RESUMO
The Cl--transporting proteins CFTR, SLC26A9, and anoctamin (ANO1; ANO6) appear to have more in common than initially suspected, as they all participate in the pathogenic process and clinical outcomes of airway and renal diseases. In the present review, we will therefore concentrate on recent findings concerning electrolyte transport in the airways and kidneys, and the role of CFTR, SLC26A9, and the anoctamins ANO1 and ANO6. Special emphasis will be placed on cystic fibrosis and asthma, as well as renal alkalosis and polycystic kidney disease. In essence, we will summarize recent evidence indicating that CFTR is the only relevant secretory Cl- channel in airways under basal (nonstimulated) conditions and after stimulation by secretagogues. Information is provided on the expressions of ANO1 and ANO6, which are important for the correct expression and function of CFTR. In addition, there is evidence that the Cl- transporter SLC26A9 expressed in the airways may have a reabsorptive rather than a Cl--secretory function. In the renal collecting ducts, bicarbonate secretion occurs through a synergistic action of CFTR and the Cl-/HCO3- transporter SLC26A4 (pendrin), which is probably supported by ANO1. Finally, in autosomal dominant polycystic kidney disease (ADPKD), the secretory function of CFTR in renal cyst formation may have been overestimated, whereas ANO1 and ANO6 have now been shown to be crucial in ADPKD and therefore represent new pharmacological targets for the treatment of polycystic kidney disease.
Assuntos
Fibrose Cística , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Anoctaminas , Proteínas de Membrana Transportadoras , Transportadores de Sulfato/genética , AntiportersRESUMO
In contaminated soils, arsenic (As) often co-exists with copper (Cu). However, its effects on As accumulation and the related mechanisms in As-hyperaccumulator Pteris vittata remain unclear. In this study, P. vittata plants were exposed to 50 µM As and/or 50 µM Cu under hydroponics to investigate the effects of Cu on plant growth and As accumulation, as well as gene expression related to arsenic uptake (P transporters), reduction (arsenate reductases), and translocation and sequestration (arsenite antiporters). After 14 d of growth and compared to the As treatment, the As concentration in P. vittata fronds increased by 1.4-times from 793 to 1131 mg·kg-1 and its biomass increased by 1.2-fold from 18.0 to 21.1 g·plant-1 in the As+Cu treatment. Copper-enhanced As accumulation was probably due to upregulated gene expressions related to As-metabolisms including As uptake (1.9-fold in P transporter PvPht1;3), translocation (2.1-2.4 fold in arsenite antiporters PvACR3/3;2) and sequestration (1.5-2.0 fold in arsenite antiporters PvACR3;1/3;3). Our results suggest that moderate amount of Cu can help to increase the As accumulation efficiency in P. vittata, which has implication in its application in phytoremedation in As and Cu co-contaminated soils.
Assuntos
Arsênio , Arsenitos , Pteris , Cobre , Arsênio/toxicidade , Pteris/genética , Proteínas de Membrana Transportadoras , Antiporters , Expressão Gênica , SoloRESUMO
Neutropenia and neutrophil dysfunction in glycogen storage disease type 1b (GSD1b) and severe congenital neutropenia type 4 (SCN4), associated with deficiencies of the glucose-6-phosphate transporter (G6PT/SLC37A4) and the phosphatase G6PC3, respectively, are the result of the accumulation of 1,5-anhydroglucitol-6-phosphate in neutrophils. This is an inhibitor of hexokinase made from 1,5-anhydroglucitol (1,5-AG), an abundant polyol in blood. 1,5-AG is presumed to be reabsorbed in the kidney by a sodium-dependent-transporter of uncertain identity, possibly SGLT4/SLC5A9 or SGLT5/SLC5A10. Lowering blood 1,5-AG with an SGLT2-inhibitor greatly improved neutrophil counts and function in G6PC3-deficient and GSD1b patients. Yet, this effect is most likely mediated indirectly, through the inhibition of the renal 1,5-AG transporter by glucose, when its concentration rises in the renal tubule following inhibition of SGLT2. To identify the 1,5-AG transporter, both human and mouse SGLT4 and SGLT5 were expressed in HEK293T cells and transport measurements were performed with radiolabelled compounds. We found that SGLT5 is a better carrier for 1,5-AG than for mannose, while the opposite is true for human SGLT4. Heterozygous variants in SGLT5, associated with a low level of blood 1,5-AG in humans cause a 50-100% reduction in 1,5-AG transport activity tested in model cell lines, indicating that SGLT5 is the predominant kidney 1,5-AG transporter. These and other findings led to the conclusion that (1) SGLT5 is the main renal transporter of 1,5-AG; (2) frequent heterozygous mutations (allelic frequency > 1%) in SGLT5 lower blood 1,5-AG, favourably influencing neutropenia in G6PC3 or G6PT deficiency; (3) the effect of SGLT2-inhibitors on blood 1,5-AG level is largely indirect; (4) specific SGLT5-inhibitors would be more efficient to treat these neutropenias than SGLT2-inhibitors.
Assuntos
Neutropenia , Animais , Humanos , Camundongos , Antiporters , Células HEK293 , Rim , Proteínas de Membrana Transportadoras , Proteínas de Transporte de Monossacarídeos/genética , Neutropenia/genética , Transportador 2 de Glucose-Sódio/genéticaRESUMO
Isolated short stature, defined as short stature without any other abnormalities, is a common heterogeneous condition in children. Exome sequencing identified the homozygous nonsense variant c.1832G>A/p.(Trp611*) in TMCO3 in two sisters with isolated short stature. Radiological studies, biochemical measurements, assessment of the skeletal status, and three-dimensional bone microarchitecture revealed no relevant skeletal and bone abnormalities in both sisters. The homozygous TMCO3 variant segregated with short stature in the family. TMCO3 transcript levels were reduced by ~50% in leukocyte-derived RNA of both sisters compared with controls, likely due to nonsense-mediated mRNA decay. In primary urinary cells of heterozygous family members, we detected significantly reduced TMCO3 protein levels. TMCO3 is functionally uncharacterized. We ectopically expressed wild-type TMCO3 in HeLa and ATDC5 chondrogenic cells and detected TMCO3 predominantly at the Golgi apparatus, whereas the TMCO3W611* mutant did not reach the Golgi. Coordinated co-expression of TMCO3W611* -HA and EGFP in HeLa cells confirmed intrinsic instability and/or degradation of the mutant. Tmco3 is expressed in all relevant mouse skeletal cell types. Highest abundance of Tmco3 was found in chondrocytes of the prehypertrophic zone in mouse and minipig growth plates where it co-localizes with a Golgi marker. Knockdown of Tmco3 in differentiated ATDC5 cells caused reduced and increased expression of Pthlh and Ihh, respectively. Measurement of long bones in Tmco3tm1b(KOMP)Wtsi knockout mice revealed significant shortening of forelimbs and hindlimbs. TMCO3 is a potential member of the monovalent cation:proton antiporter 2 (CPA2) family. By in silico tools and homology modeling, TMCO3 is predicted to have an N-terminal secretory signal peptide, forms a dimer localized to the membrane, and is organized in a dimerization and a core domain. The core domain contains the CPA2 motif essential for K+ binding and selectivity. Collectively, our data demonstrate that loss of TMCO3 causes growth defects in both humans and mice. © 2023 American Society for Bone and Mineral Research (ASBMR).
Assuntos
Nanismo , Prótons , Criança , Humanos , Animais , Camundongos , Suínos , Antiporters , Células HeLa , Porco Miniatura , Nanismo/genética , Complexo de GolgiRESUMO
The Na+/H+ antiporter NhaC family protein is a kind of Na+/H+ exchanger from the ion transporter (IT) superfamily, which has mainly been identified in the halophilic bacteria of Bacillus. However, little is known about the Na+/H+ antiporter NhaC family of proteins in the extremely halophilic archaea. In this study, two Na+/H+ antiporter genes, nhaC1 and nhaC2, were screened from the genome of Natronorubrum daqingense based on the gene library and complementation of salt-sensitive Escherichia coli KNabc. A clone vector pUC18 containing nhaC1 or nhaC2 could make KNabc tolerate 0.6 M/0.7 M NaCl or 30 mM/40 mM LiCl and a pH of up to 8.5/9.5, respectively. Functional analysis shows that the Na+(K+, Li+)/H+ antiport activities of NhaC1 and NhaC2 are both pH-dependent in the range of pH 7.0-10.0, and the optimal pH is 9.5. Phylogenetic analysis shows that both NhaC1 and NhaC2 belong to the Na+/H+ antiporter NhaC family of proteins and are significantly distant from the identified NhaC proteins from Bacillus. In summary, we have identified two Na+(K+, Li+)/H+ antiporters from N. daqingense.
Assuntos
Antiporters , Bacillus , Antiporters/genética , Antiporters/metabolismo , Sequência de Aminoácidos , Filogenia , Proteínas de Bactérias/metabolismo , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Cloreto de Sódio/metabolismo , Bacillus/metabolismo , Íons/metabolismo , Concentração de Íons de HidrogênioRESUMO
Salt-overly-sensitive 1 (SOS1) is a unique electroneutral Na+/H+ antiporter at the plasma membrane of higher plants and plays a central role in resisting salt stress. SOS1 is kept in a resting state with basal activity and activated upon phosphorylation. Here, we report the structures of SOS1. SOS1 forms a homodimer, with each monomer composed of transmembrane and intracellular domains. We find that SOS1 is locked in an occluded state by shifting of the lateral-gate TM5b toward the dimerization domain, thus shielding the Na+/H+ binding site. We speculate that the dimerization of the intracellular domain is crucial to stabilize the transporter in this specific conformation. Moreover, two discrete fragments and a residue W1013 are important to prevent the transition of SOS1 to an alternative conformational state, as validated by functional complementation assays. Our study enriches understanding of the alternate access model of eukaryotic Na+/H+ exchangers.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Antiporters/metabolismo , Membrana Celular/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Na+/H+ exchangers are directly involved in a variety of an animal's essential physiological processes such as ionoregulation, acid-base regulation, nitrogenous waste excretion, and nutrient absorption. While nine NHX isoforms have been identified in Caenorhabditis elegans, the physiological importance of each isoform is not understood. The current study aimed to further our knowledge of NHX-3 which has previously been suggested to be involved in the movement of ammonia and acid-base equivalents across the nematode's hypodermis. Although NHX-3 knockout mutant nematodes exported H+ and imported Na+ at slower rates than wild-type nematodes, attempts to inhibit the NHX activity of mutant nematodes using amiloride and EIPA caused an unexpected increase in hypodermal H+ export and did not impact Na+ fluxes suggesting that the different H+ and Na+ transport profiles of the nematodes are likely due to compensatory changes in the mutants in response to the NHX-3 knockout, rather than the loss of NHX-3's physiological function. Significant changes in the mRNA expression of 7 other NHX isoforms, 2 Na+/H+ antiporter isoforms, and the V-type H+-ATPase were detected between wild-type and mutant nematodes. Furthermore, mutant nematodes possessed significantly reduced rates of cytochrome C oxidase activity and ammonia excretion rates, indicating the knockout of NHX-3 induced fundamental changes in metabolism that could impact the nematode's need to eliminate metabolic end-products like H+ and ammonia that relate to NHX transport. While C. elegans is a popular genetic model with cheap and accessible commercial mutants, our findings suggest caution in interpretation of results in studies using mutants to study physiological traits and the biological significance of specific transporters.
Assuntos
Caenorhabditis elegans , ATPases Vacuolares Próton-Translocadoras , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Antiporters/genética , Antiporters/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Técnicas de Inativação de Genes , ATPases Vacuolares Próton-Translocadoras/metabolismo , Amônia/metabolismo , Isoformas de Proteínas/genética , Íons/metabolismoRESUMO
Members of the SLC26 family constitute a conserved class of anion transport proteins, which encompasses uncoupled transporters with channel-like properties, coupled exchangers and motor proteins. Among the 10 functional paralogs in humans, several participate in the secretion of bicarbonate in exchange with chloride and thus play an important role in maintaining pH homeostasis. Previously, we have elucidated the structure of murine SLC26A9 and defined its function as an uncoupled chloride transporter (Walter et al., 2019). Here we have determined the structure of the closely related human transporter SLC26A6 and characterized it as a coupled exchanger of chloride with bicarbonate and presumably also oxalate. The structure defines an inward-facing conformation of the protein that generally resembles known structures of SLC26A9. The altered anion selectivity between both paralogs is a consequence of a remodeled ion binding site located in the center of a mobile unit of the membrane-inserted domain, which also accounts for differences in the coupling mechanism.
Assuntos
Antiporters , Bicarbonatos , Humanos , Animais , Camundongos , Antiporters/metabolismo , Bicarbonatos/metabolismo , Cloretos/metabolismo , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Transportadores de Sulfato/genéticaRESUMO
The phosphatase FIG4 and the scaffold protein VAC14 function in the biosynthesis of PI(3,5)P2, a signaling lipid that inhibits the lysosomal chloride transporter ClC-7. Loss-of-function mutations of FIG4 and VAC14 reduce PI(3,5)P2 and result in lysosomal disorders characterized by accumulation of enlarged lysosomes and neurodegeneration. Similarly, a gain of function mutation of CLCN7 encoding ClC-7 also results in enlarged lysosomes. We therefore tested the ability of reduced CLCN7 expression to compensate for loss of FIG4 or VAC14. Knock-out of CLCN7 corrected lysosomal swelling and partially corrected lysosomal hyperacidification in FIG4 null cell cultures. Knockout of the related transporter CLCN6 (ClC-6) in FIG4 null cells did not affect the lysosome phenotype. In the Fig4 null mouse, reduction of ClC-7 by expression of the dominant negative CLCN7 variant p.Gly215Arg improved growth and neurological function and increased lifespan by 20%. These observations demonstrate a role for the CLCN7 chloride transporter in pathogenesis of FIG4 and VAC14 disorders. Reduction of CLCN7 provides a new target for treatment of FIG4 and VAC14 deficiencies that lack specific therapies, such as Charcot-Marie-Tooth Type 4J and Yunis-Varón syndrome.
Assuntos
Antiporters , Cloretos , Animais , Camundongos , Antiporters/metabolismo , Cloretos/metabolismo , Flavoproteínas/genética , Flavoproteínas/metabolismo , Lisossomos/metabolismo , Camundongos Knockout , Fosfatases de Fosfoinositídeos/genética , Fosfatases de Fosfoinositídeos/metabolismo , Monoéster Fosfórico Hidrolases/genéticaRESUMO
BACKGROUND: A molecular budding signature (MBS), which consists of seven tumor budding-related genes, was recently presented as a prominent prognostic indicator in colon cancer (CC) using microarray data acquired from frozen specimens. This study aimed to confirm the predictive power of MBS for recurrence risk based on formalin-fixed, paraffin-embedded (FFPE) materials. METHODS: This research utilized the same microarray data from a prior multicenter study using FFPE whole tissue sections, which retrospectively reviewed 232 stage II CC patients without adjuvant chemotherapy and 302 stage III CC patients with adjuvant chemotherapy. All patients underwent upfront curative surgery without neoadjuvant therapy between 2009 and 2012. An MBS score was calculated using the mean of log2 [each signal] of seven genes (MSLN, SLC4A11, WNT11, SCEL, RUNX2, MGAT3, and FOXC1) as described before. RESULTS: The MBS-low group exhibited a better relapse-free survival (RFS) than the MBS-high group in stage II (P = 0.0077) and in stage III CC patients (P = 0.0003). Multivariate analyses revealed that the MBS score was an independent prognostic factor in both stage II (P = 0.0257) and stage III patients (P = 0.0022). Especially among T4, N2, or both (high-risk) stage III patients, the MBS-low group demonstrated markedly better RFS compared with the MBS-high group (P = 0.0013). CONCLUSIONS: This study confirmed the predictive power of the MBS for recurrence risk by employing FFPE materials in stage II/III CC patients.
Assuntos
Neoplasias do Colo , Recidiva Local de Neoplasia , Humanos , Estadiamento de Neoplasias , Estudos Retrospectivos , Recidiva Local de Neoplasia/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/cirurgia , Neoplasias do Colo/tratamento farmacológico , Prognóstico , Quimioterapia Adjuvante , Antiporters , Proteínas de Transporte de ÂnionsRESUMO
Arabidopsis plastid antiporters KEA1 and KEA2 are critical for plastid development, photosynthetic efficiency, and plant development. Here, we show that KEA1 and KEA2 are involved in vacuolar protein trafficking. Genetic analyses found that the kea1 kea2 mutants had short siliques, small seeds, and short seedlings. Molecular and biochemical assays showed that seed storage proteins were missorted out of the cell and the precursor proteins were accumulated in kea1 kea2. Protein storage vacuoles (PSVs) were smaller in kea1 kea2. Further analyses showed that endosomal trafficking in kea1 kea2 was compromised. Vacuolar sorting receptor 1 (VSR1) subcellular localizations, VSR-cargo interactions, and p24 distribution on the endoplasmic reticulum (ER) and Golgi apparatus were affected in kea1 kea2. Moreover, plastid stromule growth was reduced and plastid association with the endomembrane compartments was disrupted in kea1 kea2. Stromule growth was regulated by the cellular pH and K+ homeostasis maintained by KEA1 and KEA2. The organellar pH along the trafficking pathway was altered in kea1 kea2. Overall, KEA1 and KEA2 regulate vacuolar trafficking by controlling the function of plastid stromules via adjusting pH and K+ homeostasis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Antiporters/genética , Antiporters/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vacúolos/metabolismo , Plastídeos/metabolismo , Cátions/metabolismo , Transporte ProteicoRESUMO
Lilium pumilum has a strong salt tolerance. However, the molecular mechanism underlying its salt tolerance remains unexplored. Here, LpSOS1 was cloned from L. pumilum and found to be significantly enriched at high NaCl concentrations (100 mM). In tobacco epidermal cells, localization analysis showed that the LpSOS1 protein was primarily located in the plasma membrane. Overexpression of LpSOS1 resulted in up-regulation of salt stress tolerance in Arabidopsis, as indicated by reduced malondialdehyde levels and Na+/K+ ratio, and increased activity of antioxidant reductases (including superoxide dismutase, peroxidase, and catalase). Treatment with NaCl resulted in improved growth, as evidenced by increased biomass, root length, and lateral root growth, in both sos1 mutant (atsos1) and wild-type (WT) Arabidopsis plants that overexpressed LpSOS1, Under NaCl treatment,atsos1 and WT Arabidopsis plants overexpressing LpSOS1 exhibited better growth, with higher biomass, root length, and lateral root quantity, whereas in the absence of LpSOS1 overexpression, the plants of both lines were wilted and chlorotic and even died under salt stress. When exposed to salt stress, the expression of stress-related genes was notably upregulated in the LpSOS1 overexpression line of Arabidopsis as compared to the WT. Our findings indicate that LpSOS1 enhances salt tolerance in plants by regulating ion homeostasis, reducing Na+/K+ ratio, thereby protecting the plasma membrane from oxidative damage caused by salt stress, and enhancing the activity of antioxidant enzymes. Therefore, the increased salt tolerance conferred by LpSOS1 in plants makes it a potential bioresource for breeding salt-tolerant crops. Further investigation into the mechanisms underlying lily's resistance to salt stress would be advantageous and could serve as a foundation for future molecular improvements.
Assuntos
Arabidopsis , Lilium , Tolerância ao Sal/genética , Lilium/genética , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/metabolismo , Antiporters/genética , Antioxidantes , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been associated with the induction of oxidative stress and the progression of steatosis to steatohepatitis with fibrosis. It also disrupts metabolic pathways including one-carbon metabolism (OCM) and the transsulfuration pathway with possible consequences on glutathione (GSH) levels. In this study, complementary RNAseq and metabolomics data were integrated to examine the hepatic transsulfuration pathway and glutathione biosynthesis in mice following treatment with TCDD every 4 days for 28 days. TCDD dose-dependently repressed hepatic cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CTH) mRNA and protein levels. Reduced CBS and CTH levels are also correlated with dose-dependent decreases in hepatic extract hydrogen sulfide (H2S). In contrast, cysteine levels increased consistent with the induction of Slc7a11, which encodes for the cystine/glutamate Xc- antiporter. Cotreatment of primary hepatocytes with sulfasalazine, a cystine/glutamate Xc- antiporter inhibitor, decreased labeled cysteine incorporation into GSH with a corresponding increase in TCDD cytotoxicity. Although reduced and oxidized GSH levels were unchanged following treatment due to the induction of GSH/GSSG efflux transporter by TCDD, the GSH:GSSG ratio decreased and global protein S-glutathionylation levels in liver extracts increased in response to oxidative stress along with the induction of glutamate-cysteine ligase catalytic subunit (Gclc), glutathione synthetase (Gss), glutathione disulfide reductase (Gsr), and glutathione transferase π (Gstp). Furthermore, levels of ophthalmic acid, a biomarker of oxidative stress indicating GSH consumption, were also increased. Collectively, the data suggest that increased cystine transport due to cystine/glutamate Xc- antiporter induction compensated for decreased cysteine production following repression of the transsulfuration pathway to support GSH synthesis in response to TCDD-induced oxidative stress.
Assuntos
Fígado Gorduroso , Dibenzodioxinas Policloradas , Camundongos , Animais , Cisteína/metabolismo , Cistina , Dissulfeto de Glutationa/metabolismo , Dibenzodioxinas Policloradas/farmacologia , Ácido Glutâmico , Antiporters , Glutationa/metabolismoRESUMO
Ca2+ is an important signaling messenger. In microorganisms, fungi, and plants, H+/Ca2+ antiporters (CAX) are known to play key roles in the homeostasis of intracellular Ca2+ by catalyzing its efflux across the cell membrane. Here, we reveal that the bacterial CAX homolog YfkE transports Ca2+ in two distinct modes: a low-flux H+/Ca2+ exchange mode and a high-flux mode in which Ca2+ and phosphate ions are co-transported (1:1) in exchange for H+. Coupling with phosphate greatly accelerates the Ca2+ efflux activity of YfkE. Our studies reveal that Ca2+ and phosphate bind to adjacent sites in a central translocation pathway and lead to mechanistic insights that explain how this CAX alters its conserved alpha-repeat motifs to adopt phosphate as a specific "transport chaperon" for Ca2+ translocation. This finding uncovers a co-transport mechanism within the CAX family that indicates this class of proteins contributes to the cellular homeostasis of both Ca2+ and phosphate.
Assuntos
Antiporters , Fosfatos , Antiporters/metabolismo , Fosfatos/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Ânions/metabolismoRESUMO
Importance: Newborn genome sequencing (NBSeq) can detect infants at risk for treatable disorders currently undetected by conventional newborn screening. Despite broad stakeholder support for NBSeq, the perspectives of rare disease experts regarding which diseases should be screened have not been ascertained. Objective: To query rare disease experts about their perspectives on NBSeq and which gene-disease pairs they consider appropriate to evaluate in apparently healthy newborns. Design, Setting, and Participants: This survey study, designed between November 2, 2021, and February 11, 2022, assessed experts' perspectives on 6 statements related to NBSeq. Experts were also asked to indicate whether they would recommend including each of 649 gene-disease pairs associated with potentially treatable conditions in NBSeq. The survey was administered between February 11 and September 23, 2022, to 386 experts, including all 144 directors of accredited medical and laboratory genetics training programs in the US. Exposures: Expert perspectives on newborn screening using genome sequencing. Main Outcomes and Measures: The proportion of experts indicating agreement or disagreement with each survey statement and those who selected inclusion of each gene-disease pair were tabulated. Exploratory analyses of responses by gender and age were conducted using t and χ2 tests. Results: Of 386 experts invited, 238 (61.7%) responded (mean [SD] age, 52.6 [12.8] years [range 27-93 years]; 126 [52.9%] women and 112 [47.1%] men). Among the experts who responded, 161 (87.9%) agreed that NBSeq for monogenic treatable disorders should be made available to all newborns; 107 (58.5%) agreed that NBSeq should include genes associated with treatable disorders, even if those conditions were low penetrance; 68 (37.2%) agreed that actionable adult-onset conditions should be sequenced in newborns to facilitate cascade testing in parents, and 51 (27.9%) agreed that NBSeq should include screening for conditions with no established therapies or management guidelines. The following 25 genes were recommended by 85% or more of the experts: OTC, G6PC, SLC37A4, CYP11B1, ARSB, F8, F9, SLC2A1, CYP17A1, RB1, IDS, GUSB, DMD, GLUD1, CYP11A1, GALNS, CPS1, PLPBP, ALDH7A1, SLC26A3, SLC25A15, SMPD1, GATM, SLC7A7, and NAGS. Including these, 42 gene-disease pairs were endorsed by at least 80% of experts, and 432 genes were endorsed by at least 50% of experts. Conclusions and Relevance: In this survey study, rare disease experts broadly supported NBSeq for treatable conditions and demonstrated substantial concordance regarding the inclusion of a specific subset of genes in NBSeq.
Assuntos
Condroitina Sulfatases , Doenças Raras , Masculino , Adulto , Humanos , Recém-Nascido , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doenças Raras/diagnóstico , Doenças Raras/genética , Triagem Neonatal , Pais , Sistema y+L de Transporte de Aminoácidos , Proteínas de Transporte de Monossacarídeos , AntiportersRESUMO
Cholesterol-rich membrane domains, also called lipid rafts (LRs), are specialized membrane domains that provide a platform for intracellular signal transduction. Membrane proteins often cluster in LRs that further aggregate into larger platform-like structures that are enriched in ceramides and are called ceramide-rich platforms (CRPs). The role of CRPs in the regulation of intestinal epithelial functions remains unknown. Down-regulated in adenoma (DRA) is an intestinal Cl-/HCO3- antiporter that is enriched in LRs. However, little is known regarding the mechanisms involved in the regulation of DRA activity. The air-liquid interface (ALI) was created by removing apical media for a specified number of days; from 12-14 days post-confluency, Caco-2/BBe cells or a colonoid monolayer were grown as submerged cultures. Confocal imaging was used to examine the dimensions of membrane microdomains that contained DRA. DRA expression and activity were enhanced in Caco-2/BBe cells and human colonoids using an ALI culture method. ALI causes an increase in acid sphingomyelinase (ASMase) activity, an enzyme responsible for enhancing ceramide content in the plasma membrane. ALI cultures expressed a larger number of DRA-containing platforms with dimensions >2 µm compared to cells grown as submerged cultures. ASMase inhibitor, desipramine, disrupted CRPs and reduced the ALI-induced increase in DRA expression in the apical membrane. Exposing normal human colonoid monolayers to ALI increased the ASMase activity and enhanced the differentiation of colonoids along with basal and forskolin-stimulated DRA activities. ALI increases DRA activity and expression by increasing ASMase activity and platform formation in Caco-2/BBe cells and by enhancing the differentiation of colonoids.
Assuntos
Antiporters , Lipídeos de Membrana , Humanos , Células CACO-2 , Antiportadores de Cloreto-Bicarbonato/metabolismo , Antiporters/metabolismo , Diferenciação Celular , Transportadores de Sulfato/metabolismoRESUMO
Fluoride is a natural antibiotic abundantly present in the environment and, in micromolar concentrations, is able to inhibit enzymes necessary for bacteria to survive. However, as is the case with many antibiotics, bacteria have evolved resistance methods, including through the use of recently discovered membrane proteins. One such protein is the CLCF F-/H+ antiporter protein, a member of the CLC superfamily of anion-transport proteins. Though previous studies have examined this F- transporter, many questions are still left unanswered. To reveal details of the transport mechanism used by CLCF, we have employed molecular dynamics simulations and umbrella sampling calculations. Our results have led to several discoveries, including the mechanism of proton import and how it is able to aid in the fluoride export. Additionally, we have determined the role of the previously identified residues Glu118, Glu318, Met79, and Tyr396. This work is among the first studies of the CLCF F-/H+ antiporter and is the first computational investigation to model the full transport process, proposing a mechanism which couples the F- export with the H+ import.
Assuntos
Antiporters , Fluoretos , Antiporters/química , Antiporters/metabolismo , Fluoretos/química , Prótons , Transporte de Íons , Proteínas de Membrana Transportadoras/metabolismoRESUMO
Pathogenic bacteria that colonize the human intestinal tract have evolved strategies to overcome acidic conditions when they pass through the gastrointestinal tract. Amino acid-mediated acid resistance systems are effective survival strategies in a stomach that is full of amino acid substrate. The amino acid antiporter, amino acid decarboxylase, and ClC chloride antiporter are all engaged in these systems, and each one plays a role in protecting against or adapting to the acidic environment. The ClC chloride antiporter, a member of the ClC channel family, eliminates negatively charged intracellular chloride ions to avoid inner membrane hyperpolarization as an electrical shunt of the acid resistance system. In this review, we will discuss the structure and function of the prokaryotic ClC chloride antiporter of amino acid-mediated acid resistance system.
Assuntos
Antiporters , Cloretos , Humanos , Cloretos/metabolismo , Antiporters/química , Antiporters/metabolismo , Aminoácidos , Bactérias Gram-Negativas/metabolismo , Canais de Cloreto/química , Canais de Cloreto/metabolismoRESUMO
MgtE is a Mg 2+-selective channel regulated by the intracellular Mg 2+ concentration. MgtE family proteins are highly conserved in all domains of life and contribute to cellular Mg 2+ homeostasis. In humans, mutations in the SLC41 proteins, the eukaryotic counterparts of the bacterial MgtE, are known to be associated with various diseases. The first MgtE structure from a thermophilic bacterium, Thermus thermophilus, revealed that MgtE forms a homodimer consisting of transmembrane and cytoplasmic domains with a plug helix connecting the two and that the cytoplasmic domain possesses multiple Mg 2+ binding sites. Structural and electrophysiological analyses revealed that the dissociation of Mg 2+ ions from the cytoplasmic domain induces structural changes in the cytoplasmic domain, leading to channel opening. Thus, previous works showed the importance of MgtE cytoplasmic Mg 2+ binding sites. Nevertheless, due to the limited structural information on MgtE from different species, the conservation and diversity of the cytoplasmic Mg 2+ binding site in MgtE family proteins remain unclear. Here, we report crystal structures of the Mg 2+-bound MgtE cytoplasmic domains from two different bacterial species, Chryseobacterium hispalense and Clostridiales bacterium, and identify multiple Mg 2+ binding sites, including ones that were not observed in the previous MgtE structure. These structures reveal the conservation and diversity of the cytoplasmic Mg 2+ binding site in the MgtE family proteins.
Assuntos
Antiporters , Proteínas de Bactérias , Humanos , Antiporters/química , Antiporters/genética , Antiporters/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Raios X , Thermus thermophilusRESUMO
BACKGROUND: Since patients with cystic fibrosis with different Cystic Fibrosis Transmembrane Regulator (CFTR) genotypes present a wide response variability for modulator drugs such as Orkambi®, it is important to screen variants in candidate genes with an impact on precision and personalized medicine, such as Solute Carrier Family 26, member 9 (SLC26A9) gene. METHODS: Sanger sequencing for the exons and intron-exon boundary junctions of the SLC26A9 gene was employed in nine individuals with p.Phe508del homozygous genotype for the CFTR gene who were not under CFTR modulators therapy. The sequencing variants were evaluated by in silico prediction tools. The CFTR function was measured by cAMP-stimulated current (ΔIsc-eq-FSK) in polarized CFTR of human nasal epithelial cells cultured in micro-Ussing chambers with Orkambi®. RESULTS: We found 24 intronic variants, three in the coding region (missense variants - rs74146719 and rs16856462 and synonymous - rs33943971), and three in the three prime untranslated region (3' UTR) region in the SLC26A9 gene. Twenty variants were considered benign according to American College of Medical Genetics and Genomics guidelines, and ten were classified as uncertain significance. Although some variants had deleterious predictions or possible alterations in splicing, the majority of predictions were benign or neutral. When we analyzed the ΔIsc-eq-FSK response to Orkambi®, there were no significant differences within the genotypes and alleles for all 30 variants in the SLC26A9 gene. CONCLUSIONS: Among the nine individuals with p.Phe508del homozygous genotype for the CFTR gene, no pathogenic SLC26A9 variants were found, and we did not detect associations from the 30 SLC26A9 variants and the response to the Orkambi® in vitro.