Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 590
Filtrar
1.
Viruses ; 16(9)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39339839

RESUMO

The mammarenavirus matrix Z protein plays critical roles in virus assembly and cell egress. Meanwhile, heterotrimer complexes of a stable signal peptide (SSP) together with glycoprotein subunits GP1 and GP2, generated via co-and post-translational processing of the surface glycoprotein precursor GPC, form the spikes that decorate the virion surface and mediate virus cell entry via receptor-mediated endocytosis. The Z protein and the SSP undergo N-terminal myristoylation by host cell N-myristoyltransferases (NMT1 and NMT2), and G2A mutations that prevent myristoylation of Z or SSP have been shown to affect the Z-mediated virus budding and GP2-mediated fusion activity that is required to complete the virus cell entry process. In the present work, we present evidence that the validated on-target specific pan-NMT inhibitor DDD85646 exerts a potent antiviral activity against the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV) that correlates with reduced Z budding activity and GP2-mediated fusion activity as well as with proteasome-mediated degradation of the Z protein. The potent anti-mammarenaviral activity of DDD85646 was also observed with the hemorrhagic-fever-causing Junin (JUNV) and Lassa (LASV) mammarenaviruses. Our results support the exploration of NMT inhibition as a broad-spectrum antiviral against human pathogenic mammarenaviruses.


Assuntos
Aciltransferases , Vírus da Coriomeningite Linfocítica , Replicação Viral , Humanos , Aciltransferases/metabolismo , Aciltransferases/genética , Animais , Vírus da Coriomeningite Linfocítica/fisiologia , Vírus da Coriomeningite Linfocítica/genética , Internalização do Vírus , Arenaviridae/genética , Arenaviridae/fisiologia , Arenaviridae/metabolismo , Chlorocebus aethiops , Células HEK293 , Linhagem Celular , Montagem de Vírus , Células Vero , Antivirais/farmacologia
2.
Viruses ; 16(9)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39339935

RESUMO

While Mammarenavirus Wenzhouense (WENV) is broadly distributed across Asia, the dynamics of WENV infection remain unclear. In this study, a field-derived strain of WENV was used to inoculate Sprague Dawley (SD) rats by intramuscular injection, and the process of viral infection was observed over the course of 28 d. Viral RNA became detectable in the blood at 3 dpi and remained detectable for about 12 d. In most organ tissues, viral RNA peaked at 7 dpi, and then began to decline by 14 d, but remained detectable in intestine and brain tissues at 21 and 28 dpi. Viral shedding was detected from fecal samples for 5 d, from 6 to 11 dpi using qRT-PCR, and was recovered from feces collected at 8 dpi. Horizontal contact infection occurred among cage-mates at 14 and 21 dpi. Antibodies against the nucleocapsid were detected at 5 dpi, and then increased and persisted until the end of the experiment. These results enabled us to determine the kinetics of viremic response, viral shedding in feces, and horizontal transmission dynamics, as well as the potential sites for WENV replication and viral maintenance in nature.


Assuntos
Infecções por Arenaviridae , Fezes , RNA Viral , Ratos Sprague-Dawley , Eliminação de Partículas Virais , Animais , Ratos , Fezes/virologia , RNA Viral/genética , Infecções por Arenaviridae/virologia , Infecções por Arenaviridae/transmissão , Infecções por Arenaviridae/veterinária , Arenaviridae/genética , Arenaviridae/isolamento & purificação , Anticorpos Antivirais/sangue , Masculino , Doenças dos Roedores/virologia , Doenças dos Roedores/transmissão , Doenças dos Roedores/epidemiologia
3.
BMC Microbiol ; 24(1): 115, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575867

RESUMO

Despite repeated spillover transmission and their potential to cause significant morbidity and mortality in human hosts, the New World mammarenaviruses remain largely understudied. These viruses are endemic to South America, with animal reservoir hosts covering large geographic areas and whose transmission ecology and spillover potential are driven in part by land use change and agriculture that put humans in regular contact with zoonotic hosts.We compiled published studies about Guanarito virus, Junin virus, Machupo virus, Chapare virus, Sabia virus, and Lymphocytic Choriomeningitis virus to review the state of knowledge about the viral hemorrhagic fevers caused by New World mammarenaviruses. We summarize what is known about rodent reservoirs, the conditions of spillover transmission for each of these pathogens, and the characteristics of human populations at greatest risk for hemorrhagic fever diseases. We also review the implications of repeated outbreaks and biosecurity concerns where these diseases are endemic, and steps that countries can take to strengthen surveillance and increase capacity of local healthcare systems. While there are unique risks posed by each of these six viruses, their ecological and epidemiological similarities suggest common steps to mitigate spillover transmission and better contain future outbreaks.


Assuntos
Arenaviridae , Arenavirus do Novo Mundo , Animais , Humanos , Arenaviridae/genética , América do Sul
4.
Arch Microbiol ; 206(5): 217, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619666

RESUMO

The rodent-borne Arenavirus in humans has led to the emergence of regional endemic situations and has deeply emerged into pandemic-causing viruses. Arenavirus have a bisegmented ambisense RNA that produces four proteins: glycoprotein, nucleocapsid, RdRp and Z protein. The peptide-based vaccine targets the glycoprotein of the virus encountered by the immune system. Screening of B-Cell and T-Cell epitopes was done based on their immunological properties like antigenicity, allergenicity, toxicity and anti-inflammatory properties were performed. Selected epitopes were then clustered and epitopes were stitched using linker sequences. The immunological and physico-chemical properties of the vaccine construct was checked and modelled structure was validated by a 2-step MD simulation. The thermostability of the vaccine was checked followed by the immune simulation to test the immunogenicity of the vaccine upon introduction into the body over the course of the next 100 days and codon optimization was performed. Finally a 443 amino acid long peptide vaccine was designed which could provide protection against several members of the mammarenavirus family in a variety of population worldwide as denoted by the epitope conservancy and population coverage analysis. This study of designing a peptide vaccine targeting the glycoprotein of mammarenavirues may help develop novel therapeutics in near future.


Assuntos
Arenaviridae , Vacinas , Humanos , Arenaviridae/genética , Vacinologia , Peptídeos , Epitopos/genética , Glicoproteínas
5.
Expert Opin Drug Discov ; 19(5): 537-551, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606475

RESUMO

INTRODUCTION: Mammarenaviruses are negative-sense bisegmented enveloped RNA viruses that are endemic in Africa, the Americas, and Europe. Several are highly virulent, causing acute human diseases associated with high case fatality rates, and are considered to be significant with respect to public health impact or bioterrorism threat. AREAS COVERED: This review summarizes the status quo of treatment development, starting with drugs that are in advanced stages of evaluation in early clinical trials, followed by promising candidate medical countermeasures emerging from bench analyses and investigational animal research. EXPERT OPINION: Specific therapeutic treatments for diseases caused by mammarenaviruses remain limited to the off-label use of ribavirin and transfusion of convalescent sera. Progress in identifying novel candidate medical countermeasures against mammarenavirus infection has been slow in part because of the biosafety and biosecurity requirements. However, novel methodologies and tools have enabled increasingly efficient high-throughput molecular screens of regulatory-agency-approved small-molecule drugs and led to the identification of several compounds that could be repurposed for the treatment of infection with several mammarenaviruses. Unfortunately, most of them have not yet been evaluated in vivo. The most promising treatment under development is a monoclonal antibody cocktail that is protective against multiple lineages of the Lassa virus in nonhuman primate disease models.


Assuntos
Antivirais , Infecções por Arenaviridae , Arenaviridae , Desenvolvimento de Medicamentos , Humanos , Animais , Antivirais/farmacologia , Infecções por Arenaviridae/tratamento farmacológico , Infecções por Arenaviridae/virologia , Arenaviridae/efeitos dos fármacos , Virulência , Desenho de Fármacos
6.
Viruses ; 16(3)2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543706

RESUMO

Following an Argentine Hemorrhagic Fever (AHF) outbreak in the early 1990s, a rodent survey for Junín virus, a New World Clade B arenavirus, in endemic areas of Argentina was conducted. Since 1990, INEVH has been developing eco-epidemiological surveillance of rodents, inside and outside the Argentine Hemorrhagic Fever endemic area. Samples from rodents captured between 1993 and 2019 that were positive for Arenavirus infection underwent Sanger and unbiased, Illumina-based high-throughput sequencing, which yielded 5 complete and 88 partial Mammarenaviruses genomes. Previously, 11 genomes representing four species of New World arenavirus Clade C existed in public records. This work has generated 13 novel genomes, expanding the New World arenavirus Clade C to 24 total genomes. Additionally, two genomes exhibit sufficient genetic diversity to be considered a new species, as per ICTV guidelines (proposed name Mammarenavirus vellosense). The 13 novel genomes exhibited reassortment between the small and large segments in New World Mammarenaviruses. This work demonstrates that Clade C Mammarenavirus infections circulate broadly among Necromys species in the Argentine Hemorrhagic Fever endemic area; however, the risk for Clade C Mammarenavirus human infection is currently unknown.


Assuntos
Arenaviridae , Arenavirus , Arenavirus do Novo Mundo , Febre Hemorrágica Americana , Vírus Junin , Animais , Humanos , Arenaviridae/genética , Roedores , Febre Hemorrágica Americana/epidemiologia , Argentina/epidemiologia , Arenavirus do Novo Mundo/genética , Vírus Junin/genética , Arenavirus/genética
7.
Viruses ; 16(3)2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543848

RESUMO

The Bunyavirales order includes at least fourteen families with diverse but related viruses, which are transmitted to vertebrate hosts by arthropod or rodent vectors. These viruses are responsible for an increasing number of outbreaks worldwide and represent a threat to public health. Infection in humans can be asymptomatic, or it may present with a range of conditions from a mild, febrile illness to severe hemorrhagic syndromes and/or neurological complications. There is a need to develop safe and effective vaccines, a process requiring better understanding of the adaptive immune responses involved during infection. This review highlights the most recent findings regarding T cell and antibody responses to the five Bunyavirales families with known human pathogens (Peribunyaviridae, Phenuiviridae, Hantaviridae, Nairoviridae, and Arenaviridae). Future studies that define and characterize mechanistic correlates of protection against Bunyavirales infections or disease will help inform the development of effective vaccines.


Assuntos
Arenaviridae , Vírus de RNA , Vacinas , Humanos , Imunidade Adaptativa
8.
J Virol ; 98(3): e0188323, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376197

RESUMO

Many viruses, including mammarenaviruses, have evolved mechanisms to counteract different components of the host cell innate immunity, which is required to facilitate robust virus multiplication. The double-stranded RNA (dsRNA) sensor protein kinase receptor (PKR) pathway plays a critical role in the cell anti-viral response. Whether PKR can restrict the multiplication of the Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) and the mechanisms by which LCMV may counteract the anti-viral functions of PKR have not yet been investigated. Here we present evidence that LCMV infection results in very limited levels of PKR activation, but LCMV multiplication is enhanced in the absence of PKR. In contrast, infection with a recombinant LCMV with a mutation affecting the 3'-5' exonuclease (ExoN) activity of the viral nucleoprotein resulted in robust PKR activation in the absence of detectable levels of dsRNA, which was associated with severely restricted virus multiplication that was alleviated in the absence of PKR. However, pharmacological inhibition of PKR activation resulted in reduced levels of LCMV multiplication. These findings uncovered a complex role of the PKR pathway in LCMV-infected cells involving both pro- and anti-viral activities.IMPORTANCEAs with many other viruses, the prototypic Old World mammarenavirus LCMV can interfere with the host cell innate immune response to infection, which includes the dsRNA sensor PKR pathway. A detailed understanding of LCMV-PKR interactions can provide novel insights about mammarenavirus-host cell interactions and facilitate the development of effective anti-viral strategies against human pathogenic mammarenaviruses. In the present work, we present evidence that LCMV multiplication is enhanced in PKR-deficient cells, but pharmacological inhibition of PKR activation unexpectedly resulted in severely restricted propagation of LCMV. Likewise, we document a robust PKR activation in LCMV-infected cells in the absence of detectable levels of dsRNA. Our findings have revealed a complex role of the PKR pathway during LCMV infection and uncovered the activation of PKR as a druggable target for the development of anti-viral drugs against human pathogenic mammarenaviruses.


Assuntos
Arenaviridae , Coriomeningite Linfocítica , Humanos , Arenaviridae/metabolismo , Linhagem Celular , Proteínas Quinases/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Coriomeningite Linfocítica/metabolismo , Proteínas de Transporte , Antivirais , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
9.
J Virol ; 98(2): e0196423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289100

RESUMO

Guanarito virus (GTOV) is the causative agent of Venezuelan hemorrhagic fever. GTOV belongs to the genus Mammarenavirus, family Arenaviridae and has been classified as a Category A bioterrorism agent by the United States Centers for Disease Control and Prevention. Despite being a high-priority agent, vaccines and drugs against Venezuelan hemorrhagic fever are not available. GTOV S-26764, isolated from a non-fatal human case, produces an unclear cytopathic effect (CPE) in Vero cells, posing a significant obstacle to research and countermeasure development efforts. Vero cell-adapted GTOV S-26764 generated in this study produced clear CPE and demonstrated rapid growth and high yield in Vero cells compared to the original GTOV S-26764. We developed a reverse genetics system for GTOV to study amino acid changes acquired through Vero cell adaptation and leading to virus phenotype changes. The results demonstrated that E1497K in the L protein was responsible for the production of clear plaques as well as enhanced viral RNA replication and transcription efficiency. Vero cell-adapted GTOV S-26764, capable of generating CPE, will allow researchers to easily perform neutralization assays and anti-drug screening against GTOV. Moreover, the developed reverse genetics system will accelerate vaccine and antiviral drug development.IMPORTANCEGuanarito virus (GTOV) is a rodent-borne virus. GTOV causes fever, prostration, headache, arthralgia, cough, sore throat, nausea, vomiting, diarrhea, epistaxis, bleeding gums, menorrhagia, and melena in humans. The lethality rate is 23.1% or higher. Vero cell-adapted GTOV S-26764 shows a clear cytopathic effect (CPE), whereas the parental virus shows unclear CPE in Vero cells. We generated a reverse genetics system to rescue recombinant GTOVs and found that E1497K in the L protein was responsible for the formation of clear plaques as well as enhanced viral RNA replication and transcription efficiency. This reverse genetic system will accelerate vaccine and antiviral drug developments, and the findings of this study contribute to the understanding of the function of GTOV L as an RNA polymerase.


Assuntos
Arenaviridae , Genética Reversa , Animais , Feminino , Humanos , Arenaviridae/genética , Infecções por Arenaviridae/virologia , Arenavirus do Novo Mundo/genética , Chlorocebus aethiops , Febres Hemorrágicas Virais/virologia , Fenótipo , Genética Reversa/métodos , Vacinas , Células Vero
10.
Viruses ; 16(1)2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257809

RESUMO

Metagenomic analysis of Aedes aegypti and Ae. albopictus mosquitoes from diverse geographical regions of India revealed the presence of several insect viruses of human interest. Most abundant reads found in Ae. aegypti mosquitoes were of Phasi Charoen-like virus (PCLV), Choristoneura fumiferana granulovirus (CfGV), Cell fusing agent virus (CFAV), and Wenzhou sobemo-like virus 4 (WSLV4), whereas WSLV4 and CfGV constituted the highest percentage of reads in Ae. albopictus viromes. Other reads that were of low percentage included Hubei mosquito virus 2 (HMV2), Porcine astrovirus 4 (PAstV4), and Wild Boar astrovirus (WBAstV). PCLV and CFAV, which were found to be abundant in Ae. aegypti viromes were absent in Ae. albopictus viromes. Among the viromes analyzed, Ae. aegypti sampled from Pune showed the highest percentage (79.82%) of viral reads, while Ae. aegypti mosquitoes sampled from Dibrugarh showed the lowest percentage (3.47%). Shamonda orthobunyavirus (SHAV), African swine fever virus (ASFV), Aroa virus (AROAV), and Ilheus virus (ILHV), having the potential to infect vertebrates, including humans, were also detected in both mosquito species, albeit with low read numbers. Reads of gemykibivirus, avian retrovirus, bacteriophages, herpesviruses, and viruses infecting protozoans, algae, etc., were also detected in the mosquitoes. A high percentage of reads in the Ae. albopictus mosquito samples belonged to unclassified viruses and warrant further investigation. The data generated in the present work may not only lead to studies to explain the influence of these viruses on the replication and transmission of viruses of clinical importance but also to find applications as biocontrol agents against pathogenic viruses.


Assuntos
Aedes , Vírus da Febre Suína Africana , Arenaviridae , Bacteriófagos , Granulovirus , Animais , Suínos , Humanos , Viroma , Índia
11.
Methods Mol Biol ; 2733: 115-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38064030

RESUMO

Several mammarenaviruses cause hemorrhagic fever (HF) disease in humans and pose a significant public health problem in their endemic regions. The Old World (OW) mammarenavirus Lassa virus (LASV) is estimated to infect several hundred thousand people yearly in West Africa, resulting in high numbers of Lassa fever (LF) cases, a disease associated with high morbidity and mortality. No licensed vaccines are available to combat LASV infection, and anti-LASV drug therapy is limited to the off-label use of ribavirin whose efficacy remains controversial. The development of reverse genetics approaches has provided investigators with a powerful approach for the investigation of the molecular, cell biology and pathogenesis of mammarenaviruses. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in viral genome replication and gene transcription, assembly, and budding, which has facilitated the identification of several anti-mammarenavirus candidate drugs. Likewise, it is possible now to rescue infectious recombinant mammarenaviruses from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of viral pathogenesis. Reverse genetics have also allowed the generation of mammarenaviruses expressing foreign genes to facilitate virus detection, to identify antiviral drugs, and to generate live-attenuated vaccine (LAV) candidates. Likewise, reverse genetics techniques have allowed the generation of single-cycle infectious, reporter-expressing mammarenaviruses to study some aspects of the biology of HF-causing human mammarenavirus without the need of high security biocontainment laboratories. In this chapter, we describe the experimental procedures to generate recombinant (r)LASV using state-of-the-art plasmid-based reverse genetics.


Assuntos
Arenaviridae , Febres Hemorrágicas Virais , Febre Lassa , Humanos , Vírus Lassa/genética , Genética Reversa/métodos , Arenaviridae/genética , Plasmídeos/genética
13.
Viruses ; 15(12)2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38140554

RESUMO

Reptarenaviruses cause Boid Inclusion Body Disease (BIBD), a fatal disease of boid snakes with an economic and ecological impact, as it affects both captive and wild constrictor snakes. The clinical picture of BIBD is highly variable but often only limited. Intracytoplasmic inclusion bodies (IB), which develop in most cell types including blood cells, are the pathognomonic hallmark of BIBD; their detection represents the diagnostic gold standard of the disease. However, IBs are not consistently present in clinically healthy reptarenavirus carriers, which can, if undetected, lead to and maintain the spread of the disease within and between snake populations. Sensitive viral detection tools are required for screening and control purposes; however, the genetic diversity of reptarenaviruses hampers the reverse transcription (RT) PCR-based diagnostics. Here, we describe a multiplex RT-PCR approach for the molecular diagnosis of reptarenavirus infection in blood samples. The method allows the detection of a wide range of reptarenaviruses with the detection limit reaching 40 copies per microliter of blood. Using 245 blood samples with a reference RT-PCR result, we show that the technique performs as well as the segment-specific RT-PCRs in our earlier studies. It can identify virus carriers and serve to limit reptarenavirus spreading in captive snake collections.


Assuntos
Infecções por Arenaviridae , Arenaviridae , Boidae , Animais , Arenaviridae/genética , Transcrição Reversa , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Boidae/genética
14.
Virol J ; 20(1): 265, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968659

RESUMO

The global decline in biodiversity is a matter of great concern for members of the class Reptilia. Reptarenaviruses infect snakes, and have been linked to various clinical conditions, such as Boid Inclusion Body Disease (BIBD) in snakes belonging to the families Boidae and Pythonidae. However, there is a scarcity of information regarding reptarenaviruses found in snakes in both the United States and globally. This study aimed to contribute to the understanding of reptarenavirus diversity by molecularly characterizing a reptarenavirus detected in a Colombian Red-Tailed Boa (Boa constrictor imperator). Using a metagenomics approach, we successfully identified, and de novo assembled the whole genomic sequences of a reptarenavirus in a Colombian Red-Tailed Boa manifesting clinically relevant symptoms consistent with BIBD. The analysis showed that the Colombian Red-Tailed Boa in this study carried the University of Giessen virus (UGV-1) S or S6 (UGV/S6) segment and L genotype 7. The prevalence of the UGV/S6 genotype, in line with prior research findings, implies that this genotype may possess specific advantageous characteristics or adaptations that give it a competitive edge over other genotypes in the host population. This research underscores the importance of monitoring and characterizing viral pathogens in captive and wild snake populations. Knowledge of such viruses is crucial for the development of effective diagnostic methods, potential intervention strategies, and the conservation of vulnerable reptilian species. Additionally, our study provides valuable insights for future studies focusing on the evolutionary history, molecular epidemiology, and biological properties of reptarenaviruses in boas and other snake species.


Assuntos
Arenaviridae , Boidae , Humanos , Animais , Arenaviridae/genética , Colômbia , Evolução Biológica , Genótipo
16.
J Infect Dis ; 228(Suppl 6): S359-S375, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37849403

RESUMO

Lassa virus (LASV), Junin virus (JUNV), and several other members of the Arenaviridae family are capable of zoonotic transfer to humans and induction of severe viral hemorrhagic fevers. Despite the importance of arenaviruses as potential pandemic pathogens, numerous gaps exist in scientific knowledge pertaining to this diverse family, including gaps in understanding replication, immunosuppression, receptor usage, and elicitation of neutralizing antibody responses, that in turn complicates development of medical countermeasures. A further challenge to the development of medical countermeasures for arenaviruses is the requirement for use of animal models at high levels of biocontainment, where each model has distinct advantages and limitations depending on, availability of space, animals species-specific reagents, and most importantly the ability of the model to faithfully recapitulate human disease. Designation of LASV and JUNV as prototype pathogens can facilitate progress in addressing the public health challenges posed by members of this important virus family.


Assuntos
Arenaviridae , Vírus Junin , Animais , Humanos , Replicação Viral , Vírus Junin/fisiologia , Vírus Lassa , Modelos Animais
17.
J Gen Virol ; 104(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37698490

RESUMO

Arenaviridae is a family for ambisense RNA viruses with genomes of about 10.5 kb that infect mammals, snakes, and fish. The arenavirid genome consists of two or three single-stranded RNA segments and encodes a nucleoprotein (NP), a glycoprotein (GP) and a large (L) protein containing RNA-directed RNA polymerase (RdRP) domains; some arenavirids encode a zinc-binding protein (Z). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) report on the family Arenaviridae, which is available at www.ictv.global/report/arenaviridae.


Assuntos
Arenaviridae , Animais , Arenaviridae/genética , Nucleoproteínas/genética , RNA , RNA Polimerase Dependente de RNA , Mamíferos
18.
Blood ; 142(24): 2092-2104, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37699247

RESUMO

Viral hemorrhagic fevers (HF) are a group of acute febrile diseases with high mortality rates. Although hemostatic dysfunction appears to be a major determinant of the severity of the disease, it is still unclear what pathogenic mechanisms lead to it. In clinical studies it is found that arenaviruses, such as Lassa, Machupo, and Guanarito viruses cause HF that vary in symptoms and biological alterations. In this study we aimed to characterize the hemostatic dysfunction induced by arenaviral HF to determine its implication in the severity of the disease and to elucidate the origin of this syndrome. We found that lethal infection with Machupo, Guanarito, and Lassa viruses is associated with cutaneomucosal, cerebral, digestive, and pulmonary hemorrhages. The affected animals developed a severe alteration of the coagulation system, which was concomitant with acute hepatitis, minor deficit of hepatic factor synthesis, presence of a plasmatic inhibitor of coagulation, and dysfunction of the fibrinolytic system. Despite signs of increased vascular permeability, endothelial cell infection was not a determinant factor of the hemorrhagic syndrome. There were also alterations of the primary hemostasis during lethal infection, with moderate to severe thrombocytopenia and platelet dysfunction. Finally, we show that lethal infection is accompanied by a reduced hematopoietic potential of the bone marrow. This study provides an unprecedented characterization of the hemostasis defects induced by several highly pathogenic arenaviruses.


Assuntos
Arenaviridae , Arenavirus , Febres Hemorrágicas Virais , Hemostáticos , Animais , Febres Hemorrágicas Virais/patologia , Hemorragia/etiologia , Hemostasia , Macaca
19.
Nat Commun ; 14(1): 5603, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699929

RESUMO

Lassa virus is a member of the Arenaviridae family, which causes human infections ranging from asymptomatic to severe hemorrhagic disease with a high case fatality rate. We have designed and generated lipid nanoparticle encapsulated, modified mRNA vaccines that encode for the wild-type Lassa virus strain Josiah glycoprotein complex or the prefusion stabilized conformation of the Lassa virus glycoprotein complex. Hartley guinea pigs were vaccinated with two 10 µg doses, 28 days apart, of either construct. Vaccination induced strong binding antibody responses, specific to the prefusion conformation of glycoprotein complex, which were significantly higher in the prefusion stabilized glycoprotein complex construct group and displayed strong Fc-mediated effects. However, Lassa virus-neutralizing antibody activity was detected in some but not all animals. Following the challenge with a lethal dose of the Lassa virus, all vaccinated animals were protected from death and severe disease. Although the definitive mechanism of protection is still unknown, and assessment of the cell-mediated immune response was not investigated in this study, these data demonstrate the promise of mRNA as a vaccine platform against the Lassa virus and that protection against Lassa virus can be achieved in the absence of virus-neutralizing antibodies.


Assuntos
Arenaviridae , Vírus Lassa , Humanos , Cobaias , Animais , Vírus Lassa/genética , Anticorpos Neutralizantes , Vacinas de mRNA , Glicoproteínas
20.
Viruses ; 15(9)2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37766225

RESUMO

The mammarenavirus Junín (JUNV) is the causative agent of Argentine hemorrhagic fever, a severe disease of public health concern. The most abundant viral protein is the nucleoprotein (NP), a multifunctional, two-domain protein with the primary role as structural component of the viral nucleocapsids, used as template for viral polymerase RNA synthesis activities. Here, we report that the C-terminal domain (CTD) of the attenuated Candid#1 strain of the JUNV NP can be purified as a stable soluble form with a secondary structure in line with known NP structures from other mammarenaviruses. We show that the JUNV NP CTD interacts with the viral matrix protein Z in vitro, and that the full-length NP and Z interact with each other in cellulo, suggesting that the NP CTD is responsible for this interaction. This domain comprises an arrangement of four acidic residues and a histidine residue conserved in the active site of exoribonucleases belonging to the DEDDh family. We show that the JUNV NP CTD displays metal-ion-dependent nuclease activity against DNA and single- and double-stranded RNA, and that this activity is impaired by the mutation of a catalytic residue within the DEDDh motif. These results further support this activity, not previously observed in the JUNV NP, which could impact the mechanism of the cellular immune response modulation of this important pathogen.


Assuntos
Arenaviridae , Vírus Junin , Vírus Junin/genética , Nucleoproteínas/genética , Catálise , Exorribonucleases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA