Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.107
Filtrar
1.
Eur J Protistol ; 90: 126007, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37536235

RESUMO

Lankesterella parasites are blood coccidians that have recently gained attention as their records in common passerine species emerge. To date, their occurrence has been molecularly confirmed in several passerine genera, mainly among members of the families Paridae and Acrocephalidae. Despite their relatively high prevalence in some host populations, their life cycles remain unclear, mosquitoes or mites being the proposed vectors. The aim of this study was to reveal Lankesterella host specificity, focusing mainly on parasites of tit and warbler species (families Paridae and Acrocephalidae). We have determined the 18S rRNA gene sequences of Lankesterella from 35 individuals belonging to eight different host species. Phylogenetic analysis revealed that passerine Lankesterella are host-specific, with specificity at the host genus or species level. Besides Lankesterella, Isospora sequences were obtained from avian blood as well, pointing out the need for barcoding.


Assuntos
Apicomplexa , Coccídios , Eucoccidiida , Passeriformes , Humanos , Animais , Coccídios/genética , Filogenia , Especificidade de Hospedeiro , Passeriformes/parasitologia
2.
Eur J Protistol ; 90: 126008, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37536234

RESUMO

Gregarine apicomplexans, a group of single celled organisms, inhabit the extracellular spaces of most invertebrate species. The nature of the gregarine-host interactions is not yet fully resolved, mutualistic, commensal and parasitic life forms have been recorded. In the extreme arid environment of the Atacama Desert, only a few groups of invertebrates hosting gregarines such as darkling beetles (Tenebrionidae) were able to adapt, providing an unparalleled opportunity to study co-evolutionary diversification. Here, we describe one novel gregarine genus comprising one species, Atacamagregarina paposa gen. et sp. nov., and a new species, Xiphocephalus ovatus sp. nov. (Apicomplexa: Eugregarinoridea, Stylocephalidae), found in the tenebrionid beetle genera Scotobius (Tenebrioninae, Scotobiini) and Psectrascelis intricaticollis ovata (Pimeliinae, Nycteliini), respectively. In the phylogenetic analysis based on SSU rDNA, Atacamgregarina paposa representing the new genus is basal, forming a separate clade with terrestrial gregarines specific for North American darkling beetles.


Assuntos
Apicomplexa , Besouros , Animais , Besouros/genética , Besouros/parasitologia , Filogenia , Evolução Biológica , Apicomplexa/genética , DNA Ribossômico/genética
3.
Malar J ; 22(1): 232, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563610

RESUMO

BACKGROUND: The nuclear ribosomal RNA genes of Plasmodium parasites are assumed to evolve according to a birth-and-death model with new variants originating by duplication and others becoming deleted. For some Plasmodium species, it has been shown that distinct variants of the 18S rRNA genes are expressed differentially in vertebrate hosts and mosquito vectors. The central aim was to evaluate whether avian haemosporidian parasites of the genus Haemoproteus also have substantially distinct 18S variants, focusing on lineages belonging to the Haemoproteus majoris and Haemoproteus belopolskyi species groups. METHODS: The almost complete 18S rRNA genes of 19 Haemoproteus lineages of the subgenus Parahaemoproteus, which are common in passeriform birds from the Palaearctic, were sequenced. The PCR products of 20 blood and tissue samples containing 19 parasite lineages were subjected to molecular cloning, and ten clones in mean were sequenced each. The sequence features were analysed and phylogenetic trees were calculated, including sequence data published previously from eight additional Parahaemoproteus lineages. The geographic and host distribution of all 27 lineages was visualised as CytB haplotype networks and pie charts. Based on the 18S sequence data, species-specific oligonucleotide probes were designed to target the parasites in host tissue by in situ hybridization assays. RESULTS: Most Haemoproteus lineages had two or more variants of the 18S gene like many Plasmodium species, but the maximum distances between variants were generally lower. Moreover, unlike in most mammalian and avian Plasmodium species, the 18S sequences of all but one parasite lineage clustered into reciprocally monophyletic clades. Considerably distinct 18S clusters were only found in Haemoproteus tartakovskyi hSISKIN1 and Haemoproteus sp. hROFI1. The presence of chimeric 18S variants in some Haemoproteus lineages indicates that their ribosomal units rather evolve in a semi-concerted fashion than according to a strict model of birth-and-death evolution. CONCLUSIONS: Parasites of the subgenus Parahaemoproteus contain distinct 18S variants, but the intraspecific variability is lower than in most mammalian and avian Plasmodium species. The new 18S data provides a basis for more thorough investigations on the development of Haemoproteus parasites in host tissue using in situ hybridization techniques targeting specific parasite lineages.


Assuntos
Apicomplexa , Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Aves Canoras , Animais , Filogenia , RNA Ribossômico 18S/genética , Genes de RNAr , Doenças das Aves/parasitologia , Apicomplexa/genética , Plasmodium/genética , Mamíferos/genética , Infecções Protozoárias em Animais/parasitologia
4.
J Invertebr Pathol ; 200: 107970, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422088

RESUMO

Biological invasions may act as conduits for pathogen introduction. To determine which invasive non-native species pose the biggest threat, we must first determine the symbionts (pathogens, parasites, commensals, mutualists) they carry, via pathological surveys that can be conducted in multiple ways (i.e., molecular, pathological, and histological). Whole animal histopathology allows for the observation of pathogenic agents (virus to Metazoa), based on their pathological effect upon host tissue. Where the technique cannot accurately predict pathogen taxonomy, it does highlight pathogen groups of importance. This study provides a histopathological survey of Pontogammarus robustoides (invasive amphipod in Europe) as a baseline for symbiont groups that may translocate to other areas/hosts in future invasions. Pontogammarus robustoides (n = 1,141) collected throughout Poland (seven sites), were noted to include a total of 13 symbiotic groups: a putative gut epithelia virus (overall prevalence = 0.6%), a putative hepatopancreatic cytoplasmic virus (1.4%), a hepatopancreatic bacilliform virus (15.7%), systemic bacteria (0.7%), fouling ciliates (62.0%), gut gregarines (39.5%), hepatopancreatic gregarines (0.4%), haplosporidians (0.4%), muscle infecting microsporidians (6.4%), digeneans (3.5%), external rotifers (3.0%), an endoparasitic arthropod (putatively: Isopoda) (0.1%), and Gregarines with putative microsporidian infections (1.4%). Parasite assemblages partially differed across collection sites. Co-infection patterns revealed strong positive and negative associations between five parasites. Microsporidians were common across sites and could easily spread to other areas following the invasion of P. robustoides. By providing this initial histopathological survey, we hope to provide a concise list of symbiont groups for risk-assessment in the case of a novel invasion by this highly invasive amphipod.


Assuntos
Anfípodes , Apicomplexa , Microsporídios , Parasitos , Animais , Anfípodes/microbiologia , Interações Hospedeiro-Parasita , Reino Unido , Espécies Introduzidas , Apicomplexa/fisiologia
5.
Chembiochem ; 24(17): e202300263, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37171468

RESUMO

Natural product discovery has traditionally relied on the isolation of small molecules from producing species, but genome-sequencing technology and advances in molecular biology techniques have expanded efforts to a wider array of organisms. Protists represent an underexplored kingdom for specialized metabolite searches despite bioinformatic analysis that suggests they harbor distinct biologically active small molecules. Specifically, pathogenic apicomplexan parasites, responsible for billions of global infections, have been found to possess multiple biosynthetic gene clusters, which hints at their capacity to produce polyketide metabolites. Biochemical studies have revealed unique features of apicomplexan polyketide synthases, but to date, the identity and function of the polyketides synthesized by these megaenzymes remains unknown. Herein, we discuss the potential for specialized metabolite production in protists and the possible evolution of polyketide biosynthetic gene clusters in apicomplexan parasites. We then focus on a polyketide synthase from the apicomplexan Toxoplasma gondii to discuss the unique domain architecture and properties of these proteins when compared to previously characterized systems, and further speculate on the possible functions for polyketides in these pathogenic parasites.


Assuntos
Apicomplexa , Policetídeos , Metabolismo Secundário , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Biologia Computacional , Apicomplexa/genética , Apicomplexa/metabolismo , Policetídeos/química
7.
Parasitol Res ; 122(7): 1573-1579, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37140652

RESUMO

An ant-pathogenic neogregarine in Temnothorax affinis and T. parvulus (Hymenoptera: Formicidae) is described based on morphological and ultrastructural characteristics. The pathogen infects the hypodermis of the ants. The infection was mainly synchronous so that only gametocysts and oocysts could be observed simultaneously in the host body. Gametogamy resulted in the formation of two oocysts within a gametocyst. The lemon-shaped oocysts measured 11-13 µm in length and 8-10 µm in width. The surface of the oocysts is not smooth but contains many buds. A ring-shaped line containing rosary-arrayed buds line up in the equatorial plane of the oocyst. These specific characteristics were observed for the first time in neogregarine oocysts from ants. Polar plugs were recognizable clearly by light and electron microscopy. The oocyst wall was quite thick, measuring 775 to 1000 nm. Each oocyst contained eight sporozoites. The neogregarines in the two Temnothorax species show many similarities such as the size and shape of the oocysts, a relatively fragile gametocyst membrane, host affinity, and tissue preference. We identified these neogregarines as Mattesia cf. geminata, which is here recorded from natural ant populations in the Old World for the first time. All neogregarine pathogens infecting ants in nature so far have been recorded from the New World. We present the two ant species, Temnothorax affinis and T. parvulus, as new natural hosts for M. cf. geminata. Furthermore, the morphological and ultrastructural characteristics of the oocyst of M. cf. geminata are documented by scanning and transmission electron microscopy for the first time.


Assuntos
Formigas , Apicomplexa , Animais , Apicomplexa/ultraestrutura , Oocistos/ultraestrutura , Microscopia Eletrônica de Transmissão , Microscopia Eletrônica
8.
BMC Genomics ; 24(1): 278, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226080

RESUMO

Apicomplexa are ancient and diverse organisms which have been poorly characterized by modern genomics. To better understand the evolution and diversity of these single-celled eukaryotes, we sequenced the genome of Ophryocystis elektroscirrha, a parasite of monarch butterflies, Danaus plexippus. We contextualize our newly generated resources within apicomplexan genomics before answering longstanding questions specific to this host-parasite system. To start, the genome is miniscule, totaling only 9 million bases and containing fewer than 3,000 genes, half the gene content of two other sequenced invertebrate-infecting apicomplexans, Porospora gigantea and Gregarina niphandrodes. We found that O. elektroscirrha shares different orthologs with each sequenced relative, suggesting the true set of universally conserved apicomplexan genes is very small indeed. Next, we show that sequencing data from other potential host butterflies can be used to diagnose infection status as well as to study diversity of parasite sequences. We recovered a similarly sized parasite genome from another butterfly, Danaus chrysippus, that was highly diverged from the O. elektroscirrha reference, possibly representing a distinct species. Using these two new genomes, we investigated potential evolutionary response by parasites to toxic phytochemicals their hosts ingest and sequester. Monarch butterflies are well-known to tolerate toxic cardenolides thanks to changes in the sequence of their Type II ATPase sodium pumps. We show that Ophryocystis completely lacks Type II or Type 4 sodium pumps, and related proteins PMCA calcium pumps show extreme sequence divergence compared to other Apicomplexa, demonstrating new avenues of research opened by genome sequencing of non-model Apicomplexa.


Assuntos
Apicomplexa , Borboletas , Parasitos , Animais , Borboletas/genética , ATPase Trocadora de Sódio-Potássio , Apicomplexa/genética , Sódio
10.
J Invertebr Pathol ; 198: 107917, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37004916

RESUMO

A pathogen with high virulence potential in some host species, Perkinsus marinus remains a challenge for the ecological integrity of marine ecosystems and the health of bivalve molluscs. This study investigates the occurrence of P. marinus in Crassostrea sp. in estuaries of the Potengi River and the Guaraíras lagoon in Rio Grande do Norte, Brazil. A total of 203 oyster samples that tested positive for Perkinsus sp. in Ray's fluid thioglycollate medium (RFTM) were subjected to species-specific quantitiative PCR, where 61 animals (30.05 %) presented amplification graphs with a melting temperature of 80.1 ± 0.6 °C matching the positive control. This was the first record of P. marinus in oysters in these estuaries using qPCR as a diagnostic tool.


Assuntos
Apicomplexa , Crassostrea , Animais , Reação em Cadeia da Polimerase em Tempo Real , Brasil , Ecossistema , Apicomplexa/genética
11.
Parasit Vectors ; 16(1): 98, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918932

RESUMO

BACKGROUND: Apicomplexa consist of numerous pathogenic parasitic protistan genera that invade host cells and reside and replicate within the parasitophorous vacuole (PV). Through this interface, the parasite exchanges nutrients and affects transport and immune modulation. During the intracellular life-cycle, the specialized secretory organelles of the parasite secrete an array of proteins, among which dense granule proteins (GRAs) play a major role in the modification of the PV. Despite this important role of GRAs, a large number of potential GRAs remain unidentified in Apicomplexa. METHODS: A multi-view attention graph convolutional network (MVA-GCN) prediction model with multiple features was constructed using a combination of machine learning and genomic datasets, and the prediction was performed on selected Neospora caninum protein data. The candidate GRAs were verified by a CRISPR/Cas9 gene editing system, and the complete NcGRA64(a,b) gene knockout strain was constructed and the phenotypes of the mutant were analyzed. RESULTS: The MVA-GCN prediction model was used to screen N. caninum candidate GRAs, and two novel GRAs (NcGRA64a and NcGRA64b) were verified by gene endogenous tagging. Knockout of complete genes of NcGRA64(a,b) in N. caninum did not affect the parasite's growth and replication in vitro and virulence in vivo. CONCLUSIONS: Our study showcases the utility of the MVA-GCN deep learning model for mining Apicomplexa GRAs in genomic datasets, and the prediction model also has certain potential in mining other functional proteins of apicomplexan parasites.


Assuntos
Apicomplexa , Toxoplasma , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Apicomplexa/genética , Apicomplexa/metabolismo , Organelas/metabolismo , Virulência , Edição de Genes
12.
J Parasitol ; 109(2): 56-64, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36930698

RESUMO

Apolocystis bosanqueti n. sp., a parasite of an important invasive earthworm in North America, Amynthas agrestis, is described from a site in northern Vermont. The earthworm host follows an annual life cycle in Vermont, so the entire life cycle of the parasite can be observed in 7 mo. In spring, the parasites were first seen in juvenile worms as paired gamonts (suggesting precocious association). These paired gamonts mature into gametocytes that form an opaque structure, with a thick gelatinous envelope (epicyst), that becomes full of zygotes. The resulting gametocyst becomes packed with ∼105 fusiform oocysts. The mature orbicular gametocysts are large (∼1 mm in diameter) and visible to the naked eye through the body wall of the host's anterior segments. The new species most resembles Apolocystis herculea described from many lumbricid earthworm species in Europe but differs from that parasite because Ap. herculea infects the intestinal wall in the posterior of the host rather than the anterior segments. A survey of 9 other earthworm species sympatric with Am. agrestis revealed that only Amynthas tokioensis, also an invasive species, was infected with Ap. bosanqueti, albeit much less commonly. Diagnosis for the family Monocystidae is problematic because cardinal characters are lacking, and the commonly cited character, a trophozoite with no anterior differentiation, is violated in most genera placed in the family. For the first time, a molecular phylogeny is presented that includes 3 genera of monocystids with diverse cell morphology (including the new species) and supports the monophyly of the family. The only morphological character that may be used to diagnose the Monocystidae is the morphology of oocysts, which are fusiform with extended terminal tips. A comparison of oocysts from 7 parasites recovered from local earthworms, including from 3 monocystid species in the phylogeny, confirms the utility of this diagnostic trait. The 2 hosts of the new species were most likely introduced from Japan, so the range of Apolocystis likely extends into East Asia.


Assuntos
Apicomplexa , Oligoquetos , Animais , Oligoquetos/parasitologia , Espécies Introduzidas , Estágios do Ciclo de Vida , Oocistos , Apicomplexa/genética
13.
Eur J Protistol ; 88: 125957, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36966680

RESUMO

Aggregata Frenzel, 1885 (Apicomplexa) are dangerous protozoan parasites that cause malabsorption syndrome in wild and reared cephalopod species, resulting in significant economic loss to fishery and aquaculture industries. The new parasitic species, Aggregata aspera n. sp., in the digestive tract of Amphioctopus ovulum and Amphioctopus marginatus from an area in the Western Pacific Ocean was identified, it is the second two-host parasite species of Aggregata. Mature oocysts and sporocysts were spherical to ovoid in shape. Sporulated oocysts were 380.6-1,158.4 µm in length and 284.0-1,090.6 µm in width. The mature sporocysts were 16.2-18.3 µm in length and 15.7-17.6 µm in width, with irregular protuberances on the lateral wall of the sporocysts. Sporozoites within mature sporocysts were curled in shape and measured 13.0-17.0 µm in length and 1.6-2.4 µm in width. Each sporocyst contained 12-16 sporozoites. Phylogenetic tree analysis, based on 18S rRNA gene partial sequences, indicated that Ag. aspera forms a monophyletic cluster within the genus Aggregata and has a sister relationship with Ag. sinensis. These findings will provide the theoretical basis for the histopathology and diagnosis of coccidiosis in cephalopods.


Assuntos
Apicomplexa , Coccidiose , Eucoccidiida , Octopodiformes , Animais , Filogenia , Oceano Pacífico , Apicomplexa/genética , Coccidiose/parasitologia , Octopodiformes/parasitologia , Oocistos
14.
Curr Opin Microbiol ; 70: 102226, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36332501

RESUMO

Members of the Apicomplexa phylum are unified by an apical complex tailored for motility and host cell invasion. It includes regulated secretory organelles and a conoid attached to the apical polar ring (APR) from which subpellicular microtubules emerge. In coccidia, the conoid is composed of a cone of spiraling tubulin fibers, two preconoidal rings, and two intraconoidal microtubules. The conoid extrudes through the APR in motile parasites. Recent advances in proteomics, cryo-electron tomography, super-resolution, and expansion microscopy provide a more comprehensive view of the spatial and temporal resolution of proteins belonging to the conoid subcomponents. In combination with the phenotyping of targeted mutants, the biogenesis, turnover, dynamics, and function of the conoid begin to be elucidated.


Assuntos
Apicomplexa , Toxoplasma , Toxoplasma/metabolismo , Apicomplexa/genética , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Organelas/metabolismo
15.
Sci Rep ; 12(1): 19996, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411330

RESUMO

Gene manipulation techniques are fundamental to molecular biology and are continuously being improved. However, gene transfection methods are not established for many unicellular eukaryotes (protists), thereby hindering molecular biological investigations. The oyster parasite Perkinisus marinus is one of the few protists with established gene transfection and drug selection. Nevertheless, the present protocols are tedious, requiring a specific electroporator and pulse conditions which limits the accessibility of this technique across different research groups. Here, we present alternative buffer and electroporation conditions that make the protocol less restrictive. We revealed the pulse condition that enables the introduction of plasmids into P. marinus cell using Ingenio electroporation buffer and NEPA21 electroporator. We found that number of cells and plasmid concentration were critical parameters for the electroporation system. We also constructed a simpler expression plasmid that is removed needless regions for gene expression in the parasite. Our findings resolved the equipment restriction in electroporation of P. marinus and would be a good reference for electroporation in other protists, in particular other Perkinsozoa parasites and core dinoflagellates.


Assuntos
Apicomplexa , Dinoflagelados , Ostreidae , Parasitos , Animais , Parasitos/genética , Apicomplexa/genética , Eletroporação , Dinoflagelados/genética
16.
Int. microbiol ; 25(4): 669-678, Nov. 2022. ilus
Artigo em Inglês | IBECS | ID: ibc-216235

RESUMO

Colpodella spp. are free-living flagellates closely related to the apicomplexans. Human infections by Colpodella sp. have been reported. A biflagellated trophozoite and cyst stage comprise the known life cycle stages of Colpodella sp. However, the process of encystation and excystation within the life cycle is unclear. Life cycle stages initiating human infections are unknown. We performed a detailed investigation of the life cycle of Colpodella sp. (ATCC 50594) in culture using Sam-Yellowe’s trichrome stains and differential interference contrast (DIC) for light microscopy and fluorescence microscopy of Congo red-stained cells and investigated ultrastructure using transmission electron microscopy (TEM). We report previously undocumented stages of Colpodella sp. Asymmetric and asynchronous division was detected inside cysts by trichrome staining and by TEM. Odd-numbered juveniles and cysts containing more than four juvenile trophozoites were identified. Live imaging of active cultures captured the excystation and egress of juvenile trophozoites and confirmed the presence of multinucleate cysts. The ultrastructure of the multinucleate cyst is reminiscent of apicomplexan schizonts. Insights gained from the life cycle stages observed in culture allowed the construction of the life cycle of Colpodella sp. Knowledge of the life cycle will aid biochemical and molecular characterization of Colpodella sp. and help identify stages in human infections.(AU)


Assuntos
Humanos , Coloração e Rotulagem , Estágios do Ciclo de Vida , Vermelho Congo , Apicomplexa , Infecções , Pesquisa , Microbiologia
17.
Trends Parasitol ; 38(12): 1041-1052, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36302692

RESUMO

The mitochondrial respiratory chain is an essential pathway in most studied eukaryotes due to its roles in respiration and other pathways that depend on mitochondrial membrane potential. Apicomplexans are unicellular eukaryotes whose members have an impact on global health. The respiratory chain is a drug target for some members of this group, notably the malaria-causing Plasmodium spp. This has motivated studies of the respiratory chain in apicomplexan parasites, primarily Toxoplasma gondii and Plasmodium spp. for which experimental tools are most advanced. Studies of the respiratory complexes in these organisms revealed numerous novel features, including expansion of complex size. The divergence of apicomplexan mitochondria from commonly studied models highlights the diversity of mitochondrial form and function across eukaryotic life.


Assuntos
Apicomplexa , Malária , Plasmodium , Toxoplasma , Humanos , Transporte de Elétrons , Mitocôndrias/metabolismo , Plasmodium/metabolismo , Malária/parasitologia , Apicomplexa/metabolismo
18.
Acta Parasitol ; 67(4): 1740-1755, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36264526

RESUMO

PURPOSE: Brazilian anurans are considered the most diverse and species rich around the world. Although in recent years there has been a strong focus on research related to this group of animals, their parasites have not received the same attention. Thus, this study aimed to provide morphological and molecular data on haemogregarines biodiversity infecting Brazilian anurans. METHODS: During 2020, 116 anurans were collected from four Brazilian States and their blood and fragment of organs were screened for haemogregarine parasites. RESULTS: From the total, seven (6.03%) animals were found infected with species of Hepatozoon and Dactylosoma. Based on the morphological and molecular analysis, four anurans were found infected with Hepatozoon latrensis. The phylogenetic analysis has shown the isolates from this study grouping with the Brazilian anuran Hepatozoon clade, also with gene similarity ranging from 99.70 to 100% to H. latrensis isolates available on GenBank. Furthermore, three specimens (Trachycephalus typhonius, Leptodactylus latrans, and Rhinella diptycha) were infected with the same species of Dactylosoma (100% genetic similarity), with a genetic similarity of 98.56% to Dactylosoma piperis the only other species described in Brazil. In support of the molecular data, different morphological characters were observed in the blood smears as compared to D. piperis, suggesting that the species of Dactylosoma from the present study infecting three different species of Brazilian anurans is an undescribed species. CONCLUSION: Thus, this study increases the knowledge of Brazilian anuran blood parasites and demonstrates the importance of using integrative approaches for the diagnosis of haemoparasites.


Assuntos
Apicomplexa , Eucoccidiida , Parasitos , Animais , Brasil , Filogenia , Apicomplexa/genética , Anuros/parasitologia
19.
Nat Microbiol ; 7(11): 1777-1790, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36109645

RESUMO

Members of Apicomplexa are defined by apical cytoskeletal structures and secretory organelles, tailored for motility, invasion and egress. Gliding is powered by actomyosin-dependent rearward translocation of apically secreted transmembrane adhesins. In the human parasite Toxoplasma gondii, the conoid, composed of tubulin fibres and preconoidal rings (PCRs), is a dynamic organelle of undefined function. Here, using ultrastructure expansion microscopy, we established that PCRs serve as a hub for glideosome components including Formin1. We also identified components of the PCRs conserved in Apicomplexa, Pcr4 and Pcr5, that contain B-box zinc-finger domains, assemble in heterodimer and are essential for the formation of the structure. The fitness conferring Pcr6 tethers the PCRs to the cone of tubulin fibres. F-actin produced by Formin1 is used by Myosin H to generate the force for conoid extrusion which directs the flux of F-actin to the pellicular space, serving as gatekeeper to control parasite motility.


Assuntos
Actinas , Apicomplexa , Toxoplasma , Humanos , Citoesqueleto , Proteínas de Protozoários/genética , Toxoplasma/genética , Tubulina (Proteína)
20.
J Cell Biol ; 221(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36006241

RESUMO

Kinetochores are multiprotein assemblies directing mitotic spindle attachment and chromosome segregation. In apicomplexan parasites, most known kinetochore components and associated regulators are apparently missing, suggesting a minimal structure with limited control over chromosome segregation. In this study, we use interactomics combined with deep homology searches to identify 13 previously unknown components of kinetochores in Apicomplexa. Apicomplexan kinetochores are highly divergent in sequence and composition from animal and fungal models. The nanoscale organization includes at least four discrete compartments, each displaying different biochemical interactions, subkinetochore localizations and evolutionary rates across the phylum. We reveal alignment of kinetochores at the metaphase plate in both Plasmodium berghei and Toxoplasma gondii, suggestive of a conserved "hold signal" that prevents precocious entry into anaphase. Finally, we show unexpected plasticity in kinetochore composition and segregation between apicomplexan lifecycle stages, suggestive of diverse requirements to maintain fidelity of chromosome segregation across parasite modes of division.


Assuntos
Apicomplexa , Segregação de Cromossomos , Cinetocoros , Anáfase , Apicomplexa/genética , Metáfase , Microtúbulos , Mitose , Plasmodium berghei/genética , Fuso Acromático/genética , Toxoplasma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...