Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.039
Filtrar
1.
Dis Aquat Organ ; 147: 13-23, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34734570

RESUMO

Perkinsus sp. protozoans are parasites of a wide variety of molluscs around the world and are responsible for episodes of mass mortalities and large economic losses for aquaculture industries and fisheries. The first step towards the management of infectious episodes is the reliable detection of Perkinsus species. While historic methods for diagnosis of Perkinsus sp. infections in mollusc hosts include histological, in vitro, molecular-genetic, and immunoassays, antibody-based diagnostic assays may prove most practical with development of improved reagents and techniques. This paper reviews historic developments of antibodies against Perkinsus species, and of diagnostic immunoassays. Thirteen research papers reported the development of antibodies against Perkinsus sp. or their extracellular products, mainly P. olseni and P. marinus. Nine of those tested the cross-reactivity of their antibodies against different life stages or species than the one used as immunogen. While all antibodies raised against trophozoites labelled hypnospores, several antibodies raised against hypnospores did not label trophozoites, suggesting antigenic differences between those cell types. Antibody specificity studies showed that there is antigenic heterogeneity between Perkinsus species and Perkinsus-like organisms, and also that common epitopes occur among Perkinsus species, as well as some dinoflagellates. This review summarizes the current knowledge and aims at helping the future development of Perkinsus species-specific antibodies and immunoassays.


Assuntos
Apicomplexa , Bivalves , Dinoflagelados , Animais , Aquicultura , Imunoensaio/veterinária , Moluscos
2.
Folia Parasitol (Praha) ; 682021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34642289

RESUMO

Stomatocystis goerresi sp. n., a gregarine (phylum Apicomplexa, Monocystidae) parasite of an important invasive earthworm in North America, Amynthas tokioensis (Beddard), is described. This is the second species placed into the genus, and details of its morphology and life cycle support Stomatocystis Bandyopadhyay, Mitra et Göçmen, 2006 as a valid taxon. The new species is described using standard nomenclature, measurements, shape descriptors, and photographs of living cells. The parasite was found only in A. tokioensis, and absent in sympatric earthworm species, suggesting it arrived when the earthworms were introduced from their origin from Japan. The species is distinctive from the type species in the genus, S. indica Bandyopadhyay, Mitra et Göçmen, 2006, in being substantially larger in all stages, found in only the host's seminal vesicles, and found in a different host species from East Asia. The distinctive trophozoites/gamonts develop a large funnel structure ringed with a collar of pronounced ridges, and the funnel appears even in the smallest cells. This funnel varies greatly in relative size (to the cell body) and shape, sometimes forming a large fan. The life cycle of S. goerresi is described including distinctive syzygy in which the funnels fuse and then produce a large cell with local centres of isogamete production (thus sex without gender). Gametes are large ( ~5 µm) spheres with complex tips. Oocyst production is large, > 1,000 per mature gametocyst. The genus Stomatocystis is placed into the Monocystidae, but the life cycle of the new species differs from those of other monocystid taxa, which may mean the Monocystidae are not monophyletic or life cycles are variable within the family. Prevalence of S. goerresi at the type locality was high (~ 90%). The parasites destroy the earthworm's organ of sperm self-storage thus eliminating the male function in the hermaphroditic host which may influence the ability of the earthworm to invade and be successful at new sites.


Assuntos
Apicomplexa/crescimento & desenvolvimento , Apicomplexa/isolamento & purificação , Animais , Apicomplexa/classificação , Apicomplexa/genética , Espécies Introduzidas , Japão , Estágios do Ciclo de Vida , Masculino , Oligoquetos/parasitologia
4.
Eur J Protistol ; 81: 125825, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333451

RESUMO

The Apicomplexa Aggregata spp. are intracellular parasites of cephalopods that infect the intestinal tract of commercially important species such as Octopus bimaculatus, which sustains the octopus fishery in Baja California (B.C.), Mexico. In this study, Aggregata polibraxiona n. sp. was described from the cecum of O. bimaculatus collected from Bahia de Los Angeles, B. C. Light and electron microscopy revealed that oocysts and sporocysts were spherical to ovoid in shape. Sporulated oocysts (293-835 × 177-688 µm) contained 135-674 sporocysts (12-24 × 11-22 µm). The sporocyst wall was covered by tubular projections (0.55-2.19 µm in length) bifurcated in the top, unevenly distributed, covered by a thin membrane. Each sporocyst contains 11-13 sporozoites (16-26 × 1.20-3 µm). Three partial sequences of the 18S rDNA gene were obtained, and two phylogenetic approaches were performed according to Bayesian inference and Maximum Likelihood. In both phylogenetic reconstructions, the sequences of A. polibraxiona n. sp. were recovered as a monophyletic group within the genus Aggregata and placed as a sister group to Aggregata octopiana Lineage II. Aggregata polibraxiona n. sp. is the first Apicomplexa described from a cephalopod host from Mexico and extends the geographical range of Apicomplexa infecting cephalopods.


Assuntos
Apicomplexa , Octopodiformes , Animais , Apicomplexa/genética , Teorema de Bayes , México , Filogenia
5.
Sci Rep ; 11(1): 16686, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404893

RESUMO

Leucocytozoon sabrazesi is the intracellular protozoa of leucocytozoonosis, which is transmitted by the insect vectors and affects chickens in most subtropical and tropical regions of the globe, except South America, and causing enormous economic losses due to decreasing meat yield and egg production. In this study, L. sabrazesi gametocytes have been observed in the blood smears, and molecular methods have been used to analyse the occurrence and genetic diversity of L. sabrazesi in blood samples from 313 chickens raised in northern, western and southern parts of Thailand. The nested polymerase chain reaction (nested PCR) assay based on the cytb gene revealed that 80.51% (252/313) chickens were positive of L. sabrazesi. The phylogenetic analysis indicated that L. sabrazesi cytb gene is conserved in Thailand, showed 2 clades and 2 subclades with similarity ranged from 89.5 to 100%. The diversity analysis showed 13 and 18 haplotypes of the sequences from Thailand and from other countries, respectively. The entropy analyses of nucleic acid sequences showed 26 high entropy peaks with values ranging from 0.24493 to 1.21056, while those of amino acid sequences exhibited 5 high entropy peaks with values ranging from 0.39267 to 0.97012. The results; therefore, indicate a high molecular occurrence of L. sabrazesi in chicken blood samples with the associated factors that is statistically significant (p < 0.05). Hence, our results could be used to improve the immunodiagnostic methods and to find appropriate preventive control strategies or vaccination programs against leucocytozoonosis in order to mitigate or eliminate the harmful impact of this infection on chicken industry.


Assuntos
Apicomplexa/genética , Doenças das Aves Domésticas/parasitologia , Infecções Protozoárias em Animais/parasitologia , Animais , Galinhas/parasitologia , Variação Genética , Filogenia , Doenças das Aves Domésticas/epidemiologia , Infecções Protozoárias em Animais/epidemiologia , Tailândia/epidemiologia
6.
Curr Opin Microbiol ; 63: 250-258, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34455306

RESUMO

The apicoplast is the relict of a plastid organelle found in several disease-causing apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii. In these organisms, the organelle has lost its photosynthetic capability but harbours several fitness-conferring or essential metabolic pathways. Although maintaining the apicoplast and fuelling the metabolic pathways within requires the challenging constant import and export of numerous metabolites across its four membranes, only few apicoplast transporters have been identified to date, most of which are orphan transporters. Here we review the roles of metabolic pathways within the apicoplast and what is currently known about the few identified apicoplast metabolite transporters. We discuss what metabolites must get in and out of the apicoplast, the many transporters that are yet to be discovered, and what role these might play in parasite metabolism and as putative drug targets.


Assuntos
Apicomplexa , Apicoplastos , Parasitos , Plasmodium , Toxoplasma , Animais , Apicomplexa/genética , Apicoplastos/genética , Apicoplastos/metabolismo , Redes e Vias Metabólicas/genética , Toxoplasma/genética
7.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204357

RESUMO

Heme biosynthesis is essential for almost all living organisms. Despite its conserved function, the pathway's enzymes can be located in a remarkable diversity of cellular compartments in different organisms. This location does not always reflect their evolutionary origins, as might be expected from the history of their acquisition through endosymbiosis. Instead, the final subcellular localization of the enzyme reflects multiple factors, including evolutionary origin, demand for the product, availability of the substrate, and mechanism of pathway regulation. The biosynthesis of heme in the apicomonad Chromera velia follows a chimeric pathway combining heme elements from the ancient algal symbiont and the host. Computational analyses using different algorithms predict complex targeting patterns, placing enzymes in the mitochondrion, plastid, endoplasmic reticulum, or the cytoplasm. We employed heterologous reporter gene expression in the apicomplexan parasite Toxoplasma gondii and the diatom Phaeodactylum tricornutum to experimentally test these predictions. 5-aminolevulinate synthase was located in the mitochondria in both transfection systems. In T. gondii, the two 5-aminolevulinate dehydratases were located in the cytosol, uroporphyrinogen synthase in the mitochondrion, and the two ferrochelatases in the plastid. In P. tricornutum, all remaining enzymes, from ALA-dehydratase to ferrochelatase, were placed either in the endoplasmic reticulum or in the periplastidial space.


Assuntos
Alveolados/fisiologia , Apicomplexa/metabolismo , Diatomáceas/metabolismo , Heme/metabolismo , Redes e Vias Metabólicas , Sequência de Aminoácidos , Transporte Biológico , Evolução Molecular , Regulação Enzimológica da Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
8.
Ecology ; 102(10): e03452, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34165788

RESUMO

Parasite dilution occurs in varied systems, via multiple potential mechanisms. We used laboratory manipulation and field surveys to test for invader-induced parasite dilution via two specific mechanisms: host-host competition and encounter reduction. In the laboratory, single Aedes triseriatus larvae were exposed to one of eight combinations of: parasitic Ascogregarina barretti, +/-1 cohabiting Aedes albopictus larva during parasite exposure, and +/-1 cohabiting A. albopictus larva after infectious parasite removal. Larval infection intensity (predicted to decrease via dilution by encounter reduction) was not significantly affected by A. albopictus. Adult infection prevalence and intensity (predicted to decrease via dilution by host-host competition) were significantly greater with A. albopictus, suggesting parasite amplification by interspecific competition, an effect potentially mediated by competition increasing A. triseriatus development time. In the field, we tested for effects of potential dilution host abundances on prevalence and abundance of A. barretti in A. triseriatus larvae. Piecewise path analysis yielded no evidence of host-host competition impacting parasitism in the field, but instead indicated a significant direct negative effect of Aedes spp. abundance on parasite abundance in A. triseriatus, which is consistent with dilution via encounter reduction in the field, but only in tree holes, not in man-made containers. Our results are consistent with the hypothesis that a noncompetent invader can alter the native host-parasite relationship, but our laboratory and field data yield differing results. This difference is likely due to laboratory experiment testing for per capita effects of dilution hosts on parasitism, but field analysis testing for effects of dilution host abundance on parasitism. Individually, host-host competition with the invader amplifies, rather than dilutes, parasite success. In contrast, our path analysis is consistent with the hypothesis that dilution of parasitism results from increased abundance of noncompetent hosts in the field.


Assuntos
Aedes , Apicomplexa , Interações Hospedeiro-Parasita , Aedes/parasitologia , Animais , Espécies Introduzidas , Larva
9.
An Acad Bras Cienc ; 93(2): e20200058, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34105613

RESUMO

Aedes aegypti is the main vector of the four arboviruses in America which have the greatest impact on human health. The introduction of Aedes albopictus in South America and Argentina acquires importance given the possibility that this species may be a new vector of arboviruses in this region. For this reason, the studies of the biology of their parasites, such as Ascogregarina spp., should be important for the knowledge of the invasive behavior of these vectors. We reported the finding of Ascogregarina culicis in Aedes aegypti and Ascogregarina sp. in Ae. albopictus populations in subtropical Argentina. The prevalence of parasitism by A. culicis in Ae. aegypti and Ascogregrarina sp. in Ae. albopictus was 34.81% (n = 464) and 37.23% (n = 70), respectively, differing between the seasons and habitats. The infection intensity caused by A. culicis and Ascogregarina sp. varied between 1 to 250 and 1 to 327 trophozoites respectively. Ascogregarina culicis was found throughout the all sampling period of Ae. aegypti (June 2016-April 2018). However the presence of Ascogregarina sp. in the midgut of Ae. albopictus was not recorded throughout the whole sampling period despite the presence of the host.


Assuntos
Aedes , Apicomplexa , Animais , Argentina , Humanos , Mosquitos Vetores , América do Sul
10.
Mol Biochem Parasitol ; 243: 111374, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33974939

RESUMO

Recent studies highlight the emerging role of lipids as important messengers in malaria parasite biology. In an attempt to identify interacting proteins and regulators of these dynamic and versatile molecules, we hypothesised the involvement of phospholipid translocases and their substrates in the infection of the host erythrocyte by the malaria parasite Plasmodium spp. Here, using a data base searching approach of the Plasmodium Genomics Resources (www.plasmodb.org), we have identified a putative phospholipid (PL) scramblase in P. falciparum (PfPLSCR) that is conserved across the genus and in closely related unicellular algae. By reconstituting recombinant PfPLSCR into liposomes, we demonstrate metal ion dependent PL translocase activity and substrate preference, confirming PfPLSCR as a bona fide scramblase. We show that PfPLSCR is expressed during asexual and sexual parasite development, localising to different membranous compartments of the parasite throughout the intra-erythrocytic life cycle. Two different gene knockout approaches, however, suggest that PfPLSCR is not essential for erythrocyte invasion and asexual parasite development, pointing towards a possible role in other stages of the parasite life cycle.


Assuntos
Proteínas de Transferência de Fosfolipídeos/genética , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Apicomplexa , Sequência Conservada , Eritrócitos/parasitologia , Regulação Enzimológica da Expressão Gênica , Humanos , Lipossomos/química , Lipossomos/metabolismo , Microrganismos Geneticamente Modificados , Proteínas de Transferência de Fosfolipídeos/isolamento & purificação , Proteínas de Transferência de Fosfolipídeos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
12.
Trends Parasitol ; 37(7): 622-637, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34045149

RESUMO

Apicomplexan parasites are unicellular eukaryotes that invade the cells in which they proliferate. The development of genetic tools in Toxoplasma, and then in Plasmodium, in the 1990s allowed the first description of the molecular machinery used for motility and invasion, revealing a crucial role for two different secretory organelles, micronemes and rhoptries. Rhoptry proteins are injected directly into the host cytoplasm not only to promote invasion but also to manipulate host functions. Nonetheless, the injection machinery has remained mysterious, a major conundrum in the field. Here we review recent progress in uncovering structural components and proteins implicated in rhoptry exocytosis and explain how revisiting early findings and considering the evolutionary origins of Apicomplexa contributed to some of these discoveries.


Assuntos
Apicomplexa/fisiologia , Exocitose/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Animais , Células/parasitologia , Humanos , Organelas/metabolismo , Proteínas de Protozoários/metabolismo
13.
Sci Rep ; 11(1): 11233, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045562

RESUMO

Invasive species contribute to deteriorate the health of ecosystems due to their direct effects on native fauna and the local parasite-host dynamics. We studied the potential impact of the invasive hornet Vespa velutina on the European parasite-host system by comparing the patterns of diversity and abundance of pathogens (i.e. Microsporidia: Nosematidae; Euglenozoa: Trypanosomatidae and Apicomplexa: Lipotrophidae) in European V. velutina specimens with those in the native European hornet Vespa crabro, as well as other common Hymenoptera (genera Vespula, Polistes and Bombus). We show that (i) V. velutina harbours most common hymenopteran enteropathogens as well as several new parasitic taxa. (ii) Parasite diversity in V. velutina is most similar to that of V. crabro. (iii) No unambiguous evidence of pathogen release by V. velutina was detected. This evidence together with the extraordinary population densities that V. velutina reaches in Europe (around of 100,000 individuals per km2 per year), mean that this invasive species could severely alter the native pathogen-host dynamics either by actively contributing to the dispersal of the parasites and/or by directly interacting with them, which could have unexpected long-term harmful consequences on the native entomofauna.


Assuntos
Ecossistema , Himenópteros/parasitologia , Vespas/parasitologia , Animais , Apicomplexa , Euglenozoários , Europa (Continente) , Interações Hospedeiro-Parasita , Espécies Introduzidas , Microsporídios , Trypanosomatina
14.
J Eukaryot Microbiol ; 68(5): e12861, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34051022

RESUMO

Genetic manipulation techniques for marine protists are not well-established, despite immense efforts. However, Perkinsus marinus is an exception and can be developed as a genetically tractable model organism for related protists. Here, we designed a new plasmid for P. marinus that allows two proteins from a single mRNA to be differently localized using a self-cleaving 2A peptide. This enabled us to establish a stable transfectant expressing a mitochondrially targeted fluorescent protein. The system can be applied to any protein in theory and would make a powerful tool for investigating unique organelles in P. marinus and related dinoflagellates.


Assuntos
Apicomplexa , Dinoflagelados , Apicomplexa/genética , Dinoflagelados/genética , Organelas/genética , Peptídeos , Plasmídeos/genética
15.
Mol Biochem Parasitol ; 243: 111371, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33872659

RESUMO

Much of the vast evolutionary landscape occupied by Eukaryotes is dominated by protists. Though parasitism has arisen in many lineages, there are three main groups of parasitic protists of relevance to human and livestock health: the Apicomplexa, including the malaria parasite Plasmodium and coccidian pathogens of livestock such as Eimeria; the excavate flagellates, encompassing a diverse range of protist pathogens including trypanosomes, Leishmania, Giardia and Trichomonas; and the Amoebozoa, including pathogenic amoebae such as Entamoeba. These three groups represent separate, deep branches of the eukaryote tree, underlining their divergent evolutionary histories. Here, I explore what is known about sex in these three main groups of parasitic protists.


Assuntos
Amebozoários/fisiologia , Apicomplexa/fisiologia , Reprodução/fisiologia , Trypanosoma/fisiologia , Animais , Apicomplexa/patogenicidade , DNA de Cinetoplasto , Eucariotos/fisiologia , Feminino , Células Germinativas/fisiologia , Estágios do Ciclo de Vida , Masculino , Infecções por Protozoários/parasitologia , Infecções por Protozoários/transmissão
16.
Parasitology ; 148(7): 779-786, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33843504

RESUMO

Metchnikovellids are a deep-branching group of microsporidia, parasites of gregarines inhabiting the alimentary tract of polychaetes and some other invertebrates. The diversity and phylogeny of these hyperparasites remain poorly studied. Modern descriptions and molecular data are still lacking for many species. The results of a light microscopy study and molecular data for Metchnikovella spiralis Sokolova et al., 2014, a hyperparasite of the eugregarine Polyrhabdina sp., isolated from the polychaete Pygospio elegans, were obtained. The original description of M. spiralis was based primarily on the analysis of stained preparations and transmission electron microscopy images. Here, the species description was complemented with the results of in vivo observations and phylogenetic analysis based on the SSU rRNA gene. It was shown that in this species, free sporogony precedes sac-bound sporogony, as it occurs in the life cycle of most other metchnikovellids. Spore sacs are entwined with spirally wound cords, and possess only one polar plug. Phylogenetic analyses did not group M. spiralis with M. incurvata, another metchnikovellid from the same gregarine species, but placed it as a sister branch to Amphiacantha. The paraphyletic nature of the genus Metchnikovella was discussed. The taxonomic summary for M. spiralis was emended.


Assuntos
Apicomplexa/parasitologia , Interações Hospedeiro-Parasita , Microsporídios/classificação , Microsporídios/citologia , Poliquetos/parasitologia , Animais , Microsporídios/genética , Microsporídios/fisiologia , Filogenia , RNA de Protozoário/análise , RNA Ribossômico/análise
17.
Parasitol Int ; 83: 102364, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33915268

RESUMO

Apicomplexa mainly comprises parasitic species and some of them, which infect and cause severe diseases to humans and livestock, have been extensively studied due to the clinical and industrial importance. Besides, apicomplexans are a popular subject of the studies focusing on the evolution initiated by a secondary loss of photosynthesis. By interpreting the position in the tree of eukaryotes and lifestyles of the phylogenetic relatives parsimoniously, the extant apicomplexans are predicted to be the descendants of a parasite bearing a non-photosynthetic (cryptic) plastid. The plastid-bearing characteristic for the ancestral apicomplexan is further strengthened by non-photosynthetic plastids found in the extant apicomplexans. The research on apicomplexan members infecting invertebrates is much less advanced than that on the pathogens to humans and livestock. Gregarines are apicomplexans that infect diverse invertebrates and recent studies based on transcriptome data revealed the presence of cryptic plastids in a subset of the species investigated. In this study, we isolated gregarine-like organisms (GLOs) from three arthropod species and conducted transcriptome analyses on the isolated cells. A transcriptome-based, multi-gene phylogenetic analysis clearly indicated that all of the three GLOs are eugregarines. Significantly, the transcriptome data from the GLO in a centipede appeared to contain the transcripts encoding enzymes involved in the non-mevalonate pathway for isopentenyl diphosphate biosynthesis and C5 pathway for heme biosynthesis. The enzymes involved in the two plastid-localized metabolic pathways circumstantially but strongly suggest that the particular GLO possesses a cryptic plastid. The evolution of cryptic plastids in eugregarines is revised by incorporating the new data obtained from the three GLOs in this study.


Assuntos
Apicomplexa/metabolismo , Redes e Vias Metabólicas , Plastídeos/metabolismo
18.
Fungal Biol ; 125(5): 357-367, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33910677

RESUMO

TPPP-like proteins, exhibiting microtubule stabilizing function, constitute a eukaryotic superfamily, characterized by the presence of the p25alpha domain. TPPPs in the strict sense are present in animals except Trichoplax adhaerens, which instead contains apicortin where a part of the p25alpha domain is combined with a DCX domain. Apicortin is absent in other animals and occurs mostly in the protozoan phylum, Apicomplexa. A strong correlation between the occurrence of p25alpha domain and that of the eukaryotic cilium/flagellum was suggested. Species of the deeper branching clades of Fungi possess flagellum but others lost it thus investigation of fungal genomes can help testing of this suggestion. Indeed, these proteins are present in early branching Fungi. Both TPPP and apicortin are present in Rozellomycota (Cryptomycota) and Chytridiomycota, TPPP in Blastocladiomycota, apicortin in Neocallimastigomycota, Monoblepharomycota and the non-flagellated Mucoromycota. Beside the "normal" TPPP occurring in animals, a special, fungal-type TPPP is also present in Fungi, in which a part of the p25alpha domain is duplicated. Dikarya, the most developed subkingdom of Fungi, lacks both flagellum and TPPPs. Thus it is strengthened that each ciliated/flagellated organism contains p25alpha domain-containing proteins while there are very few non-flagellated ones where p25alpha domain can be found.


Assuntos
Fungos , Animais , Apicomplexa , Proteínas Fúngicas , Fungos/genética
19.
J Invertebr Pathol ; 182: 107583, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33781766

RESUMO

The use of commercially reared bumble bees in agricultural environments has been recognized as a potential threat to wild pollinators due to competition, genetic contamination, and most notably, disease transmission. Higher parasite prevalence near greenhouses where managed bumble bees are used has been linked to parasite spillover from managed to wild bees. However, pathogen transmission is not unidirectional, and can also flow from wild to managed bees. These newly infected managed bees can subsequently re-infect (other) wild bees, in a process known as spillback, which is an alternative explanation for the increased parasite prevalence near greenhouses. Reducing parasite prevalence in managed bees is key to controlling host-parasite dynamics in cases of spillover; in spillback, producing managed bees that are resilient to infection is important. Here we establish that the managed bumble bee Bombus terrestris can acquire parasites from their foraging environment, which is the major infection route for Apicystis spp. and Crithidia spp., but not for Nosema spp.. Managed B. terrestris were found to have a higher prevalence of Crithdia and a higher load of Apicystis than local wild conspecifics, showing that for these parasites, spillback is a possible risk scenario.


Assuntos
Apicomplexa/fisiologia , Abelhas/microbiologia , Abelhas/parasitologia , Crithidia/fisiologia , Interações Hospedeiro-Parasita , Nosema/fisiologia , Animais , Criação de Abelhas
20.
Microb Genom ; 7(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33656416

RESUMO

The RNA binding domain abundant in apicomplexans (RAP) is a protein domain identified in a diverse group of proteins, called RAP proteins, many of which have been shown to be involved in RNA binding. To understand the expansion and potential function of the RAP proteins, we conducted a hidden Markov model based screen among the proteomes of 54 eukaryotes, 17 bacteria and 12 archaea. We demonstrated that the domain is present in closely and distantly related organisms with particular expansions in Alveolata and Chlorophyta, and are not unique to Apicomplexa as previously believed. All RAP proteins identified can be decomposed into two parts. In the N-terminal region, the presence of variable helical repeats seems to participate in the specific targeting of diverse RNAs, while the RAP domain is mostly identified in the C-terminal region and is highly conserved across the different phylogenetic groups studied. Several conserved residues defining the signature motif could be crucial to ensure the function(s) of the RAP proteins. Modelling of RAP domains in apicomplexan parasites confirmed an ⍺/ß structure of a restriction endonuclease-like fold. The phylogenetic trees generated from multiple alignment of RAP domains and full-length proteins from various distantly related eukaryotes indicated a complex evolutionary history of this family. We further discuss these results to assess the potential function of this protein family in apicomplexan parasites.


Assuntos
Apicomplexa/classificação , Apicomplexa/genética , Proteínas de Protozoários/genética , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos , Apicomplexa/química , Apicomplexa/metabolismo , Filogenia , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...