RESUMO
BACKGROUND: As a result of the lack of screening programs and the difficulty in making a proper diagnosis, the majority of hepatocellular carcinoma (HHC) patients present late in low-resource countries. The study therefore assesses the clinical features, stage and prognostic variables of patients with HCC in The Gambia. METHODS: From December 2015 to January 2019, patients with a confirmed diagnosis of HCC were enrolled. All patients' medical history, ultrasound scan, FibroScan and laboratory details were collected. RESULTS: Two hundred and sixty (260) patients were enrolled. The mean age of HCC patients was 40 years, and 210 (80.7%) of them were male. The most common gastrointestinal symptoms were early satiety 229 (88.1%) and abdominal pain 288 (87.7%), while the most common constitutional symptoms were weight loss 237 (91.2%) and easy fatiguability 237 (91.2%). Hepatomegaly 205 (78.8%) was the most common sign. On ultrasound scan, lesions were mostly multifocal 175 (67.3%), and the median FibroScan score was 75 kPa. The median fibrosis 4 and aspartate transferase platelet ratio index were 4.6 and 2.2, respectively. Hepatitis B surface antigen (HBsAg) was positive in 170 (65.4%) patients, and the median AFP level was 3263 ng/ml. HCC patients with positive HBsAg were more likely to be male 145 (85.3%) vs 62 (72.1%) (p = 0.011), much younger 39.9 vs 51.4 yrs (p = < 0.0001), more likely to have abdominal pain 156 (91.8%) vs 68 (79.1%) (p = 0.002), jaundice 78 (45.9%) vs 29 (33.7%) (p = 0.042), dark urine 117 (68.8%) vs 46 (53.5%) (p = 0.018), raised transaminases (Aspartate transaminases 224.5 (32-7886) vs 153 (18-610), p = < 0.01, Alanine transferases 71 (5-937) vs 47 (8-271), p = < 0.001) and decreased platelet count 207 (33-941) vs 252 (52- 641) (p = 0.021) compared to patients with HCC who were HBsAg-negative. CONCLUSIONS: The prognosis of patients with HCC is poor in developing countries such as The Gambia, where screening programs and treatment modalities are scarce. Young males are disproportionately affected, and HBV is a major cause of HCC in The Gambia.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Masculino , Adulto , Feminino , Carcinoma Hepatocelular/diagnóstico por imagem , Gâmbia , Ácido Aspártico , Antígenos de Superfície da Hepatite B , Neoplasias Hepáticas/diagnóstico , Prognóstico , Dor AbdominalRESUMO
BACKGROUND: Children of mothers with gestational diabetes mellitus (GDM) are more prone to acquire type 2 diabetes and obesity as adults. Due to this link, early intervention strategies that alter the gut microbiome may benefit the mother and kid long-term. This work uses metagenomic and transcriptome sequencing to investigate how probiotics affect gut microbiota dysbiosis and inflammation in GDM. METHODS: GDM and control metagenomic sequencing data were obtained from the SRA database. This metagenomic data helped us understand gut microbiota abundance and function. KEGG detected and extracted functional pathway genes. Transcriptome sequencing data evaluated GDM-related gene expression. Finally, GDM animal models were given probiotics orally to evaluate inflammatory response, regulatory immune cell fractions, and leptin protein levels. RESULTS: GDM patients had more Fusobacteria and Firmicutes, while healthy people had more Bacteroidetes. Gut microbiota composition may affect GDM by altering the L-aspartate and L-asparagine super pathways. Mannan degradation and the super pathway of L-aspartate and L-asparagine synthesis enhanced in GDM mice with leptin protein overexpression. Oral probiotics prevent GDM by lowering leptin. Oral probiotics increased Treg, Tfr, and Breg cells, which decreased TNF-α and IL-6 and increased TGF-ß and IL-10, preventing inflammation and preserving mouse pregnancy. CONCLUSION: Dysbiosis of the gut microbiota may increase leptin expression and cause GDM. Oral probiotics enhance Treg, Tfr, and Breg cells, which limit the inflammatory response and assist mice in sustaining normal pregnancy. Thus, oral probiotics may prevent GDM, enabling targeted gut microbiota modulation and maternal and fetal health.
Assuntos
Linfócitos B Reguladores , Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Feminino , Gravidez , Humanos , Animais , Camundongos , Asparagina , Ácido Aspártico , Disbiose , Leptina , Linfócitos T Reguladores , InflamaçãoRESUMO
The escalating prevalence of drug-resistant strains of Mycobacterium tuberculosis has posed a significant challenge to global efforts in combating tuberculosis. To address this issue, innovative therapeutic strategies are required that target essential biochemical pathways while minimizing the potential for resistance development. The concept of dual targeting has gained prominence in drug discovery against resistance bacteria. Dual targeting recognizes the complexity of cellular processes and disrupts more than one vital pathway, simultaneously. By inhibiting more than one essential process required for bacterial growth and survival, the chances of developing resistance are substantially reduced. A previously reported study investigated the dual-targeting potential of a series of novel compounds against the folate pathway in Mycobacterium tuberculosis. Expanding on this study, we investigated the predictive pharmacokinetic profiling and the structural mechanism of inhibition of UCP1172, UCP1175, and UCP1063 on key enzymes, dihydrofolate reductase (DHFR) and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5'-phosphate reductase (RV2671), involved in the folate pathway. Our findings indicate that the compounds demonstrate lipophilic physiochemical properties that promote gastrointestinal absorption, and may also inhibit the drug-metabolizing enzyme, cytochrome P450 3A4, thus enhancing their biological half-life. Furthermore, key catalytic residues (Serine, Threonine, and Aspartate), conserved in both enzymes, were found to participate in vital molecular interactions with UCP1172, which demonstrated the most favorable free binding energies to both DHFR and RV2671 (-41.63 kcal/mol, -48.04 kcal/mol, respectively). The presence of characteristic loop shifts, which are similar in both enzymes, also indicates a common inhibitory mechanism by UCP1172. This elucidation advances the understanding of UCP1172's dual inhibition mechanism against Mycobacterium tuberculosis.
Assuntos
Antagonistas do Ácido Fólico , Mycobacterium tuberculosis , Antagonistas do Ácido Fólico/farmacologia , Ácido Aspártico , Catálise , Ácido FólicoRESUMO
OBJECTIVE: To observe the anti-tumor effect of moxibustion with seed-sized moxa cones on Hepa1-6 liver cancer bearing (HLCB) mice and its regulatory mechanism on cell apoptosis. METHODS: A total of 40 male C57BL/6 mice were randomly divided into control, moxibustion, cyclophosphamide (CTX) and moxibustion+CTX groups, with 10 mice in each group. The HLCB model was established by subcutaneous inoculation of Hepa1-6 cancer cells into the right armpit. Mice of the CTX and moxibustion+CTX groups were given intraperitoneal injection of CTX (30 mg/kg), once daily for 3 days. Moxibustion with seed-sized moxa cones were applied to "Dazhui" (GV14), bilateral"Zusanli" (ST36) and "Sanyinjiao" (SP6), with 5 moxa cones for each acupoint, once daily for 10 consecutive days. The survival status scores and body weight of HLCB mice were observed, and the tumor weight and tumor inhibition rate were detected. HE staining was used to observe the morphological changes of tumor tissue. ELISA was used to detect the levels of serum interleukin (IL)-2, IL-4 and tumor necrosis factor-α (TNF-α). Western blot and fluorescent quantitative real-time PCR were used to detect the protein and mRNA expressions of cysteine aspartate protease (Caspase) -3 and Caspase-9 in tumor tissues, separately. RESULTS: Compared with the control group, the survival status scores, body weight, serum IL-2 and TNF-α levels were significantly increased (P<0.05, P<0.01), the tumor weight and serum IL-4 levels were significantly decreased (P<0.05) in the moxibustion groupï¼while the survival status, body weight, tumor weight, serum IL-2 and IL-4 levels were significantly decreased (P<0.01, P<0.05), the content of TNF-α was significantly increased (P<0.01) in the CTX group. The protein and mRNA expressions of Caspase-3 and Caspase-9 in the 3 trentment groups were significantly increased (P<0.05, P<0.01). In comparison with the moxibustion group, the survival status scores, body weight and tumor weight, serum content of IL-2 were significantly decreased (P<0.01, P<0.05). In contrast to the CTX group, the survival status scores, body weight, serum IL-2 and TNF-α content, and the expressions of Caspase-3 and Caspase-9 in tumor tissue were significantly increased (P<0.01, P<0.05), and the tumor weight and serum IL-4 content were significantly decreased (P<0.05) in the moxibustion+CTX group. Results of HE staining showed that the tumor cells in the control group had clear nuclear membranes and nucleoli, with more dividing cellsï¼ while less nuclear division and an increase in tumor necrosis areas were found in the 3 treatment groups. CONCLUSION: Moxibustion with seed-size moxa cone can enhance the anti-tumor effect of CTX and improve the quality of life of HLCB mice, which may be related with its effect in activating the expressions of Caspase-3 and Caspase-9 in tumor tissue.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Moxibustão , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Cisteína , Interleucina-2 , Caspase 3 , Caspase 9 , Interleucina-4 , Qualidade de Vida , Fator de Necrose Tumoral alfa/genética , Apoptose , Ciclofosfamida , Ácido Aspártico , Peso Corporal , RNA MensageiroRESUMO
Burkholderia pseudomallei is a highly versatile pathogen with ~25% of its genome annotated to encode hypothetical proteins. One such hypothetical protein, BPSL1038, is conserved across seven bacterial genera and 654 Burkholderia spp. Here, we present a 1.55 Å resolution crystal structure of BPSL1038. The overall structure folded into a modified ßαßßαßα ferredoxin fold similar to known Cas2 nucleases. The Cas2 equivalent catalytic aspartate (D11) pairs are conserved in BPSL1038 although B. pseudomallei has no known CRISPR associated system. Functional analysis revealed that BPSL1038 is a nuclease with endonuclease activity towards double-stranded DNA. The DNase activity is divalent ion independent and optimum at pH 6. The concentration of monovalent ions (Na+ and K+) is crucial for nuclease activity. An active site with a unique D11(X20)SST motif was identified and proposed for BPSL1038 and its orthologs. Structure modelling indicates the catalytic role of the D11(X20)SST motif and that the arginine residues R10 and R30 may interact with the nucleic acid backbone. The structural similarity of BPSL1038 to Cas2 proteins suggests that BPSL1038 may represent a sub-family of nucleases that share a common ancestor with Cas2.
Assuntos
Burkholderia pseudomallei , Burkholderia pseudomallei/genética , Arginina , Ácido Aspártico , Catálise , EndonucleasesRESUMO
Osteoclasts are multinucleated, bone-resorbing giant cells derived from monocyte-macrophage cell lines. Increased bone resorption results in loss of bone mass and osteoporosis. Osteoclast and bone marrow macrophages have been shown to express three TG enzymes (TG2, Factor XIII-A, and TG1) and TG activity to regulate osteoclast differentiation from bone marrow macrophages in vitro. In vivo and in vitro studies have demonstrated that the deletion of TG2 causes increased osteoclastogenesis and a significant loss of bone mass in mice (Tgm2-/- mice). Here, we confirm that TG2 deficiency results in increased osteoclastogenesis in vitro and show that this increase can be reversed by a TG inhibitor, NC9, suggesting that other TGs are responsible for driving osteoclastogenesis in the absence of TG2. An assessment of total TG activity with 5-(biotinamido)-pentylamine, as well as TG1 and FXIII-A activities using TG-specific Hitomi peptides (bK5 and bF11) in Tgm2-/- bone marrow flushes, bone marrow macrophages, and osteoclasts, showed a significant increase in total TG activity and TG1 activity. Factor XIII-A activity was unchanged. Aspartate proteases, such as cathepsins, are involved in the degradation of organic bone matrix and can be produced by osteoclasts. Moreover, Cathepsin D was shown in previous work to be increased in TG2-null cells and is known to activate TG1. We show that Pepstatin A, an aspartate protease inhibitor, blocks osteoclastogenesis in wild-type and Tgm2-/- cells and decreases TG1 activity in Tgm2-/- osteoclasts. Cathepsin D protein levels were unaltered in Tgm2-/-cells and its activity moderately but significantly increased. Tgm2-/- and Tgm2+/+ bone marrow macrophages and osteoclasts also expressed Cathepsin E, and Renin of the aspartate protease family, suggesting their potential involvement in this process. Our study brings further support to the observation that TGs are significant regulators of osteoclastogenesis and that the absence of TG2 can cause increased activity of other TGs, such as TG1.
Assuntos
Ácido Aspártico Proteases , Osteoclastos , Animais , Camundongos , Osteogênese , Catepsina D , Transglutaminases/genética , Ácido Aspártico , Fator XIIIRESUMO
Malate-aspartate shuttle (MAS) is essential for maintaining glycolysis and energy metabolism in tumors, while its regulatory mechanisms in neuroblastoma (NB), the commonest extracranial malignancy during childhood, still remain to be elucidated. Herein, by analyzing multi-omics data, GATA binding protein 2 (GATA2) and its antisense RNA 1 (GATA2-AS1) were identified to suppress MAS during NB progression. Mechanistic studies revealed that GATA2 inhibited the transcription of glutamic-oxaloacetic transaminase 2 (GOT2) and malate dehydrogenase 2 (MDH2). As a long non-coding RNA destabilized by RNA binding motif protein 15-mediated N6-methyladenosine methylation, GATA2-AS1 bound with far upstream element binding protein 3 (FUBP3) to repress its liquid-liquid phase separation and interaction with suppressor of zest 12 (SUZ12), resulting in decrease of SUZ12 activity and epigenetic up-regulation of GATA2 and other tumor suppressors. Rescue experiments revealed that GATA2-AS1 inhibited MAS and NB progression via repressing interaction between FUBP3 and SUZ12. Pre-clinically, administration of lentivirus carrying GATA2-AS1 suppressed MAS, aerobic glycolysis, and aggressive behaviors of NB xenografts. Notably, low GATA2-AS1 or GATA2 expression and high FUBP3, SUZ12, GOT2 or MDH2 levels were linked with unfavorable outcome of NB patients. These findings suggest that GATA2-AS1 inhibits FUBP3 phase separation to repress MAS and NB progression via modulating SUZ12 activity.
Assuntos
Neuroblastoma , RNA Longo não Codificante , Humanos , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Malatos/metabolismo , Linhagem Celular Tumoral , RNA Antissenso , Neuroblastoma/patologia , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Fator de Transcrição GATA2/genéticaRESUMO
Aspartic acid is a non-essential amino acid obtained in the neuroendocrine tissues of vertebrates and invertebrates. Aspartic acid, a major excitatory neurotransmitter in the mammalian central nervous system, plays a key role in memory and acts in many other normal and abnormal physiological processes. In this work, we have developed an efficient chemosensor (PCF) based on the pyridine-carbazole moiety for the differential detection of aspartic acid in biological systems. PCF has a strong binding affinity towards aspartic acid, with a detection limit in the nanomolar range. The binding stoichiometry of aspartic aid and PCF was obtained as 1 : 1 from a Jobs plot analysis. Furthermore, the efficacy of PCF has been successfully demonstrated in in vitro experiments in MCF-7 breast cancer cells.
Assuntos
Ácido Aspártico , Neoplasias , Animais , Humanos , Células MCF-7 , Aminoácidos , MamíferosRESUMO
OBJECTIVE: ERα (estrogen receptor alpha) exerts nuclear genomic actions and membrane-initiated non-genomic effects. The mutation of aspartic acid into alanine in vitro revealed the critical role of aspartic acid 258 (corresponding to mouse amino acid site 262) of ERα for non-nuclear function. Our previous in vitro study revealed that this mutation blocked estrogen's non-genomic effects on vascular endothelial H2S release. Here, we studied the in vivo role of the aspartic acid 262 of ERα in the reproductive system and in the vascular tissue. APPROACH AND RESULTS: We generated a mouse model harboring a point mutation of the murine counterpart of this aspartic acid into alanine (ERαD262A). Our results showed that the ERαD262A females are fertile with standard hormonal serum levels, but the uterine development and responded with estrogen and follicular development are disrupted. In line with our previous study, we found that the rapid dilation of the aorta was abrogated in ERαD262A mice. In contrast to the previously reported R264-ERα mice, the classical estrogen genomic effector SP1/NOS3/AP1 and the nongenomic effectors p-eNOs, p-AKT, and p-ERK were disturbed in the ERαD262A aorta. Besides, the serum H2S concentration was decreased in ERαD262A mice. Together, ERαD262A mice showed compromised both genomic and non-genomic actions in response to E2. CONCLUSIONS: These data showed that aspartic acid 262 of ERα are important for both genomic and non-genomic effects of E2. Our data provide a theoretical basis for further selecting an effective non-genomic mouse model and provide a new direction for developing estrogen non-genomic effect inhibitors.
Assuntos
Receptor alfa de Estrogênio , Receptores de Estrogênio , Feminino , Animais , Camundongos , Receptor alfa de Estrogênio/genética , Ácido Aspártico/farmacologia , Estradiol/farmacologia , Estrogênios/farmacologia , Mutação , Transdução de Sinais , Alanina , Modelos Animais de Doenças , Antagonistas de EstrogêniosRESUMO
Allosteric regulation of the essential anaplerotic enzyme, pyruvate carboxylase (PC), is vital for metabolic homeostasis. PC catalyzes the bicarbonate- and ATP-dependent carboxylation of pyruvate to form oxaloacetate. Dysregulation of PC activity can impact glucose and redox metabolism, which contributes to the pathogenicity of many diseases. To maintain homeostasis, PC is allosterically activated by acetyl-CoA and allosterically inhibited by l-aspartate. In this study, we further characterize the molecular basis of allosteric regulation in Staphylococcus aureus PC (SaPC) using slowly/nonhydrolyzable dethia analogues of acetyl-CoA and site-directed mutagenesis of residues at the biotin carboxylase homodimer interface. The dethia analogues fully activate SaPC but demonstrate significantly reduced binding affinities relative to acetyl-CoA. Residues Arg21, Lys46, and Glu418 of SaPC are located at the biotin carboxylase dimer interface and play a critical role in both allosteric activation and inhibition. A structure of R21A SaPC in complex with acetyl-CoA reveals an intact molecule of acetyl-CoA bound at the allosteric site, offering new molecular insights into the acetyl-CoA binding site. This study demonstrates that the biotin carboxylase domain dimer interface is a critical allosteric site in PC, serving as a convergence point for allosteric activation by acetyl-CoA and inhibition by l-aspartate.
Assuntos
Piruvato Carboxilase , Staphylococcus aureus , Sítio Alostérico , Piruvato Carboxilase/genética , Staphylococcus aureus/genética , Acetilcoenzima A , Ácido Aspártico , PolímerosRESUMO
Poly(amino acid) based self-healing hydrogels have important application in biomedications. In this research, the catechol pendant groups were imported to poly(aspartic acid) based self-healing hydrogel to improved skin adhesion and ROS scavenging performance. The poly(succinimide) (PSI) was reacted with 3,4-dihydroxyphenylalanine (DA) and then hydraziolyzed to import catechol group and hydrazide group respectively, which are responsible for mussel inspired tissue adhesion and dynamic coupling reactivity. The dopamine modified poly(aspartic hydrazide) (PDAH) was reacted with PEO90 dialdehyde (PEO90 DA) to prepare hydrogels, and the resultant hydrogel showed good biocompatibility both in vitro and in vivo. The skin adhesion strength of the mussel inspired hydrogel increased notably with enhanced radical scavenging efficiency fit for in vivo wound repairing applications. The PDAH/PEO90 DA hydrogel also showed sustained albumin release profile and the in vivo wound repairing experiment proved the mouse Epidermal Growth Factor (mEGF) loaded hydrogel as wound dressing material accelerated the wound repairing rate.
Assuntos
Fator de Crescimento Epidérmico , Hidrogéis , Camundongos , Animais , Espécies Reativas de Oxigênio , Hidrogéis/farmacologia , Hidrogéis/química , Ácido Aspártico , Catecóis/química , Hidrazinas , Antibacterianos/químicaRESUMO
PURPOSE: Progressive myoclonic epilepsy, type 1A (EPM1, Unverricht-Lundborg disease), is a rare neurodegenerative autosomal recessive disorder characterized by stimulus-sensitive and action myoclonus and tonic-clonic epileptic seizures. Patients develop neurological symptoms, including ataxia, intention tremor, and dysarthria, over time, with relatively limited and nonspecific MRI atrophy findings. The effects of the disease on brain metabolism are largely unknown. METHOD: Eighteen EPM1 patients (9â¯M, 9F) underwent clinical evaluation and neuropsychological testing, which included the assessment of intellectual ability, verbal memory, and psychomotor and executive functions. Magnetic resonance spectroscopy (MRS) and imaging (MRI) were performed on a 1.5â¯T MRI system. 2D MRS chemical shift imaging (CSI) maps (TEâ¯=â¯270) were obtained from the following regions of the brain: basal ganglia, thalamus, insula, splenium, and occipital white and gray matter, and N-acetyl-aspartate (NAA)-, choline (Cho)-, and lactate (Lac)-to-creatine (Cr) ratios were analyzed. Ten healthy age-and sex-matched subjects (5M, 5F) were used as controls for MRS. RESULTS: We found significant brain metabolic changes involving lactate, NAA, and choline, which are widespread in the basal ganglia, thalamic nuclei, insula, and occipital areas of EPM1 patients. Changes, especially in the right insula, basal ganglia, and thalamus, were associated with intellectual abilities and impairment of the psychomotor and executive functions of EPM1 patients. CONCLUSION: Multiple brain metabolic alterations suggest the presence of neurodegeneration associated with EPM1 progression. The changes in metabolite ratios are associated with the neurocognitive dysfunction caused by the disease. However, the role of MRS findings in understanding pathophysiology of EPM1 warrants further studies.
Assuntos
Epilepsias Mioclônicas Progressivas , Síndrome de Unverricht-Lundborg , Humanos , Síndrome de Unverricht-Lundborg/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Encéfalo , Epilepsias Mioclônicas Progressivas/metabolismo , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética , Cognição , Metaboloma , Colina/metabolismo , Ácido Aspártico , Creatina/metabolismoRESUMO
BACKGROUND: Calcineurin is highly enriched in immune T cells and the nervous system. Calcineurin inhibitors, including cyclosporine and tacrolimus (FK506), are the cornerstone of immunosuppressive regimens for preserving transplanted organs and tissues. However, these drugs often cause persistent hypertension owing to excess sympathetic outflow, which is maintained by N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory input to the hypothalamic paraventricular nucleus (PVN). It is unclear how calcineurin inhibitors increase NMDAR activity in the PVN to augment sympathetic vasomotor activity. α2δ-1 (encoded by the Cacna2d1 gene), known colloquially as a calcium channel subunit, is a newly discovered NMDAR-interacting protein. In this study, we determined whether α2δ-1 plays a role in calcineurin inhibitor-induced synaptic NMDAR hyperactivity in the PVN and hypertension development. METHODS: Immunoblotting and coimmunoprecipitation assays were used to quantify synaptic protein levels and the physical interaction between GluN1 (the obligatory NMDAR subunit) and α2δ-1. Whole-cell patch-clamp recordings of retrogradely labeled, spinally projecting PVN were conducted in perfused brain slices to measure presynaptic and postsynaptic NMDAR activity. Radio-telemetry was implanted in rodents to continuously record arterial blood pressure in conscious states. RESULTS: Prolonged treatment with FK506 in rats significantly increased protein levels of α2δ-1, GluN1, and the α2δ-1-GluN1 complex in PVN synaptosomes. These effects were blocked by inhibiting α2δ-1 with gabapentin or interrupting the α2δ-1-NMDAR interaction with an α2δ-1 C-terminus peptide. Treatment with FK506 potentiated the activity of presynaptic and postsynaptic NMDARs in spinally projecting PVN neurons; such effects were abolished by gabapentin, Cacna2d1 knockout, or α2δ-1 C-terminus peptide. Furthermore, microinjection of α2δ-1 C-terminus peptide into the PVN diminished renal sympathetic nerve discharges and arterial blood pressure that had been increased by FK506 treatment. Remarkably, concurrent administration of gabapentin prevented the development of FK506-induced hypertension in rats. Additionally, FK506 treatment induced sustained hypertension in wild-type mice but not in Cacna2d1 knockout mice. CONCLUSIONS: α2δ-1 is essential for calcineurin inhibitor-induced increases in synaptic NMDAR activity in PVN presympathetic neurons and sympathetic outflow. Thus, α2δ-1 and α2δ-1-bound NMDARs represent new targets for treating calcineurin inhibitor-induced hypertension. Gabapentinoids (gabapentin and pregabalin) could be repurposed for treating calcineurin inhibitor-induced neurogenic hypertension.
Assuntos
Inibidores de Calcineurina , Hipertensão , Animais , Camundongos , Ratos , Inibidores de Calcineurina/farmacologia , Receptores de N-Metil-D-Aspartato , Tacrolimo/toxicidade , Gabapentina , Encéfalo , Hipertensão/induzido quimicamente , Ácido AspárticoRESUMO
Site-specific protein decaging by light has become an effective approach for in situ manipulation of protein activities in a gain-of-function fashion. Although successful decaging of amino acid side chains of Lys, Tyr, Cys, and Glu has been demonstrated, this strategy has not been extended to aspartic acid (Asp), an essential amino acid residue with a range of protein functions and protein-protein interactions. We herein reported a genetically encoded photocaged Asp and applied it to the photocontrolled manipulation of a panel of proteins including firefly luciferase, kinases (e.g., BRAF), and GTPase (e.g., KRAS) as well as mimicking the in situ phosphorylation event on kinases. As a new member of the increasingly expanded amino acid-decaging toolbox, photocaged Asp may find broad applications for gain-of-function study of diverse proteins as well as biological processes in living cells.
Assuntos
Fotoquímica , Ácido Aspártico/química , Ácido Aspártico/genética , Fotoquímica/métodos , Fosforilação , Proteínas/química , Proteínas/genética , Modelos Moleculares , Estrutura Terciária de Proteína , Motivos de AminoácidosRESUMO
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a large and diverse class of natural products of ribosomal origin. In the past decade, various sophisticated machine-learning-based software packages have been established to discover novel RiPPs that do not resemble the known families. Here, we show that tailoring enzymes that cluster with various RiPP families can serve as effective bioinformatic seeds, providing a complementary approach for novel RiPP discovery. Leveraging the fact that O-methyltransferases homologous to protein isoaspartyl methyltransferases (PIMTs) are associated with lasso peptide, graspetide, and lanthipeptide biosynthetic gene clusters (BGCs), we utilized a C-terminal motif unique to RiPP-associated O-methyltransferases as the search query to discover a novel family of RiPPs, the imiditides. Our genome-mining algorithm reveals a total of 670 imiditide BGCs, distributed across Gram-positive bacterial genomes. In addition, we demonstrate the heterologous production of the founding member of the imiditide family, mNmaAM, encoded in the genome of Nonomuraea maritima. In contrast to other RiPP-associated PIMTs that recognize constrained peptides as substrates, the PIMT homologue in the mNmaAM BGC, NmaM, methylates a specific Asp residue on the linear precursor peptide, NmaA. The methyl ester is then turned into an aspartimide spontaneously. Substrate specificity is achieved by extensive charge-charge interactions between the precursor NmaA and the modifying enzyme NmaM suggested by both experiments and an AlphaFold model prediction. Our study shows that PIMT-mediated aspartimide formation is an emerging backbone modification strategy in the biosynthesis of multiple RiPP families.
Assuntos
Algoritmos , Produtos Biológicos , Ácido Aspártico , MetiltransferasesRESUMO
Proteolytic activation of cytokines regulates immunity in diverse organisms. In animals, cysteine-dependent aspartate-specific proteases (caspases) play central roles in cytokine maturation. Although the proteolytic production of peptide cytokines is also essential for plant immunity, evidence for cysteine-dependent aspartate-specific proteases in regulating plant immunity is still limited. In this study, we found that the C-terminal proteolytic processing of a caspase-like substrate motif "CNYD" within Pathogenesis-related protein 1 (PR1) generates an immunomodulatory cytokine (CAPE9) in Arabidopsis. Salicylic acid enhances CNYD-targeted protease activity and the proteolytic release of CAPE9 from PR1 in Arabidopsis. This process involves a protease exhibiting caspase-like enzyme activity, identified as Xylem cysteine peptidase 1 (XCP1). XCP1 exhibits a calcium-modulated pH-activity profile and a comparable activity to human caspases. XCP1 is required to induce systemic immunity triggered by pathogen-associated molecular patterns. This work reveals XCP1 as a key protease for plant immunity, which produces the cytokine CAPE9 from the canonical salicylic acid signaling marker PR1 to activate systemic immunity.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cisteína Proteases , Animais , Humanos , Proteínas de Arabidopsis/metabolismo , Ácido Aspártico/metabolismo , Caspases/metabolismo , Cisteína/metabolismo , Cisteína Proteases/metabolismo , Peptídeo Hidrolases/metabolismo , Imunidade Vegetal , Ácido Salicílico/metabolismo , Xilema/metabolismoRESUMO
Stem cell adhesion is mediated via the binding of integrin receptors to adhesion motifs present in the extracellular matrix (ECM). The spatial organization of adhesion ligands plays an important role in stem cell integrin-mediated adhesion. In this study, we developed a series of biointerfaces using arginine-glycine-aspartate (RGD)-functionalized mesoporous silica nanoparticles (MSN-RGD) to study the effect of RGD adhesion ligand global density (ligand coverage over the surface), spacing, and RGD clustering levels on stem cell adhesion and differentiation. To prepare the biointerface, MSNs were chemically functionalized with RGD peptides via an antifouling poly(ethylene glycol) (PEG) linker. The RGD surface functionalization ratio could be controlled to create MSNs with high and low RGD ligand clustering levels. MSN films with varying RGD global densities could be created by blending different ratios of MSN-RGD and non-RGD-functionalized MSNs together. A computational simulation study was performed to analyze nanoparticle distribution and RGD spacing on the resulting surfaces to determine experimental conditions. Enhanced cell adhesion and spreading were observed when RGD global density increased from 1.06 to 5.32 nmol cm-2 using highly clustered RGD-MSN-based films. Higher RGD ligand clustering levels led to larger cell spreading and increased formation of focal adhesions. Moreover, a higher RGD ligand clustering level promoted the expression of alkaline phosphatase in hMSCs. Overall, these findings indicate that both RGD global density and clustering levels are crucial variables in regulating stem cell behaviors. This study provides important information about ligand-integrin interactions, which could be implemented into biomaterial design to achieve optimal performance of adhesive functional peptides.
Assuntos
Nanopartículas , Dióxido de Silício , Adesão Celular , Dióxido de Silício/farmacologia , Ácido Aspártico , Glicina/farmacologia , Ligantes , Peptídeos/farmacologia , Integrinas/metabolismo , Diferenciação Celular , Células-Tronco/metabolismo , Arginina/farmacologiaRESUMO
d-Aspartate is critical in maintaining hormone secretion and reproductive development in mammals. This study investigated the mechanism of different d-aspartate levels (0, 0.005, 0.05, and 0.5% d-aspartate) in low-protein diets on growth performance and meat quality by mediating the gut microbiota alteration in pigs. We found that adding 0.005% d-aspartate to a low-protein diet could dramatically improve the growth performance during the weaned and growing periods. Dietary d-aspartate with different levels markedly increased the back fat, and 0.5% d-aspartate significantly increased the redness in 24 h and reduced the shear force of the longissimus dorsi (LD) muscle. Moreover, d-aspartate treatments decreased the mRNA expression of MyHC II a and MyHC IIx in the LD muscle. The protein expression of MyH1, MyH7, TFAM, FOXO1, CAR, UCP2, and p-AMPK was upregulated by 0.005% d-aspartate. Additionally, the abundance of Alistipes, Akkermansia, and the [Eubacterium]_coprostanoligenes_group in the intestinal chyme of pigs was significantly decreased by d-aspartate treatments at the genus level, which was also accompanied by a significant decrease in acetate content. These differential microorganisms were significantly correlated with meat quality characteristics. These results indicated that d-aspartate in low-protein diets could improve the growth performance and meat quality in pigs by regulating energy and lipid metabolism via the alteration of gut microbiota.
Assuntos
Microbioma Gastrointestinal , Carne de Porco , Carne Vermelha , Suínos , Animais , Dieta com Restrição de Proteínas , Ácido D-Aspártico , Ácido Aspártico , Metabolismo dos Lipídeos , Dieta/veterinária , Carne/análise , Ração Animal/análise , MamíferosRESUMO
BACKGROUND: Brain metabolite abnormalities measured with magnetic resonance spectroscopy (MRS) provide insight into pathological processes in schizophrenia. Prior meta-analyses have not yet answered important questions about the influence of clinical and technical factors on neurometabolite abnormalities and brain region differences. To address these gaps, we performed an updated meta-analysis of N-acetylaspartate (NAA), choline, and creatine levels in patients with schizophrenia and assessed the moderating effects of medication status, echo time, measurement quality, and other factors. METHODS: We searched citations from three earlier meta-analyses and the PubMed database after the most recent meta-analysis to identify studies for screening. In total, 113 publications reporting 366 regional metabolite datasets met our inclusion criteria and reported findings in medial prefrontal cortex (MPFC), dorsolateral prefrontal cortex, frontal white matter, hippocampus, thalamus, and basal ganglia from a total of 4445 patient and 3944 control observations. RESULTS: Patients with schizophrenia had reduced NAA in five of the six brain regions, with a statistically significant sparing of the basal ganglia. Patients had elevated choline in the basal ganglia and both prefrontal cortical regions. Patient creatine levels were normal in all six regions. In some regions, the NAA and choline differences were greater in studies enrolling predominantly medicated patients compared to studies enrolling predominantly unmedicated patients. Patient NAA levels were more reduced in hippocampus and frontal white matter in studies using longer echo times than those using shorter echo times. MPFC choline and NAA abnormalities were greater in studies reporting better metabolite measurement quality. CONCLUSIONS: Choline is elevated in the basal ganglia and prefrontal cortical regions, suggesting regionally increased membrane turnover or glial activation in schizophrenia. The basal ganglia are significantly spared from the well-established widespread reduction of NAA in schizophrenia suggesting a regional difference in disease-associated factors affecting NAA. The echo time findings agree with prior reports and suggest microstructural changes cause faster NAA T2 relaxation in hippocampus and frontal white matter in schizophrenia. Separating the effects of medication status and illness chronicity on NAA and choline abnormalities will require further patient-level studies. Metabolite measurement quality was shown to be a critical factor in MRS studies of schizophrenia.
Assuntos
Encefalopatias , Esquizofrenia , Humanos , Creatina/metabolismo , Esquizofrenia/diagnóstico , Colina/metabolismo , Espectroscopia de Ressonância Magnética , Ácido AspárticoRESUMO
Chitosan/aspartic acid hydrogels were synthesized for MB dye removal from textile aqueous effluents with different ratios by gelation of chitosan with non-toxic gelling agent, crosslinker, glutaraldehyde (Glu). The obtained hydrogels were characterized by spectral and morphological techniques. The characterization techniques confirmed successful preparations and MB dye adsorption. Batch experiments were done to investigate the effects of adsorbent dose, pH, contact time, temperature, and initial MB dye concentration. The optimum conditions were: adsorbent dose 0.1 g, pH 5, contact time 30 min, and temperature 25 °C for Chitosan-Aspartic Acid Hydrogel 1 (CSAA-HG1) and adsorbent dose 0.4 g, pH 2, contact time 60 min, temperature 25 °C for Chitosan-Aspartic Acid Hydrogel 2 (CSAA-HG2). Adsorption capacity of newly hydrogels CSAA-HG1,2 was compared with each other. Adsorption efficiencies reached 99.85 % for CSAA-HG1 and 99.88 % for CSAA-HG2. MB dye adsorption on CSAA-HG1,2 followed Freundlich isotherm model (R2 = 0.94 and 0.92, respectively). Both adsorbents exhibited pseudo-second-order kinetics for MB dye adsorption (R2 = 1). The negative ΔHo indicated that the MB dye adsorption was exothermic, negative ΔGo confirmed that MB dye adsorption process was spontaneous and low values of ∆So indicated low degree of freedom, ordered MB dye molecules on CSAA-HG1,2 surfaces.