47(2): 123-136, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39023521

RESUMO

The escalating global population poses formidable challenges to addressing pressing environmental concerns, hindering progress towards sustainable development goals. Unregulated human activities, particularly the excessive reliance on fossil fuels and unsustainable agricultural practices, contribute to pollution, climate change, and resource depletion. Inadequate waste management systems exacerbate environmental degradation and pose risks to public health. Leveraging biological resources and urban/industrial waste emerges as a promising solution. Various waste materials, such as food waste and agro-industrial by-products, have been efficiently repurposed into valuable bio-based products. This review explores the diverse applications of agricultural and food waste repurposing, including microbial production of biopolymers and biosurfactants, as well as the extraction of biologically active compounds for potential antimicrobial drugs.


Assuntos
Anti-Infecciosos , Anti-Infecciosos/farmacologia , Humanos , Biomassa , Gerenciamento de Resíduos/métodos , Materiais Biocompatíveis , Resíduos/análise
8.
PLoS One ; 19(7): e0305137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38950036

RESUMO

Electrospun (ES) fibrous nanomaterials have been widely investigated as novel biomaterials. These biomaterials have to be safe and biocompatible; hence, they need to be tested for cytotoxicity before being administered to patients. The aim of this study was to develop a suitable and biorelevant in vitro cytotoxicity assay for ES biomaterials (e.g. wound dressings). We compared different in vitro cytotoxicity assays, and our model wound dressing was made from polycaprolactone and polyethylene oxide and contained chloramphenicol as the active pharmaceutical ingredient. Baby Hamster Kidney cells (BHK-21), human primary fibroblasts and MTS assays together with real-time cell analysis were selected. The extract exposure and direct contact safety evaluation setups were tested together with microscopic techniques. We found that while extract exposure assays are suitable for the initial testing, the biocompatibility of the biomaterial is revealed in in vitro direct contact assays where cell interactions with the ES wound dressing are evaluated. We observed significant differences in the experimental outcome, caused by the experimental set up modification such as cell line choice, cell medium and controls used, conducting the phosphate buffer washing step or not. A more detailed technical protocol for the in vitro cytotoxicity assessment of ES wound dressings was developed.


Assuntos
Bandagens , Materiais Biocompatíveis , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Humanos , Linhagem Celular , Teste de Materiais , Cricetinae , Poliésteres/química , Fibroblastos/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Polietilenoglicóis/química , Cloranfenicol/farmacologia
9.
Drug Des Devel Ther ; 18: 2531-2553, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952486

RESUMO

The WHO Global Status Report on Oral Health 2022 reveals that oral diseases caused by infection with oral pathogenic microorganisms affect nearly 3.5 billion people worldwide. Oral health problems are caused by the presence of S. mutans, S. sanguinis, E. faecalis and C. albicans in the oral cavity. Synthetic anti-infective drugs have been widely used to treat oral infections, but have been reported to cause side effects and resistance. Various strategies have been implemented to overcome this problem. Synthetic anti-infective drugs have been widely used to treat oral infections, but they have been reported to cause side effects and resistance. Therefore, it is important to look for safe anti-infective alternatives. Ethnobotanical and ethnopharmacological studies suggest that Red Betel leaf (Piper crocatum Ruiz & Pav) could be a potential source of oral anti-infectives. This review aims to discuss the pathogenesis mechanism of several microorganisms that play an important role in causing health problems, the mechanism of action of synthetic oral anti-infective drugs in inhibiting microbial growth in the oral cavity, and the potential of red betel leaf (Piper crocatum Ruiz & Pav) as an herbal oral anti-infective drug. This study emphasises the importance of researching natural components as an alternative treatment for oral infections that is more effective and can meet global needs.


Assuntos
Piper , Humanos , Piper/química , Doenças da Boca/tratamento farmacológico , Doenças da Boca/microbiologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Boca/microbiologia
10.
Chirality ; 36(7): e23698, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961803

RESUMO

Chirality, the property of molecules having mirror-image forms, plays a crucial role in pharmaceutical and biomedical research. This review highlights its growing importance, emphasizing how chiral drugs and nanomaterials impact drug effectiveness, safety, and diagnostics. Chiral molecules serve as precise diagnostic tools, aiding in accurate disease detection through unique biomolecule interactions. The article extensively covers chiral drug applications in treating cardiovascular diseases, CNS disorders, local anesthesia, anti-inflammatories, antimicrobials, and anticancer drugs. Additionally, it explores the emerging field of chiral nanomaterials, highlighting their suitability for biomedical applications in diagnostics and therapeutics, enhancing medical treatments.


Assuntos
Nanoestruturas , Nanoestruturas/química , Humanos , Estereoisomerismo , Preparações Farmacêuticas/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia
11.
Sci Rep ; 14(1): 15050, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951205

RESUMO

Chalcones are intermediate products in the biosynthesis of flavonoids, which possess a wide range of biological properties, including antimicrobial and anticancer activities. The introduction of a chlorine atom and the glucosyl moiety into their structure may increase their bioavailability, bioactivity, and pharmacological use. The combined chemical and biotechnological methods can be applied to obtain such compounds. Therefore, 2-chloro-2'-hydroxychalcone and 3-chloro-2'-hydroxychalcone were synthesized and biotransformed in cultures of two strains of filamentous fungi, i.e. Isaria fumosorosea KCH J2 and Beauveria bassiana KCH J1.5 to obtain their novel glycosylated derivatives. Pharmacokinetics, drug-likeness, and biological activity of them were predicted using cheminformatics tools. 2-Chloro-2'-hydroxychalcone, 3-chloro-2'-hydroxychalcone, their main glycosylation products, and 2'-hydrochychalcone were screened for antimicrobial activity against several microbial strains. The growth of Escherichia coli 10,536 was completely inhibited by chalcones with a chlorine atom and 3-chlorodihydrochalcone 2'-O-ß-D-(4″-O-methyl)-glucopyranoside. The strain Pseudomonas aeruginosa DSM 939 was the most resistant to the action of the tested compounds. However, chalcone aglycones and glycosides with a chlorine atom almost completely inhibited the growth of bacteria Staphylococcus aureus DSM 799 and yeast Candida albicans DSM 1386. The tested compounds had different effects on lactic acid bacteria depending on the tested species. In general, chlorinated chalcones were more effective in the inhibition of the tested microbial strains than their unchlorinated counterparts and aglycones were a little more effective than their glycosides.


Assuntos
Anti-Infecciosos , Biotransformação , Chalconas , Cloro , Testes de Sensibilidade Microbiana , Chalconas/química , Chalconas/farmacologia , Chalconas/síntese química , Cloro/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Beauveria/metabolismo , Fungos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento
12.
J Nanobiotechnology ; 22(1): 387, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951841

RESUMO

Metal-organic frameworks (MOFs) are metal-organic skeleton compounds composed of self-assembled metal ions or clusters and organic ligands. MOF materials often have porous structures, high specific surface areas, uniform and adjustable pores, high surface activity and easy modification and have a wide range of prospects for application. MOFs have been widely used. In recent years, with the continuous expansion of MOF materials, they have also achieved remarkable results in the field of antimicrobial agents. In this review, the structural composition and synthetic modification of MOF materials are introduced in detail, and the antimicrobial mechanisms and applications of these materials in the healing of infected wounds are described. Moreover, the opportunities and challenges encountered in the development of MOF materials are presented, and we expect that additional MOF materials with high biosafety and efficient antimicrobial capacity will be developed in the future.


Assuntos
Estruturas Metalorgânicas , Cicatrização , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Cicatrização/efeitos dos fármacos , Humanos , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Porosidade , Infecção dos Ferimentos/tratamento farmacológico
13.
J Phys Chem Lett ; 15(27): 7075-7083, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38950375

RESUMO

The bactericidal potency of ionic liquids (ILs) is well-established, yet their precise mechanism of action remains elusive. Here, we show evidence that the bactericidal action of ILs primarily involves the permeabilization of the bacterial cell membrane. Our findings reveal that ILs exert their effects by directly interacting with the lipid bilayer and enhancing the membrane dynamics. Lateral lipid diffusion is accelerated, which in turn augments membrane permeability, ultimately leading to bacterial death. Furthermore, our results establish a significant connection: an increase in the alkyl chain length of ILs correlates with a notable enhancement in both lipid lateral diffusion and antimicrobial potency. This underscores a compelling correlation between membrane dynamics and antimicrobial effectiveness, providing valuable insights for the rational design and optimization of IL-based antimicrobial agents in healthcare applications.


Assuntos
Líquidos Iônicos , Bicamadas Lipídicas , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Bicamadas Lipídicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Difusão , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/química , Testes de Sensibilidade Microbiana
14.
Arch Microbiol ; 206(8): 347, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985339

RESUMO

Essential oils are among the most well-known phyto-compounds, and since ancient times, they have been utilized in medicine. Over 100 essential oils have been identified and utilized as therapies for various skin infections and related ailments. While numerous commercial medicines are available in different dosage forms to treat skin diseases, the persisting issues include their side effects, toxicity, and low efficacy. As a result, researchers are seeking novel classes of compounds as substitutes for synthetic drugs, aiming for minimal side effects, no toxicity, and high efficacy. Essential oils have shown promising antimicrobial activity against skin-associated pathogens. This review presents essential knowledge and scientific information regarding essential oil's antimicrobial capabilities against microorganisms that cause skin infections. Essential oils mechanisms against different pathogens have also been explored. Many essential oils exhibit promising activity against various microbes, which has been qualitatively assessed using the agar disc diffusion experiment, followed by determining the minimum inhibitory concentration for quantitative evaluation. It has been observed that Staphylococcus aureus and Candida albicans have been extensively researched in the context of skin-related infections and their antimicrobial activity, including established modes of action. In contrast, other skin pathogens such as Staphylococcus epidermidis, Streptococcus pyogens, Propionibacterium acnes, and Malassezia furfur have received less attention or neglected. This review report provides an updated understanding of the mechanisms of action of various essential oils with antimicrobial properties. This review explores the anti-infectious activity and mode of action of essential against distinct skin pathogens. Such knowledge can be valuable in treating skin infections and related ailments.


Assuntos
Óleos Voláteis , Óleos Voláteis/farmacologia , Humanos , Pele/microbiologia , Pele/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Antibacterianos/farmacologia
15.
Foodborne Pathog Dis ; 21(7): 447-457, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38985570

RESUMO

Bacillus cereus causes food poisoning by producing toxins that cause diarrhea and vomiting and, in severe cases, endocarditis, meningitis, and other diseases. It also tends to form biofilms and spores that lead to contamination of the food production environment. Citral is a potent natural antibacterial agent, but its antibacterial activity against B. cereus has not been extensively studied. In this study, we first determined the minimum inhibitory concentrations and minimum bactericidal concentrations, growth curves, killing effect in different media, membrane potential, intracellular adenosine triphosphate (ATP), reactive oxygen species levels, and morphology of vegetative cells, followed by germination rate, morphology, germination state of spores, and finally biofilm clearance effect. The results showed that the minimum inhibitory concentrations and minimum bactericidal concentrations of citral against bacteria ranged from 100 to 800 µg/mL. The lag phase of bacteria was effectively prolonged by citral, and the growth rate of bacteria was slowed down. Bacteria in Luria-Bertani broth were reduced to below the detection limit by citral at 800 µg/mL within 0.5 h. Bacteria in rice were reduced to 3 log CFU/g by citral at 4000 µg/mL within 0.5 h. After treatment with citral, intracellular ATP concentration was reduced, membrane potential was altered, intracellular reactive oxygen species concentration was increased, and normal cell morphology was altered. After treatment with citral at 400 µg/mL, spore germination rate was reduced to 16.71%, spore morphology was affected, and spore germination state was altered. It also had a good effect on biofilm removal. The present study showed that citral had good bacteriostatic activity against B. cereus vegetative cells and its spores and also had a good clearance effect on its biofilm. Citral has the potential to be used as a bacteriostatic substance for the control of B. cereus in food industry production.


Assuntos
Monoterpenos Acíclicos , Bacillus cereus , Biofilmes , Monoterpenos Acíclicos/farmacologia , Anti-Infecciosos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/ultraestrutura , Esporos Bacterianos/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Oryza/microbiologia , Potenciais da Membrana/efeitos dos fármacos , Espaço Intracelular/enzimologia , Trifosfato de Adenosina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Microscopia Eletrônica de Varredura , Microbiologia de Alimentos
16.
PLoS One ; 19(7): e0305533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985775

RESUMO

This study aimed to investigate how the presence of co-morbid conditions influenced antimicrobial usage as presumptive prophylaxis for suspected bacteremia in dogs and cats undergoing dental treatments at primary care veterinary clinics in the United States. In 2020, data was collected from 1076 veterinary clinics across 44 US states. A total of 681,541 general anesthesia dental procedures were conducted on 592,472 dogs and 89,069 cats. This revealed that systemic antimicrobials were administered in 8.8% of dog procedures and 7.8% of cat procedures in the absence of concurrent periodontal disease or extractions. Cefpodoxime, clindamycin, and amoxicillin-clavulanate were the most frequently used antimicrobials in dogs, while cefovecin, amoxicillin-clavulanate, and clindamycin topped the list for cats. Dogs with cardiovascular, hepato-renal, and endocrine co-morbidities, as well as those undergoing concurrent removal of cutaneous or subcutaneous neoplasia, displayed higher antimicrobial use. Similarly, cats with endocrine or hepato-renal disease, retroviral infection (i.e., feline leukemia virus (FeLV), feline immunodeficiency virus (FIV)), and concurrent removal of cutaneous or subcutaneous neoplasia exhibited increased antimicrobial use. Dogs with hepato-renal abnormalities had longer treatment durations compared to those without (10.1 vs. 9.6 days). Conversely, cats with concurrent removal of cutaneous or subcutaneous neoplasia had shorter durations of treatment as compared to those that did not have this procedure performed (8.4 vs 9.2 days). The findings of this study underscore the necessity for further research and collaboration within the veterinary community to develop evidence-based guidelines, promoting responsible antimicrobial use, and advancing the field of veterinary dentistry for enhanced patient outcomes.


Assuntos
Doenças do Gato , Animais , Cães , Gatos , Estados Unidos/epidemiologia , Doenças do Gato/tratamento farmacológico , Comorbidade , Antibacterianos/uso terapêutico , Atenção Primária à Saúde , Doenças do Cão/tratamento farmacológico , Doenças do Cão/epidemiologia , Bacteriemia/tratamento farmacológico , Assistência Odontológica , Anti-Infecciosos/uso terapêutico
17.
BMC Vet Res ; 20(1): 307, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987775

RESUMO

In low- and middle-income countries, data on antimicrobial use (AMU) and antimicrobial resistance (AMR) in aquaculture are scarce. Therefore, summarizing documented data on AMU, antimicrobial residue (AR), and AMR in aquaculture in Africa is key to understanding the risk to public health. Google Scholar, PubMed, African Journals online, and Medline were searched for articles published in English and French following the PRISMA guidelines. A structured search string was used with strict inclusion and exclusion criteria to retrieve and screen the articles. The pooled prevalence and 95% confidence intervals were calculated for each pathogen-antimicrobial pair using random effects models. Among the 113 full-text articles reviewed, 41 met the eligibility criteria. The majority of the articles reported AMR (35; 85.4%), while a few were on AMU (3; 7.3%) and AR (3; 7.3%) in fish. The articles originated from West Africa (23; 56.1%), North Africa (8; 19.7%), and East Africa (7; 17.1%). Concerning the antimicrobial agents used in fish farming, tetracycline was the most common antimicrobial class used, which justified the high prevalence of residues (up to 56.7%) observed in fish. For AMR, a total of 69 antimicrobial agents were tested against 24 types of bacteria isolated. Bacteria were resistant to all classes of antimicrobial agents and exhibited high levels of multidrug resistance. Escherichia coli, Salmonella spp., and Staphylococcus spp. were reported in 16, 10, and 8 studies, respectively, with multidrug resistance rates of 43.1% [95% CI (32.0-55.0)], 40.3% [95% CI (24.1-58.1)] and 31.3% [95% CI (17.5-49.4)], respectively. This review highlights the high multidrug resistance rate of bacteria from aquaculture to commonly used antimicrobial agents, such as tetracycline, ampicillin, cotrimoxazole, gentamicin, and amoxicillin, in Africa. These findings also highlighted the lack of data on AMU and residue in the aquaculture sector, and additional efforts should be made to fill these gaps and mitigate the burden of AMR on public health in Africa.


Assuntos
Aquicultura , Peixes , Animais , África , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Resíduos de Drogas , Farmacorresistência Bacteriana
18.
BMC Complement Med Ther ; 24(1): 266, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997638

RESUMO

The growing global threat of antimicrobial resistance endangers both human and animal life, necessitating the urgent discovery of novel antimicrobial solutions. Medicinal plants hold promise as sources of potential antimicrobial compounds. In this study, we investigated the phytochemical constituents and microbicidal capabilities of the ethanolic extract from Nigella sativa (black seed). Gas chromatography analysis (GC) identified 11 compounds, among them thymoquinone, and thymol, contributing to antimicrobial and antioxidant properties. Antimicrobial assays demonstrated notable inhibition zones against broad spectra of bacteria, including Pseudomonas aeruginosa, Escherichia coli, Salmonella typhi, Staphylococcus aureus, Enterobacter, and Bacillus subtilis, along with potent antifungal activity against Aspergillus niger, Penicillium, and Candida albicans. Notably, when combined with antibiotics, the extract displayed exceptional synergistic antimicrobial efficacy. The black seed extract demonstrated membrane-damaging activity and disrupted virulence factors that protect microbes from antimicrobial agents, including the formation of bacterial biofilm and protease secretion. Thymoquinone, the primary active constituent of the extract, exhibited similar antimicrobial and ant virulence properties. In silico analysis targeting key regulators of quorum sensing and biofilm formation in P. aeruginosa, such as RhlG, LasR, and PqsR, showed a remarkable affinity of thymol and thymoquinone for these targets. Moreover, the N. sativa extract exhibited dose-dependent cytotoxicity against both the promastigote and amastigote forms of Leishmania tropica parasites, hinting at potential antiparasitic activity. In addition to its antimicrobial properties, the extract displayed potential antioxidant activity at a concentration of 400 µg/mL.


Assuntos
Antioxidantes , Nigella sativa , Compostos Fitoquímicos , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nigella sativa/química , Antioxidantes/farmacologia , Antioxidantes/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Animais , Bactérias/efeitos dos fármacos , Sementes/química
19.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000256

RESUMO

Biomaterials have demonstrated their ability to serve as effective drug delivery platforms, enabling targeted and localized administration of therapeutic agents [...].


Assuntos
Anti-Infecciosos , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Sistemas de Liberação de Medicamentos/métodos , Animais
20.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000442

RESUMO

Human defensins are cysteine-rich peptides (Cys-rich peptides) of the innate immune system. Defensins contain an ancestral structural motif (i.e., γ-core motif) associated with the antimicrobial activity of natural Cys-rich peptides. In this study, low concentrations of human α- and ß-defensins showed microbicidal activity that was not associated with cell membrane permeabilization. The cell death pathway was similar to that previously described for human lactoferrin, also an immunoprotein containing a γ-core motif. The common features were (1) cell death not related to plasma membrane (PM) disruption, (2) the inhibition of microbicidal activity via extracellular potassium, (3) the influence of cellular respiration on microbicidal activity, and (4) the influence of intracellular pH on bactericidal activity. In addition, in yeast, we also observed (1) partial K+-efflux mediated via Tok1p K+-channels, (2) the essential role of mitochondrial ATP synthase in cell death, (3) the increment of intracellular ATP, (4) plasma membrane depolarization, and (5) the inhibition of external acidification mediated via PM Pma1p H+-ATPase. Similar features were also observed with BM2, an antifungal peptide that inhibits Pma1p H+-ATPase, showing that the above coincident characteristics were a consequence of PM H+-ATPase inhibition. These findings suggest, for the first time, that human defensins inhibit PM H+-ATPases at physiological concentrations, and that the subsequent cytosolic acidification is responsible for the in vitro microbicidal activity. This mechanism of action is shared with human lactoferrin and probably other antimicrobial peptides containing γ-core motifs.


Assuntos
Membrana Celular , ATPases Translocadoras de Prótons , Humanos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , Permeabilidade da Membrana Celular/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Defensinas/farmacologia , Defensinas/metabolismo , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/metabolismo , beta-Defensinas/metabolismo , beta-Defensinas/farmacologia , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Potássio/metabolismo , Testes de Sensibilidade Microbiana , Candida albicans/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA