RESUMO
Bacillus cereus is a pathogenic bacterium that causes food contamination, resulting in food poisoning such as diarrhea and emesis. Therefore, it is crucial to develop effective strategies to control this bacterium. In this study, we isolated and characterized a novel B. cereus phage, named DZ1. Morphological and genomic analyses revealed that phage DZ1 is a new species belonging to the Andromedavirus genus. Phage DZ1 was tolerant to a wide range of pH values (5-9), temperatures (4-55 â), and high concentrations of NaCl solution (1000 mM). B. cereus with 21 different sequence types (STs) can be lysed by phage DZ1. Importantly, phage DZ1 inhibited B. cereus growth in spiked rice substrates or milk up to 36 and 72 h, respectively, with suppression of 3 log. Therefore, phage DZ1 is a useful biocontrol agent for the control of B. cereus in the food industry.
Assuntos
Fagos Bacilares , Cactaceae , Animais , Bacillus cereus , Diarreia , LeiteRESUMO
Prophages control their lifestyle to either be maintained within the host genome or enter the lytic cycle. Bacillus subtilis contains the SPß prophage whose lysogenic state depends on the MrpR (YopR) protein, a key component of the lysis-lysogeny decision system. Using a historic B. subtilis strain harboring the heat-sensitive SPß c2 mutant, we demonstrate that the lytic cycle of SPß c2 can be induced by heat due to a single nucleotide exchange in the mrpR gene, rendering the encoded MrpRG136E protein temperature-sensitive. Structural characterization revealed that MrpR is a DNA-binding protein resembling the overall fold of tyrosine recombinases. MrpR has lost its recombinase function and the G136E exchange impairs its higher-order structure and DNA binding activity. Genome-wide profiling of MrpR binding revealed its association with the previously identified SPbeta repeated element (SPBRE) in the SPß genome. MrpR functions as a master repressor of SPß that binds to this conserved element to maintain lysogeny. The heat-inducible excision of the SPß c2 mutant remains reliant on the serine recombinase SprA. A suppressor mutant analysis identified a previously unknown component of the lysis-lysogeny management system that is crucial for the induction of the lytic cycle of SPß.
Assuntos
Fagos Bacilares , Bacteriófagos , Proteínas Virais , Fagos Bacilares/genética , Bacillus subtilis/genética , Lisogenia/genética , Prófagos/genética , Recombinases/genética , Proteínas Virais/metabolismoRESUMO
Phages have been approved for use in the food industry to control bacterial contamination in some countries. However, their broader adoption is hindered by some limitations. For instance, the persistence of infectious phages in the food industry can lead to the emergence of resistant bacteria, which negatively impacts the long-term effectiveness of phages. Additionally, the narrow host range of phages limits their effectiveness against various strains. To address these deficiencies, phage engineering has been proposed as a rational approach for modifying phages. In this study, we developed a simple and efficient engineering method for Bacillus cereus phage, using DK1 as an example, to reduce the number of residual phages and expand its range of hosts. Specifically, we knocked out the appendage gene, which codes for the receptor-binding protein, to produce phage progeny with structural defects in their appendages, resulting in the loss of infectivity after host elimination. Furthermore, we used plasmid-mediated means to express different appendage proteins during phage preparation, which allowed altering the host spectrum of the engineered phages without gene insertion. In practical applications, our engineered phages effectively reduced the number of B. cereus in milk and prevented the amplification of active progeny. Our strategy transformed phages from active viruses into more controllable antibacterial agents, making them safer and more efficient for the prevention and control of B. cereus. Moreover, we believe this strategy will help drive the use of engineered phages in the food industry.
Assuntos
Fagos Bacilares , Bacteriófagos , Animais , Bacteriófagos/genética , Bacillus cereus/genética , Leite , Fagos Bacilares/genética , Fagos Bacilares/metabolismo , Antibacterianos/metabolismoRESUMO
BACKGROUND: Phages play a pivotal role in the evolution of microbial populations. The interactions between phages and their hosts are complex and may vary in response to host physiology and environmental conditions. Here, we have selected the genomes of some representative Bacillus prophages and lysosomes from the NCBI database for evolutionary analysis. We explored their evolutionary relationships and analyzed the protein information encoded by hundreds of Bacillus phages. RESULTS: We obtained the following conclusions: First, Bacillus phages carried some known functional gene fragments and a large number of unknown functional gene fragments, which might have an important impact on Bacillus populations, such as the formation of spores and biofilms and the transmission of virulence factors. Secondly, the Bacillus phage genome showed diversity, with a clear genome boundary between Bacillus prophages and Bacillus lytic phages. Furthermore, genetic mutations, sequence losses, duplications, and host-switching have occurred during the evolution of the Bacillus phage, resulting in low genome similarity between the Bacillus phages. Finally, the lysis module played an important influence on the process of Bacillus phage cross-species infestation. CONCLUSIONS: This study systematically described their protein function, diversity, and genome evolution, and the results of this study provide a basis for evolutionary diversity, horizontal gene transfer and co-evolution with the host in Bacillus phages.
Assuntos
Fagos Bacilares , Bacteriófagos , Fagos Bacilares/genética , Genoma Viral , Bacteriófagos/genética , Prófagos/genética , Mutação , Evolução MolecularRESUMO
Bacteriophage lytic enzymes (i.e., phage lysins) are a trending alternative for general antibiotics to combat growing antimicrobial resistance. Gram-positive Bacillus cereus causes one of the most severe forms of intraocular infection, often resulting in complete vision loss. It is an inherently ß-lactamase-resistant organism that is highly inflammogenic in the eye, and antibiotics are not often beneficial as the sole therapeutic option for these blinding infections. The use of phage lysins as a treatment for B. cereus ocular infection has never been tested or reported. In this study, the phage lysin PlyB was tested in vitro, demonstrating rapid killing of vegetative B. cereus but not its spores. PlyB was also highly group specific and effectively killed the bacteria in various bacterial growth conditions, including ex vivo rabbit vitreous (Vit). Furthermore, PlyB demonstrated no cytotoxic or hemolytic activity toward human retinal cells or erythrocytes and did not trigger innate activation. In in vivo therapeutic experiments, PlyB was effective in killing B. cereus when administered intravitreally in an experimental endophthalmitis model and topically in an experimental keratitis model. In both models of ocular infection, the effective bactericidal property of PlyB prevented pathological damage to ocular tissues. Thus, PlyB was found to be safe and effective in killing B. cereus in the eye, greatly improving an otherwise devastating outcome. Overall, this study demonstrates that PlyB is a promising therapeutic option for B. cereus eye infections.IMPORTANCEEye infections from antibiotic-resistant Bacillus cereus are devastating and can result in blindness with few available treatment options. Bacteriophage lysins are an alternative to conventional antibiotics with the potential to control antibiotic-resistant bacteria. This study demonstrates that a lysin called PlyB can effectively kill B. cereus in two models of B. cereus eye infections, thus treating and preventing the blinding effects of these infections.
Assuntos
Fagos Bacilares , Bacillus , Endoftalmite , Infecções Oculares Bacterianas , Animais , Humanos , Coelhos , Infecções Oculares Bacterianas/tratamento farmacológico , Endoftalmite/tratamento farmacológico , Endoftalmite/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêuticoRESUMO
In the present study, two new Bacillus subtilis phages, BSTP4 and BSTP6, were isolated and studied further. Morphologically, BSTP4 and BSTP6 are podoviruses with complete genome of 19,145 (39.9% G + C content) and 19,367 bp (39.8% G + C content), respectively, which became among the smallest Bacillus phages. Three most prominent structural proteins were separated and identified as pre-neck appendage, major head, and head fiber proteins using LC-MS/MS. Both phages encode putative terminal proteins (TP) and contain short inverted terminal repeats (ITRs) which may be important for their replication. In addition, non-coding RNA (pRNA) and parS sites were identified which may be required for DNA packaging and their maintenance inside the host, respectively. Furthermore, the phage genome sequences show significant similarity to B. subtilis group species genome sequences. Finally, phylogenomic and phylogenetic analyses suggest that BSTP4 and BSTP6 may form a new species in the genus Salasvirus, subfamily Picovirinae of family Salasmaviridae. Considering the small numbers of ICTV-accepted B. subtilis phages and the importance of the host in the food industry and biotechnology, the current study helps to improve our understanding of the diversity of B. subtilis phages and shed light on the phage-host relationships.
Assuntos
Fagos Bacilares , Podoviridae , Bacillus subtilis/genética , Filogenia , Cromatografia Líquida , Genoma Viral , Espectrometria de Massas em Tandem , Podoviridae/genética , Fagos Bacilares/genética , Análise de SequênciaRESUMO
Bacteriophage genomes represent an enormous level of genetic diversity and provide considerable potential to acquire new insights about viral genome evolution. In this study, the genome sequences of sixteen Bacillus-infecting bacteriophages were explored through comparative genomics approaches to reveal shared and unique characteristics. These bacteriophages are in the Salasmaviridae family with small (18,548-27,206 bp) double-stranded DNA genomes encoding 25-46 predicted open reading frames. We observe extensive nucleotide and amino acid sequence divergence among a set of core-function genes that present clear synteny. We identify two examples of sequence directed recombination within essential genes, as well as explore the expansion of gene content in these genomes through the introduction of novel open reading frames. Together, these findings highlight the complex evolutionary relationships of phage genomes that include old, common origins as well as new components introduced through mosaicism.
Assuntos
Fagos Bacilares , Bacillus , Genômica , Genoma Viral , Sequência de AminoácidosRESUMO
Mangrove is among the most carbon-rich biomes on earth, and viruses are believed to play a significant role in modulating local and global carbon cycling. However, few viruses have been isolated from mangrove sediments to date. Here, we report the isolation of a novel Bacillus phage (named phage vB_BviS-A10Y) from mangrove sediments. Phage vB_BviS-A10Y has a hexameric head with a diameter of ~ 79.22 nm and a tail with a length of ~ 548.56 nm, which are typical features of siphophages. vB_BviS-A10Y initiated host lysis at 3.5 h postinfection with a burst size of 25 plaque-forming units (PFU)/cell. The genome of phage vB_BviS-A10Y is 162,435 bp long with 225 predicted genes, and the GC content is 34.03%. A comparison of the whole genome sequence of phage vB_BviS-A10Y with those of other phages from the NCBI viral genome database showed that phage vB_BviS-A10Y has the highest similarity (73.7% identity with 33% coverage) to Bacillus phage PBC2. Interestingly, abundant auxiliary metabolic genes (AMGs) were identified in the vB_BviS-A10Y genome. The presence of a ß-1,3-glucosyltransferase gene in the phage genome supported our previous hypothesis that mangrove viruses may manipulate carbon cycling directly through their encoded carbohydrate-active enzyme (CAZyme) genes. Therefore, our study will contribute to a better understanding of the diversity and potential roles of viruses in mangrove ecosystems.
Assuntos
Fagos Bacilares , Bacteriófagos , Vírus , Bacteriófagos/genética , Ecossistema , Genoma Viral/genética , Vírus/genética , Fagos Bacilares/genética , Genômica , FilogeniaRESUMO
Bacillus subtilis strains play a pivotal role in the fermentation industry. B. subtilis phages can cause severe damage by infecting bacterial cells used in industrial fermentation processes. In this work, we isolated and characterized a Bacillus subtilis-infecting phage, termed phi18. Transmission electron microscopy revealed that phage phi18 particles have typical myovirus morphology, with an icosahedral head connected to a contractile tail. Genomic analysis revealed that the phage genome is a linear double-stranded DNA molecule of 147,298 bp with terminal redundancy of 14,434 bp, and 226 protein coding genes and four tRNA genes were predicted in the genome. Phage-resistant mutants were selected from a mariner transposon-insertion library of B. subtilis 168 in which two bacterial genes, tagE and pgcA, which are required for the glycosylation of wall teichoic acid (WTA), were found to be disrupted, suggesting that WTA is the receptor for phage phi18. Comparative genomic analysis showed that phage phi18 is a new member of the genus Okubovirus of the family Herelleviridae. Finally, general characteristics of the phage-resistant mutants, including biofilm formation, growth, and sporulation, were examined. The results showed that the phage-resistant mutants grew as rapidly as the parental strain B. subtilis 168 at 42 °C, suggesting that these phage-resistant mutants may be used as starters in fermentation processes.
Assuntos
Fagos Bacilares , Bacteriófagos , Bacillus subtilis/genética , Genômica , Bacteriófagos/genética , Genoma Viral , GlicosilaçãoRESUMO
BACKGROUND: Bacteriophages are widely considered to be highly abundant and genetically diverse, with their role in the evolution and virulence of many pathogens becoming increasingly clear. Less attention has been paid on phages preying on Bacillus, despite the potential for some of its members, such as Bacillus anthracis, to cause serious human disease. RESULTS: We have isolated five phages infecting the causative agent of anthrax, Bacillus anthracis. Using modern phylogenetic approaches we place these five new Bacillus phages, as well as 21 similar phage genomes retrieved from publicly available databases and metagenomic datasets into the Tyrovirus group, a newly proposed group named so due to the conservation of three distinct tyrosine recombinases. Genomic analysis of these large phages (~ 160-170 kb) reveals their DNA packaging mechanism and genomic features contributing to virion morphogenesis, host cell lysis and phage DNA replication processes. Analysis of the three tyrosine recombinases suggest Tyroviruses undergo a prophage lifecycle that may involve both host integration and plasmid stages. Further we show that Tyroviruses rely on divergent invasion mechanisms, with a subset requiring host S-layer for infection. CONCLUSIONS: Ultimately, we expand upon our understanding on the classification, phylogeny, and genomic organisation of a new and substantial phage group that prey on critically relevant Bacillus species. In an era characterised by a rapidly evolving landscape of phage genomics the deposition of future Tyroviruses will allow the further unravelling of the global spread and evolutionary history of these Bacillus phages.
Assuntos
Fagos Bacilares , Bacillus , Humanos , Bacillus/genética , Solo , Filogenia , Fagos Bacilares/genética , Recombinases , TirosinaRESUMO
SPP1, an extensively studied bacteriophage of the Gram-positive Bacillus subtilis, is a model system for the study of phage-host interactions. Despite progress in the isolation and characterization of Bacillus phages, no previously fully sequenced phages have shared more than passing genetic similarity to SPP1. Here, we describe three virulent phages very similar to SPP1; SPP1 has greater than 80% nucleotide sequence identity and shares more that 85% of its protein coding genes with these phages. This is remarkable, given more than 40 years between the isolation of SPP1 and these phages. All three phages have somewhat larger genomes and more genes than SPP1. We identified a new putative gene in SPP1 based on a conserved sequence found in all phages. Gene conservation connotes purifying selection and is observed in structural genes and genes involved in DNA metabolism, but also in genes of unknown function, suggesting an important role in phage survival independent of the environment. Patterns of divergence point to genes or gene domains likely involved in adaptation to diverse hosts or different environments. Ultimately, comparative genomics of related phages provides insight into the long-term selective pressures that affect phage-bacteria interactions and alter phage genome content.
Assuntos
Fagos Bacilares , Bacteriófagos , Bacteriófagos/genética , Bacillus subtilis/genética , Fagos Bacilares/genética , Genômica , Sequência de Bases , DNA , Genoma ViralRESUMO
In this work, we describe a novel temperate bacteriophage, Bacillus phage B13. Bacillus-infecting phages are widespread and abundant, though often overlooked including because of their temperate lifestyle. B13 was isolated from its bacterial host via mitomycin C induction. Its host range was determined, and its pH and thermal stability were evaluated. The whole genome of B13 was sequenced and annotated. The genome is 36,864 bp long and contains 53 genes. The tail genes of B13 suggest that the phage has a siphovirus morphotype. It was found both in vitro and in silico that the phage uses the 3'-cos DNA packaging strategy, and the phage genome termini were located. Comparative analyses revealed that B13 has no close relatives and should therefore be assigned to a new viral genus, for which we propose the name Bunatrivirus.
Assuntos
Fagos Bacilares , Mitomicina , Genoma Viral , Bacillus cereus , FilogeniaRESUMO
Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) system has been developed into a precise and efficient genome editing tool. Since its discovery as an adaptive immune system in prokaryotes, it has been applied in many different research fields including biotechnology and medical sciences. The high demand for rapid, highly efficient and versatile genetic tools to thrive in bacteria-based cell factories accelerates this process. This review mainly focuses on significant advancements of the CRISPR system in Bacillus subtilis, including the achievements in gene editing, and on problems still remaining. Next, we comprehensively summarize this genetic tool's up-to-date development and utilization in other Bacillus species, including B. licheniformis, B. methanolicus, B. anthracis, B. cereus, B. smithii and B. thuringiensis. Furthermore, we describe the current application of CRISPR tools in phages to increase Bacillus hosts' resistance to virulent phages and phage genetic modification. Finally, we suggest potential strategies to further improve this advanced technique and provide insights into future directions of CRISPR technologies for rendering Bacillus species cell factories more effective and more powerful.
Assuntos
Fagos Bacilares , Bacillus anthracis , Bacillus , Bacillus/genética , Fagos Bacilares/genética , Bacillus anthracis/genética , Bacillus subtilis/genética , Sistemas CRISPR-Cas , Edição de Genes/métodosRESUMO
Holins are small transmembrane proteins involved in the final stage of the lytic cycle of double-stranded DNA (dsDNA) phages. They cooperate with endolysins to achieve bacterial lysis, thereby releasing the phage progeny into the extracellular environment. Besides their role as membrane permeabilizers, allowing endolysin transfer and/or activation, holins also regulate the lysis timing. In this work, we provide functional characterization of the holins encoded by three phages targeting the Bacillus cereus group. The siphovirus Deep-Purple has a lysis cassette in which holP30 and holP33 encode two proteins displaying holin properties, including a transmembrane domain. The holin genes were expressed in Escherichia coli and induced bacterial lysis, with HolP30 being more toxic than HolP33. In Bacillus thuringiensis, the simultaneous expression of both holins was necessary to observe lysis, suggesting that they may interact to form functional pores. The myoviruses Deep-Blue and Vp4 both encode a single candidate holin (HolB and HolV, respectively) with two transmembrane domains, whose genes are not located near the endolysin genes. Their function as holin proteins was confirmed as their expression in E. coli impaired cell growth and viability. The HolV expression in B. thuringiensis also led to bacterial lysis, which was enhanced by coexpressing the holin with its cognate endolysin. Despite similar organizations and predicted topologies, truncated mutants of the HolB and HolV proteins showed different toxicity levels, suggesting that differences in amino acid composition influence their lysis properties. IMPORTANCE The phage life cycle ends with the host cell lysis, thereby releasing new virions into the environment for the next round of bacterial infection. Nowadays, there is renewed interest in phages as biocontrol agents, primarily due to their ability to cause bacterial death through lysis. While endolysins, which mediate peptidoglycan degradation, have been fairly well described, the pore-forming proteins, referred to as holins, have been extensively characterized in only a few model phages, mainly infecting Gram-negative bacteria. In this work, we characterized the holins encoded by a siphovirus and two myoviruses targeting members of the Gram-positive Bacillus cereus group, which comprises closely related species, including the well-known Bacillus anthracis, B. cereus sensu stricto, and Bacillus thuringiensis. Overall, this paper provides the first experimental characterization of holins encoded by B. cereus phages and reveals versatile lysis mechanisms used by these phages.
Assuntos
Fagos Bacilares , Bacillus thuringiensis , Interações entre Hospedeiro e Microrganismos , Proteínas de Membrana , Fagos Bacilares/fisiologia , Bacillus thuringiensis/virologia , Endopeptidases/metabolismo , Escherichia coli/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismoRESUMO
The arbitrium system is employed by phages of the SPbeta family to communicate with their progeny during infection to decide either to follow the lytic or the lysogenic cycle. The system is controlled by a peptide, AimP, that binds to the regulator AimR, inhibiting its DNA-binding activity and expression of aimX. Although the structure of AimR has been elucidated for phages SPß and phi3T, there is still controversy regarding the molecular mechanism of AimR function, with two different proposed models for SPß. In this study, we deepen our understanding of the system by solving the structure of an additional AimR that shows chimerical characteristics with the SPß receptor. The crystal structures of this AimR (apo, AimP-bound and DNA-bound) together with in vitro and in vivo analyses confirm a mechanism of action by AimP-induced conformational restriction, shedding light on peptide specificity and cross regulation with relevant biological implications.
Assuntos
Fagos Bacilares , Bacteriófagos , Fagos Bacilares/genética , Bacteriófagos/metabolismo , Comunicação , DNA/metabolismo , Lisogenia , Peptídeos/químicaRESUMO
The infection of a bacterium by a tailed phage starts from the adsorption process, which consists of a specific and strong interaction between viral proteins called receptor binding proteins (RBPs) and receptors located on the bacterial surface. In addition to RBPs, other tail proteins, such as evolved distal tail (evoDit) proteins and tail lysins, harboring carbohydrate binding modules (CBMs) have been shown to facilitate the phage adsorption by interacting with host polysaccharides. In this work, the proteins involved in the adsorption of Deep-Purple, a siphovirus targeting bacteria of the Bacillus cereus group, were studied. Bioinformatic analysis of Deep-Purple tail protein region revealed that it contains two proteins presenting CBM domains: Gp28, an evoDit protein, and Gp29, the potential RBP. The implication of both proteins in the adsorption of Deep-Purple particles was confirmed through cell wall decoration assays. Interestingly, whereas RBP-Gp29 exhibited the same host spectrum as Deep-Purple, evoDit-Gp28 was able to bind to many B. cereus group strains, including some that are not sensitive to the phage infection. Using immunogold microscopy, both proteins were shown to be located in the phage baseplate. Additionally, an in silico analysis of the tail regions encoded by several Siphoviridae infecting the B. cereus group was performed. It revealed that although the tail organization displayed by Deep-Purple is the most prevalent, different tail arrangements are observed, suggesting that distinct baseplate organization and adsorption mechanisms are encountered in siphoviruses targeting the B. cereus group. IMPORTANCE The B. cereus group is a complex cluster of closely related species, among which certain strains can be pathogenic (i.e., Bacillus anthracis, Bacillus cereus sensu stricto, and Bacillus cytotoxicus). Nowadays, phages are receiving increasing attention for applications in controlling and detecting such pathogens. Thus, understanding the molecular mechanisms governing the phage adsorption to its bacterial host is paramount as this step is a key determinant of the phage host spectrum. Until now, the knowledge regarding the adsorption process of tailed phage targeting the B. cereus groups was mainly restricted to the phage gamma infecting B. anthracis. With this work, we provide novel insights into the adsorption of Deep-Purple, a siphovirus infecting the B. cereus group. We showed that this phage recognizes polysaccharides and relies on two different viral proteins for its successful adsorption.
Assuntos
Fagos Bacilares , Siphoviridae , Adsorção , Fagos Bacilares/genética , Bacillus cereus , Siphoviridae/genética , Proteínas ViraisRESUMO
The gp16 ATPase is the constituent subunit of the pentameric dsDNA (double-stranded deoxyribonucleic acid) translocation motor of the Bacillus subtilis Φ29 bacteriophage. Although recent single-molecule studies have provided tantalizing clues about the activity of this motor, the mechanism by which the gp16 subunits couple the energy obtained from the binding and hydrolysis of ATP to the mechanical work of dsDNA translocation remains unknown. To address this need, we have characterized the binding of fluorophore-labeled ATP and ADP to monomeric gp16 using a stopped-flow fluorescence assay. These experiments show that the binding of ATP/ADP occurs through a single-step mechanism with corresponding affinities of 523.8 ± 247.3 nM for ATP and a lower limit of 30 µM for ADP. When analyzed through the lens of changes in free energy of the system, this difference in binding affinities is reasonable for a cyclical process of binding, hydrolysis, and product release. In addition to answering questions about the activity of monomeric gp16, these results are also a necessary step in constructing a model for intersubunit communication within the pentameric gp16 motor.
Assuntos
Adenosina Trifosfatases , Fagos Bacilares , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Fagos Bacilares/genética , DNA Viral/metabolismo , Hidrólise , CinéticaRESUMO
The Bacillus phage SPß has been known for about 50 years, but only a few strains are available. We isolated four new wild-type strains of the SPbeta species. Phage vB_BsuS-Goe14 introduces its prophage into the spoVK locus, previously not observed to be used by SPß-like phages. Sequence data revealed the genome replication strategy and the genome packaging mode of SPß-like phages. We extracted 55 SPß-like prophages from public Bacillus genomes, thereby discovering three more integration loci and one additional type of integrase. The identified prophages resemble four new species clusters and three species orphans in the genus Spbetavirus. The determined core proteome of all SPß-like prophages consists of 38 proteins. The integration cassette proved to be not conserved, even though, present in all strains. It consists of distinct integrases. Analysis of SPß transcriptomes revealed three conserved genes, yopQ, yopR, and yokI, to be transcribed from a dormant prophage. While yopQ and yokI could be deleted from the prophage without activating the prophage, damaging of yopR led to a clear-plaque phenotype. Under the applied laboratory conditions, the yokI mutant showed an elevated virion release implying the YokI protein being a component of the arbitrium system.
Assuntos
Fagos Bacilares , Siphoviridae , Fagos Bacilares/genética , Fagos Bacilares/metabolismo , Integrases/genética , Lisogenia/genética , Prófagos/genética , Integração ViralRESUMO
Bacillus cereus is a common foodborne pathogen that causes vomiting and diarrheal symptoms. Due to its spore-forming ability, B. cereus can resist physical sterilization and possess a relatively high contamination level in dairy products; therefore, it is necessary to develop an efficient strategy to control the growth of B. cereus. In this study, a novel bacteriophage, named DLn1, was isolated and characterized, and its endolysin was expressed. Morphological and genomic analyses revealed that the phage is a new species belonging to the Northropvirinae subfamily of the Salasmaviridae family. The life cycle and stability assays showed that the phage DLn1 exhibited a short latent period (15 min) and high burst size (618 plaque-forming units (PFU)/cell) and was tolerant to a wide range of pH (4-10) and temperature (4-55 °C) conditions. This lytic phage had narrow but specific host range to B. cereus strains, and could effectively reduce the number of B. cereus in milk within 6 h. More interestingly, the purified endolysin of phage DLn1 had a much wider lytic range and the inhibitory effect against B. cereus in milk was more efficient. Taken together, the new phage DLn1 and its endolysin could be promising biocontrol agents against B. cereus in dairy products.
Assuntos
Fagos Bacilares , Animais , Fagos Bacilares/genética , Bacillus cereus , Endopeptidases/farmacologia , LeiteRESUMO
Ultrasound nanodroplets (NDs) have been reported as a promising nanocarrier for siRNA delivery depending on its unique strengths of sonoporation. Presently, common means for NDs-mediated siRNA delivery is through electrostatic interaction, but challenges like cationic toxicity still exist. In this study, we demonstrated a novel strategy to construct negatively charged and ultrasound (US)-responsive O-carboxymethyl chitosan (O-CMS) NDs as a siRNA targeted delivery system through three-way junction of bacteriophage phi29 DNA packaging motor (3WJ-pRNA) nanotechnology. 39nt A10-3.2 aptamer targeting prostate specific membrane antigen (PSMA) and 21nt siRNA against cationic amino acid transporter 1 (siCAT-1) were annealed to 3WJ-pRNA scaffold via complementation with an extended sequence. The cholesterol molecule attached to one branch facilitates the 3WJ-pRNA nanoparticles anchoring onto NDs. The desired O-CMS NDs with siRNA-loading and RNA-aptamer modification (A10-3.2/siCAT-1/3WJ-NDs) were successfully prepared, which were with spherical shapes, core-shell structures and uniform in sizes (198 nm with PDI 0.3). As a main proportion of shell, O-CMC showed a certain anti-tumor effects. In vitro studies demonstrated that A10-3.2/siCAT-1/3WJ-NDs exhibited good contrast-enhanced US imaging, buffering capacity and high bio-safety, were able to deliver siCAT-1 to PSMA-overexpressed prostate cancer cells under US irradiation, thus silence the CAT-1 expression, and consequently suppressing 22RV1 cell proliferation and migration. Taken overall, our findings provide a promising strategy to develop negatively charged and US-responsive NDs for tumor-targeted siRNA delivery.