Assuntos
Poluição do Ar , Ozônio , Incêndios Florestais , Ozônio/análise , Poluição do Ar/análise , AtmosferaRESUMO
Diverse aerobic bacteria use atmospheric H2 as an energy source for growth and survival1. This globally significant process regulates the composition of the atmosphere, enhances soil biodiversity and drives primary production in extreme environments2,3. Atmospheric H2 oxidation is attributed to uncharacterized members of the [NiFe] hydrogenase superfamily4,5. However, it remains unresolved how these enzymes overcome the extraordinary catalytic challenge of oxidizing picomolar levels of H2 amid ambient levels of the catalytic poison O2 and how the derived electrons are transferred to the respiratory chain1. Here we determined the cryo-electron microscopy structure of the Mycobacterium smegmatis hydrogenase Huc and investigated its mechanism. Huc is a highly efficient oxygen-insensitive enzyme that couples oxidation of atmospheric H2 to the hydrogenation of the respiratory electron carrier menaquinone. Huc uses narrow hydrophobic gas channels to selectively bind atmospheric H2 at the expense of O2, and 3 [3Fe-4S] clusters modulate the properties of the enzyme so that atmospheric H2 oxidation is energetically feasible. The Huc catalytic subunits form an octameric 833 kDa complex around a membrane-associated stalk, which transports and reduces menaquinone 94 Å from the membrane. These findings provide a mechanistic basis for the biogeochemically and ecologically important process of atmospheric H2 oxidation, uncover a mode of energy coupling dependent on long-range quinone transport, and pave the way for the development of catalysts that oxidize H2 in ambient air.
Assuntos
Atmosfera , Hidrogênio , Hidrogenase , Mycobacterium smegmatis , Microscopia Crioeletrônica , Hidrogênio/química , Hidrogênio/metabolismo , Hidrogenase/química , Hidrogenase/metabolismo , Hidrogenase/ultraestrutura , Oxirredução , Oxigênio , Vitamina K 2/metabolismo , Atmosfera/química , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/metabolismo , HidrogenaçãoRESUMO
This research focuses on studying the effects of various pretreatment types on a PtCu/C catalyst synthesized by the co-deposition of metal precursors. The treatment in a 1 M HNO3 solution for 1 h is shown to result in a slight increase in activity in the oxygen electroreduction reaction (both the mass activity and specific activity calculated for the value of the electrochemically active surface area). The sample obtained after the thermal treatment, which is carried out at 350 °C under an argon atmosphere for 1 h, demonstrates 1.7 times higher specific activity than the sample before the treatment. The durability testing results obtained by the stress testing method in a potential range of 0.6-1.4 V during 2000 cycles show that the PtCu/C catalysts after both the acid treatment and the thermal treatment are characterized by higher residual activity than the sample in the "as-prepared" state.
Assuntos
Atmosfera , Teste de Esforço , Argônio , OxigênioRESUMO
Hypoxia is a life-threatening challenge for about 1% of the world population, as well as a contributor to high morbidity and mortality scores in patients affected by various cardiopulmonary, hematological, and circulatory diseases. However, the adaptation to hypoxia represents a failure for a relevant portion of the cases as the pathways of potential adaptation often conflict with well-being and generate diseases that in certain areas of the world still afflict up to one-third of the populations living at altitude. To help understand the mechanisms of adaptation and maladaptation, this review examines the various steps of the oxygen cascade from the atmosphere to the mitochondria distinguishing the patterns related to physiological (i.e., due to altitude) and pathological (i.e., due to a pre-existing disease) hypoxia. The aim is to assess the ability of humans to adapt to hypoxia in a multidisciplinary approach that correlates the function of genes, molecules, and cells with the physiologic and pathological outcomes. We conclude that, in most cases, it is not hypoxia by itself that generates diseases, but rather the attempts to adapt to the hypoxia condition. This underlies the paradigm shift that when adaptation to hypoxia becomes excessive, it translates into maladaptation.
Assuntos
Hipóxia , Oxigênio , Humanos , Oxigênio/metabolismo , Hipóxia/metabolismo , Adaptação Fisiológica/genética , Altitude , Mitocôndrias/metabolismo , AtmosferaRESUMO
The use of a coal-based energy structure generates a large amount of CO2 and NOx. The numerous emissions from these agents result in acid rain, photochemical smog, and haze. This environmental problem is considered one of the greatest challenges facing humankind in this century. Preheating combustion technology is considered an essential method for lowering the emissions of CO2 and NO. In this research, the char prepared from O2/CO2 and O2/H2O atmospheres was employed to reveal the effects of the addition of an oxidizing agent on the combustion characteristics of char. The structural features and combustion characteristics of preheated chars were determined by Raman, temperature-programmed desorption (TPD), and non-isothermal, thermo-gravimetric (TGA) experiments. According to the experimental results, the addition of oxidizing agents promoted the generation of smaller aromatic ring structures and oxygen-containing functional groups. The improvement in the surface physicochemical properties enhanced the reactivity of char and lowered its combustion activation energy. Furthermore, the combustion mechanisms of the char prepared from the O2/CO2 and O2/H2O atmospheres were investigated using the density functional theory (DFT). The simulation results illustrated that the combustion essence of char could be attributed to the migration of active atoms, the fracture of the benzene ring structure, and the reorganization of new systems. The addition of oxidizing agents weakened the conjugated components of the aromatic ring systems, promoting the successive decomposition of CO and NO. The results of this study can provide a theoretical basis for regulating the reaction atmosphere in the preheating process and promoting the development of clean combustion for high-rank coals.
Assuntos
Dióxido de Carbono , Oxigênio , Dióxido de Carbono/farmacologia , Oxigênio/química , Carvão Mineral , Atmosfera , TemperaturaRESUMO
Concentrated cream (CC) is a dairy product containing more than 60% milk fat. CC has a very short shelf life because it is made from unripe cream. The present study aims to determine how packaging with reducing gas (H2) and nitrogen (N2) affects the quality properties and shelf life of CC. For this purpose, lipolysis, oxidation, color, microbiological, and free fatty acid development and the fatty acid composition of modified atmosphere packaged (MAP) CC samples were studied for 28 days. For MAP1, 96% N2 + 4% H2 was used, and for MAP2, 100% N2 and air was used for the control group. During storage, MAP1 samples remained at lower lipolysis (ADV and FFA) and oxidation levels than MAP2 and the control group. The MAP1 and MAP2 methods preserved the color of the samples and reduced the microbial growth rate. A lower formation of free fatty acids was observed in the samples packed with MAP1 and MAP2 than in the control group. The results showed that hydrogen gas positively affected the quality and storage time of samples.
Assuntos
Microbiologia de Alimentos , Embalagem de Alimentos , Animais , Embalagem de Alimentos/métodos , Búfalos , Conservação de Alimentos/métodos , Leite , AtmosferaRESUMO
Microplastics are ubiquitously in various environments from the equator to the poles. Coastal agglomerations act as both a source and sink connecting the global microplastic cycles of oceans and continents. While the problem of microplastics is particularly severe and complex in the coastal zones, where both inland and marine pollution are concentrated, the present study aimed to provide hot topics and trends of coastal urban microplastic studies and to review the researches on microplastic pollution in the atmosphere and water bodies in coastal agglomerations in terms of characteristics, behavior, and health threat of microplastics. The results of the bibliometric analysis showed an increase in the annual output of microplastic research. Research hot topics and clusters were analyzed using the VOSviewer. Characteristics of microplastics varied in abundance, size, and polymer type in different environments and countries. Furthermore, coastal cities are taken as a system to sort out the input, output, and internal transmission pathways of microplastics. The health threat of microplastics to urban residents was briefly reviewed and the exposure and health risks of microplastics to infants and young children were of particular concern. Detailed and comprehensive studies on intervention and reduction in the transmission of microplastics between the atmosphere and water bodies, whether microplastics are harmful to infants and young children, and measures to reduce the risk of microplastic exposure are needed.
Assuntos
Microplásticos , Poluentes Químicos da Água , Criança , Humanos , Pré-Escolar , Plásticos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Atmosfera , ÁguaRESUMO
The dispersion of microorganisms through the atmosphere is a continual and essential process that underpins biogeography and ecosystem development and function. Despite the ubiquity of atmospheric microorganisms globally, specific knowledge of the determinants of atmospheric microbial diversity at any given location remains unresolved. Here we describe bacterial diversity in the atmospheric boundary layer and underlying soil at twelve globally distributed locations encompassing all major biomes, and characterise the contribution of local and distant soils to the observed atmospheric community. Across biomes the diversity of bacteria in the atmosphere was negatively correlated with mean annual precipitation but positively correlated to mean annual temperature. We identified distinct non-randomly assembled atmosphere and soil communities from each location, and some broad trends persisted across biomes including the enrichment of desiccation and UV tolerant taxa in the atmospheric community. Source tracking revealed that local soils were more influential than distant soil sources in determining observed diversity in the atmosphere, with more emissive semi-arid and arid biomes contributing most to signatures from distant soil. Our findings highlight complexities in the atmospheric microbiota that are relevant to understanding regional and global ecosystem connectivity.
Assuntos
Ecossistema , Microbiota , Solo , Bactérias , Atmosfera , Temperatura , Microbiologia do SoloRESUMO
Polycyclic Aromatic Hydrocarbons (PAHs) compounds are ubiquitous in ambient air due to their persistence, carcinogenicity, and mutagenicity. Gangtok being one of the cleanest cities in India located in Eastern Himalayan region, witnesses high developmental activities with enhanced urbanization affecting the ambient air quality. The present study aims to measure PM2.5 and PAHs in the ambient atmosphere of the Sikkim Himalaya to understand the influence of natural and anthropogenic activities on aerosol loading and their chemical characteristics. The PM2.5 samples were collected and analysed for the duration from Jan 2020 to Feb 2021.The seasonal mean concentrations of PM2.5 and PAHs were observed to be high during autumn and low during summer season. Overall, the annual mean concentration of PM2.5 was found higher than the prescribed limit of World Health Organization and National Ambient Air Quality Standards. The concentration of the 16 individual PAHs were found to be highest during autumn season (55.26 ± 37.15 ng/m3). Among the different PAHs, the annual mean concentration of fluorene (3.29 ± 4.07 ng/m3) and naphthalene (1.15 ± 3.76 ng/m3) were found to be the highest and lowest, respectively. The Molecular Diagnostic Ratio (MDR) test reveals higher contribution from heavy traffic activities throughout the winter and autumn seasons. The other possible sources identified over the region are fossil fuel combustion, and biomass burning. The multivariate statistical analysis (Multifactor Principal Component Analysis) also indicates a strong association between PM2.5 /PAHs and meteorological variables across the region in different seasons. The precipitation and wind pattern during the study period suggests that major contribution of the PM2.5 and PAHs were from local sources, with minimal contribution from long-range transport. The findings are important for comprehending the trends of PAH accumulation over a high-altitude urban area, and for developing sustainable air quality control methods in the Himalayan region.
Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Siquim , Altitude , Monitoramento Ambiental/métodos , Atmosfera/química , Estações do Ano , Vento , Aerossóis/análise , ChinaRESUMO
To produce real-time ground-level information on particulate matter with a diameter equal to or less than 2.5 µm (PM2.5), many studies have explored the applicability of satellite data, particularly aerosol optical depth (AOD). However, many of the techniques used are computationally demanding; to overcome these challenges, machine learning(ML)-based research has been on the rise. Here, we used ML techniques to directly estimate ground-level PM2.5 concentrations over South Korea using top-of-atmosphere (TOA) reflectance from the Geostationary Ocean Color Imager I (GOCI-I) and its next generation GOCI-II with improved spatial, spectral, and temporal resolutions. Three ML techniques were used to estimate ground-level PM2.5 concentrations: random forest, light gradient boosting machine (LGBM), and artificial neural network. Three schemes were examined based on the input feature composition of the GOCI spectral bands: scheme 1 using all GOCI-I bands, scheme 2 using only GOCI-II bands that overlap with GOCI-I bands, and scheme 3 using all GOCI-II bands. The results showed that LGBM performed better than the other ML models. GOCI-II-based schemes 2 and 3 (determination of coefficient (R2) = 0.85 and 0.85 and root-mean-square-error (RMSE) = 7.69 and 7.82 µg/m3, respectively) performed slightly better than GOCI-I-based scheme 1 (R2 = 0.83 and RMSE = 8.49 µg/m3). In particular, TOA reflectance at a new channel (380 nm) of GOCI-II was identified as the most contributing variable, given its high sensitivity to aerosols. The long-term estimation of PM2.5 concentrations using the proposed models was examined for ground stations located in two major cities. GOCI-II-based models produced a more detailed spatial distribution of PM2.5 concentrations owing to their higher spatial resolution (i.e., 250 m). The use of TOA reflectance data, instead of AOD and other aerosol products commonly used in previous studies, reduced the missing rate of the estimated ground-level PM2.5 concentrations by up to 50%. Our results indicate that the proposed approach using TOA reflectance data from geostationary satellite sensors has great potential for estimating ground-level PM2.5 concentrations for operational purposes.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental/métodos , Material Particulado/análise , Aerossóis/análise , Atmosfera , Oceanos e Mares , Poluentes Atmosféricos/análise , Poluição do Ar/análiseRESUMO
Based on the Peircean semiotic theory, this study aims to explore the semiotic construction of a festival tourist attraction using the Guangfu Temple Fair in China as a case. A qualitative research method of grounded theory was used to analyze the organizers' planning scheme, conference materials, 7 interviews, and 45 tourists' interviews. We found that festival organizers produce festivalscape based on social values and tourists' expectations, including safety assurance, cultural activity, personnel service, facilities, creative interaction, food, a trade show, and the festival atmosphere. Tourists in the festivalscape, through cultural, novel, social, and emotional experience and collateral observations, assign meaning to the festival's attractiveness in terms of cultural diversity, vibrant activities, distinctive features, and a sense of ceremony. These findings indicate that organizers' sign production and tourists' sign interpretation constitute the conceptual model of the semiotic construction of festivals as tourist attractions. Furthermore, the study extends the understanding of tourist attractions and will help organizers to create successful festival attractions.
Assuntos
Emoções , Férias e Feriados , China , Atmosfera , Modelos TeóricosRESUMO
Atmospheric mercury (Hg) cycling in polluted coastal atmosphere is complicated and not fully understood. Here, we present measurements of total gaseous mercury (TGM) monitored at a coastal mountaintop in Hong Kong downwind of mainland China. Sharp TGM peaks during cold front passages were frequently observed due to Asian pollution outflow with typical TGM/CO slopes of 6.8 ± 2.2 pg m-3 ppbv-1. Contrary to the daytime maximums of other air pollutants, TGM exhibited a distinct diurnal variation with a midday minimum. Moreover, we observed four cases of extremely fast TGM depletion after sunrise, during which TGM concentrations rapidly dipped to 0.3-0.6 ng m-3 accompanied by other pollutants on the rise. Simulated meteorological fields revealed that morning upslope flow transporting anthropogenically polluted but TGM-depleted air masses from the mixed layer caused morning TGM depletion at the mountaintop location. The TGM-depleted air masses were hypothesized to result mainly from fast photooxidation of Hg after sunrise with minor contributions from dry deposition (5.0%) and nocturnal oxidation (0.6%). A bromine-induced two-step oxidation mechanism involving abundant pollutants (NO2, O3, etc.) was estimated to play a dominant role, contributing 55%-60% of depleted TGM and requiring 0.20-0.26 pptv Br, an amount potentially available through sea salt aerosol debromination. Our findings suggest significant effects of the interaction between anthropogenic pollution and marine halogen chemistry on atmospheric Hg cycling in the coastal areas.
Assuntos
Poluentes Atmosféricos , Mercúrio , Mercúrio/análise , Gases/análise , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Atmosfera/análise , ChinaRESUMO
Increased consumer concern for animal welfare has led some poultry producers to alter their stunning methods from electrical to controlled atmosphere stunning. The potential for different impacts on meat quality between commercially applied controlled atmosphere stunning (CAS) and electrical stunning (ES) using current US parameters needs further evaluation. Three trials were conducted in a commercial broiler processing facility that uses separate processing lines for ES and CAS. Blood glucose concentrations were measured from broilers stunned by either CAS or ES at: 1) lairage, 2) pre-stunning, and 3) post-stunning, using a glucose monitor. Occurrence of visible wing damage was evaluated post-defeathering and breast fillet meat quality was evaluated through measurement of pH, color, and drip loss at deboning and after 24 h. Data were analyzed using GLM or chi-square with a significance at P ≤ 0.05 and means were separated by Tukey's HSD. Blood glucose concentrations (mg/dL) from CAS and ES birds were not different at lairage (284, 272, P = 0.2646) or immediately prior to stunning (274, 283, P = 0.6425). Following stunning and neck cut, circulating blood glucose from birds stunned by CAS was higher than ES (418, 259, P < 0.0001). CAS carcasses had more visible wing damage than ES carcasses (3.6%, 2.2%, P < 0.0001). Breast fillet pH was lower, L* was higher, and a* was lower at debone for CAS fillets (5.81, 54.65, 1.96) compared to ES fillets (5.92, 53.15, 2.31, P < 0.0001, P = 0.0005, P = 0.0303). Drip loss did not differ between breast fillets from CAS or ES broilers (4.83, 4.84; P = 0.0859). The implications of increased blood glucose concentration post-CAS are unknown and require further evaluation. However, the increase in visible wing damage observed post-defeathering from CAS carcasses indicated a need for equipment parameter adjustments during the process from stunning through defeathering when using CAS for broiler stunning. Although differences were observed in breast fillet attributes at deboning, these differences would have minimal practical application and were no longer present at 24 h. Overall, use of CAS in a commercial facility resulted in differences in subsequent product quality when compared to ES.
Assuntos
Galinhas , Manipulação de Alimentos , Animais , Manipulação de Alimentos/métodos , Glicemia , Carne/análise , Atmosfera , MatadourosRESUMO
In order to conduct more thorough research on the structural characteristics of the atmosphere and the distribution and transmission of atmospheric pollution, the use of remote sensing technology for multi-dimensional detection of the atmosphere is needed. A light-weight, low-volume, low-cost, easy-to-use and low-maintenance mini Infrared Lidar (mIRLidar) sensor is developed for the first time. The model of lidar is established, and the key optical parameters of the mIRLidar are optimized through simulation, in which wavelength of laser, energy of pulse laser, diameter of telescope, field of view (FOV), and bandwidth of filter are included. The volume and weight of the lidar system are effectively reduced through optimizing the structural design and designing a temperature control system to ensure the stable operation of the core components. The mIRLidar system involved a 1064 nm laser (the pulse laser energy 15 µJ, the repetition frequency 5 kHz), a 100 mm aperture telescope (the FOV 1.5 mrad), a 0.5 nm bandwidth of filter and an APD, where the lidar has a volume of 200 mm × 200 mm × 420 mm and weighs about 13.5 kg. It is shown that the lidar can effectively detect three-dimensional distribution and transmission of aerosol and atmospheric pollution within a 5 km detection range, from Horizontal, scanning and navigational atmospheric measurements. It has great potential in the field of meteorological research and environmental monitoring.
Assuntos
Atmosfera , Poluição Ambiental , Atmosfera/análise , Atmosfera/química , Monitoramento Ambiental/métodos , Aerossóis , LasersRESUMO
Low molecular weight monocarboxylic acids (LMW monoacids, C1-C10) are the most abundant gaseous organic compound class in the atmosphere. Formic or acetic acid is the dominant volatile organic compound (VOC) in Earth's atmosphere. They can largely contribute to rainwater acidity, especially in the tropical forest, and react with alkaline metals, ammonia, and amines, contributing to new particle formation and secondary organic aerosol production. Gaseous and particulate LMW monoacids were abundantly reported in China. They can be directly emitted from fossil fuel combustion and biomass burring; however, the secondary formation is more important than primary emissions via the photochemical oxidation of anthropogenic and biogenic VOCs. In this paper, we review the distributions of LMW monoacids from urban, mountain, and marine sites as well as from rainwater and alpine snow samples and discuss their sources and formation mechanisms in the atmosphere. We also discuss their importance as cloud condensation nuclei (CCN) and provide future perspectives of LMW monoacids study in the warming world.
Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Peso Molecular , Atmosfera/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , China , Aerossóis/análise , Aerossóis/química , Aerossóis/metabolismoRESUMO
Background: Performing back trajectory and forward trajectory using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) is a reliable approach for assessing particle transport after release among mid-field atmospheric models. HYSPLIT has an externally facing online interface that allows non-expert users to run the model trajectories without requiring extensive training or programming. However, the existing HYSPLIT interface is limited if simulations have a large amount of meteorological data and timesteps that are not coincident. The objective of this study is to design and develop a more robust tool to rapidly evaluate hazard transport conditions and to perform risk analysis, while still maintaining an intuitive and user-friendly interface. Methods: HYSPLIT calculates forward and backward trajectories of particles based on wind speed, wind direction, and the corresponding location, timestamp, and Pasquill stability classes of the regions of the atmosphere in terms of the wind speed, the amount of solar radiation, and the fractional cloud cover. The computed particle transport trajectories, combined with the online Proton Transfer Reaction-Mass Spectrometry (PTR-MS) data (https://figshare.com/articles/dataset/ARL_Data_from_PROS_station_at_Hanford_site/19993964), can be used to identify and quantify the sources and affected area of the hazardous chemicals' emission using the potential source distribution function (PSDF). PSDF is an improved statistical function based on the well-known potential source contribution function (PSCF) in establishing the air pollutant source and receptor relationship. Performing this analysis requires a range of meteorological and pollutant concentration measurements to be statistically meaningful. The existing HYSPLIT graphical user interface (GUI) does not easily permit computations of trajectories of a dataset of meteorological data in high temporal frequency. To improve the performance of HYSPLIT computations from a large dataset and enhance risk analysis of the accidental release of material at risk, a geospatial risk analysis tool (GRAT-GUI) is created to allow large data sets to be processed instantaneously and to provide ease of visualization. Results: The GRAT-GUI is a native desktop-based application and can be run in any Windows 10 system without any internet access requirements, thus providing a secure way to process large meteorological datasets even on a standalone computer. GRAT-GUI has features to import, integrate, and convert meteorological data with various formats for hazardous chemical emission source identification and risk analysis as a self-explanatory user interface. The tool is available at https://figshare.com/articles/software/GRAT/19426742.
Assuntos
Poluentes Atmosféricos , Substâncias Perigosas , Substâncias Perigosas/análise , Poluentes Atmosféricos/análise , Vento , Medição de Risco , Atmosfera/análiseRESUMO
Reducing sodium salt content in traditional fermented vegetables and developing low-salt fermented products have attracted increasing attention.However, low-salt fermented vegetables are prone to accumulate toxic biogenic amines (BAs) caused by the undesirable metabolism of spoilage microorganisms. This study aimed to investigate the impact of a CO2-modified atmosphere (MA) approach to the fermentation of low-salt Zhacai and the accumulation of BAs. The results show CO2-MA effectively suppressed the production of excessive BAs in low-salt Zhacai, as evidenced by a decrease in the total BA content from 63.66 to 161.41 mg/ kg under natural air conditions to 1.88-24.76 mg/ kg under CO2-MA. Overall, the mechanism of hindering BA formation was closely related to the change in the microbial community and the downregulation of BA-producing enzymes. Lactic acid bacteria, including Lactiplantibacillus plantarum, Weissella spp., and Pediococcus spp., were enriched under CO2-MA, whereas amine-producing microorganisms (e.g., Halomonas spp., Psychrobacter spp., Corynebacterium spp., and Levilactobacillus brevis) were greatly inhibited. Moreover, metagenomic analysis revealed that genes encoding amino acid decarboxylase, amine deiminase, and amine synthase were downregulated, which could be the fundamental reason for BA reduction. This study provides an alternative method for reducing BA production in fermented food.
Assuntos
Aminoácidos , Dióxido de Carbono , Fermentação , Aminoácidos/metabolismo , Aminas Biogênicas/análise , Verduras/metabolismo , AtmosferaRESUMO
Understanding particle size distribution and size-resolved gas-particle partitioning of semi-volatile organic compounds (SVOCs) is important for characterizing their fate in atmosphere. However, the size-resolved gas-particle partitioning characteristics of SVOCs has not been adequately considered. To address this issue, the present study collected gaseous and size-fractioned particulate samples both in and outside of schools, offices, and residences in three districts of different urbanization levels in a megacity, Guangzhou, South China during two seasons. Typical SVOCs, including 15 polycyclic aromatic hydrocarbons (PAHs), six organophosphate esters and seven phthalic acid esters were measured. Emission sources, physicochemical properties, and environmental conditions at the sampling sites considerably impacted the spatiotemporal distribution patterns and particle size distribution of target SVOCs. Not all observed gas-particle partition coefficients (Kp) of target SVOCs were negatively correlated with subcooled liquid-vapor pressures (PL0), probably because certain factors, such as the non-exchangeable part of the particle-bound SVOCs, were not considered in traditional gas-particle partition theories. Particle size was an important factor affecting gas-particle partitioning. Adsorption was the dominant mechanism for PAHs with high molecular weight in different particle modes. A new model was established to predict size-resolved Kp of PAHs with high molecular weight based on PL0 and particle size.
Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Tamanho da Partícula , Atmosfera/química , China , Gases/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento AmbientalRESUMO
This study investigated the effects of high-pressure processing (HPP) and modified atmosphere packaging (MAP) on 'dark, firm, and dry' (DFD) beef. To optimize the HPP, beef steaks (n = 180) were first processed at different pressures (0.1, 200, 300, 400, 500 MPa). It was found that 400 MPa enhanced DFD beef color and shelf-life. This optimized HPP (400 MPa) was combined with 3 MAP formulations, in a second study (40, 60, or 80% O2-MAP), to determine their effect on DFD beef steaks. HPP (400 MPa) combined with MAP improved DFD beef L* and a*, color scores, and delayed discoloration (P < 0.01). Total plate counts for DFD beef held under 60% O2-MAP was ≤6 log10 CFU/g, even after 14 d of chilled storage. These same samples had shear force and TBARS values significantly lower than observed for DFD beef held under 80% O2-MAP. HPP (400 MPa) combined with 60% O2-MAP is recommended to improve DFD beef quality and shelf-life.