Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.025
Filtrar
1.
Microb Cell Fact ; 21(1): 4, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983528

RESUMO

Given a serious threat of multidrug-resistant bacterial pathogens to global healthcare, there is an urgent need to find effective antibacterial compounds to treat drug-resistant bacterial infections. In our previous studies, Bacillus velezensis CB6 with broad-spectrum antibacterial activity was obtained from the soil of Changbaishan, China. In this study, with methicillin-resistant Staphylococcus aureus as an indicator bacterium, an antibacterial protein was purified by ammonium sulfate precipitation, Sephadex G-75 column, QAE-Sephadex A 25 column and RP-HPLC, which demonstrated a molecular weight of 31.405 kDa by SDS-PAGE. LC-MS/MS analysis indicated that the compound was an antibacterial protein CB6-C, which had 88.5% identity with chitosanase (Csn) produced by Bacillus subtilis 168. An antibacterial protein CB6-C showed an effective antimicrobial activity against gram-positive bacteria (in particular, the MIC for MRSA was 16 µg/mL), low toxicity, thermostability, stability in different organic reagents and pH values, and an additive effect with conventionally used antibiotics. Mechanistic studies showed that an antibacterial protein CB6-C exerted anti-MRSA activity through destruction of lipoteichoic acid (LTA) on the cell wall. In addition, an antibacterial protein CB6-C was efficient in preventing MRSA infections in in vivo models. In conclusion, this protein CB6-C is a newly discovered antibacterial protein and has the potential to become an effective antibacterial agent due to its high therapeutic index, safety, nontoxicity and great stability.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Antibacterianos/uso terapêutico , Bacillus/química , Bacillus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , China , Cromatografia Líquida , Farmacorresistência Bacteriana Múltipla , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Espectrometria de Massas em Tandem
2.
An Acad Bras Cienc ; 94(1): e20191253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35018992

RESUMO

Millions of tons of feathers produced annually by the poultry industry cause environmental pollution and waste a significant source of protein. In the present study, three keratinolytic Bacillus strains, Bacillus sp. MK1, MK2, and MK3 were isolated. Some of the enzymatic properties of these keratinases were determined. The effects of some chemicals on enzyme activities were investigated. The specific activities of MK1, MK2, and MK3 were 2.76, 0.77, and 5.48 U/mg protein at 40°C, respectively, and mutant varieties were overexpressed after EtBr treatment. A comparison of keratinase activity between native and improved isolates showed that mutant variants exhibited higher activity ranging from 116 to 214%. According to BLAST analysis, the Bacillus sp. MK1 rDNA sequence was 96.83% similar to that of B. subtilis subsp. stercoris strain 153, B. subtilis strain FR10, B. tequilensis strain P12, and B. subtilis strain SRR21, and Bacillus sp. MK2 and MK3 16S rDNA sequences were 99.54% similar to those of B. subtilis strain 21M and B. subtilis strain NX17 sequences. The results of the enzymatic analysis of the enzymes and overexpressed mutant varieties are promising for application in the industrial production and application of the enzymes decomposition of feathers in poultry sector.


Assuntos
Bacillus , Animais , Bacillus/genética , Concentração de Íons de Hidrogênio , Queratinas/genética , Mutagênese , Peptídeo Hidrolases/genética , Temperatura
3.
J Biotechnol ; 343: 128-137, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34906603

RESUMO

Methanol is a promising green feedstock for producing fuels and chemicals because it is inexpensive, clean, environmentally friendly, and easily prepared. Thus, many studies have been devoted to engineering non-native methylotrophic platform microorganisms to utilize methanol. This study adopted a series of strategies to develop a synthetic methylotrophic Bacillus subtilis that can use methanol as the carbon source, including the heterologous expression of methanol dehydrogenase (Mdh), enhancement of the expressions of 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloisomerase (Phi), regulation of the expressions of key enzymes at both the translational and transcriptional levels, stabilization of the key enzyme expression through a dual-system for expressing the target genes on both the plasmid and genome, and improvement of the catalytic activity of Mdh with a recycling strategy for NAD+. As a result, the methanol consumption of the synthetic methylotrophic B. subtilis reached 4.09 g/L, with the maximum OD600 showing a 2.21-fold increase compared with the wild-type B. subtilis, which cannot use methanol. We further deleted the phosphoglucose isomerase (Pgi) and added co-substrates to increase the supply of ribulose-5-phosphate (Ru-5-P), and the specific methanol consumption rate increased by an additional 27.54%. Finally, we successfully constructed two strains that cannot grow in M9 medium with xylose or ribose unless methanol is utilized. The strategies used in this study are generally applicable to other studies on synthetic methylotrophy.


Assuntos
Bacillus , Metanol , Bacillus/genética , Bacillus subtilis/genética , Engenharia Metabólica , Plasmídeos
4.
J Environ Manage ; 301: 113848, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597950

RESUMO

Biodegradation could be a potential alternative solution to polyethylene (PE) pollution. However, its hydrophobic surface and long carbon chains make extremely low biodegradation efficiency. In this study, we screened a novel potential bacterial strain C5 (CGMCC number: 1.18715) for low-density polyethylene (LDPE) biodegrading from landfills. The strain was identified as Bacillus velezensis according to its 16S rRNA sequence. The contact angle analysis indicated that C5 could rapidly form biofilm on untreated LDPE which resulted in contact angles decreasing from 100° to 54° over 7 d. After the LDPE film incubated with C5 for 90 d, the thickness and weight of LDPE film decreased by 26% and 8.01%, respectively. Besides, the biotreated PE film was found with increases in weight-averaged molecular weight by 29.8%, suggesting low molar mass chains were consumed. C24-C29 n-alkanes were detected in the biodegradation products, which proved the depolymerization of LDPE. Combined with the genome mining results, a possible biofilm-aided degrading mechanism was proposed and might involve key enzymes, such as laccase, cytochrome P450 and propionyl-CoA carboxylase, which could constitute a multienzyme system for the co-catalytic degradation of LDPE waste.


Assuntos
Bacillus , Polietileno , Bacillus/genética , Biodegradação Ambiental , RNA Ribossômico 16S/genética
5.
Environ Pollut ; 292(Pt A): 118306, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634401

RESUMO

Slaughter wastewater is an important and wide range of environmental issues, and even threaten human health through meat production. A high efficiency and stability microsphere-immobilized Bacillus velezensis strain was designed to remove organic matter and inhibit the growth of harmful bacteria in process of slaughter wastewater. Bacillus velezensis was immobilized on the surface of sodium alginate (SA)/Polyvinyl alcohol (PVA)/Nano Zinc Oxide (Nano-ZnO) microsphere with the adhesion to bio-carrier through direct physical adsorption. Results indicated that SA/PVA/ZnO and SA/ZnO microspheres could inhibit E.coli growth with adding 0.15 g/L nano-ZnO and not affect Bacillus velezensis strain, and the removal the chemical oxygen demand (COD) rates of SA/PVA/ZnO microsphere immobilized cells are 16.99%, followed by SA/ZnO (13.69%) and free bacteria (7.61%) from 50% concentration slaughter wastewater within 24 h at 37 °C, pH 7.0, and 120 rpm, a significant difference was found between the microsphere and control group. Moreover, when the processing time reaches 36 h, COD degradation of SA/PVA/ZnO microsphere is obviously higher than other groups (SA/PVA/ZnO:SA/ZnO:control vs 18.535 : 15.446: 10.812). Similar results were obtained from 30% concentration slaughter wastewater. Moreover, protein degradation assay was detected, and there are no significant difference (SA/PVA/ZnO:SA/ZnO:control vs 35.4 : 34.4: 36.0). The design of this strategy could greatly enhance the degradation efficiency, inhibit the growth of other bacteria and no effect on the activity of protease in slaughter wastewater. These findings suggested that the nano-ZnO hydrogel immobilization Bacillus velezensis system wastewater treatment is a valuable alternative method for the remediation of pollutants from slaughter wastewater with a novel and eco-friendly with low-cost investment as an advantage.


Assuntos
Óxido de Zinco , Bacillus , Humanos , Microesferas , Álcool de Polivinil , Águas Residuárias
6.
Bioresour Technol ; 343: 126092, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34634465

RESUMO

In the downstream process, the bioconversion of lignocellulosic biomass can be improved by applying a biological pretreatment procedure using microorganisms to produce hydrolytic enzymes to modify the recalcitrant structure of lignocellulose. In this study, various Bacillus strains (B. subtilis B.01162 and B.01212, B. coagulans B.01123 and B.01139, B. cereus B.00076 and B.01718, B. licheniformis B.01223 and B.01231) were evaluated for the degrading capacity of wheat bran in the submerged medium using enzymatic activities, reducing sugars and weight loss as indicators. The obtained results revealed that the B. subtilis B.01162, B. coagulans B.01123 and B. cereus B.00076 could be promising degraders for the wheat bran pretreatment. Besides, the application of their consortium (the combination of 2-3 Bacillus species) showed the positive effects on cellulose bioconversion compared with monocultures. Among them, the mixture of B. subtilis B.01162 and B. coagulans B.01123 increased significantly the cellulase, endo-glucanase, and xylanase enzyme activity resulting in accelerating the lignocellulose degradation. Our results served a very good base for the development of microbial consortium for biological pretreatment of lignocellulosic raw materials.


Assuntos
Bacillus , Celulase , Biomassa , Fibras na Dieta , Hidrólise , Lignina
7.
Environ Pollut ; 292(Pt B): 118343, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662593

RESUMO

The biodegradation of hazardous petroleum hydrocarbons has recently received a lot of attention because of its many possible applications. Bacillus marsiflavi strain was isolated from oil contaminated soil of Rawalpindi, Pakistan. Initial sequencing was done by 16s rRNA sequencing technique. Bac 144 had shown 78% emulsification index and 72% hydrophobicity content. Further, the strain displayed production of 15.5 mg/L phosphate sloubilization and 30.25 µg/ml indole acetic acid (IAA) in vitro assay. The strain showed 65% biodegradation of crude oil within 5 days by using Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Whole Genome analysis of Bac 144 was performed by PacBio sequencing and results indicated that Bacillus marsiflavi Bac144 strain consisted of size of 4,417,505bp with closest neighbor Bacillus cereus ATCC 14579. The number of the coding sequence was 4662 and number of RNAs was 141. The GC content comprised 48.1%. Various genes were detected in genome responsible for hydrocarbon degradation and plant defense mechanism. The toxic effect of petroleum hydrocarbons in soil and its mitigation with Bac 144 was tested by soil experiment with three levels of oil contamination (5%, 10% and 15%). Soil enzymatic activity such as dehydrogenase and fluorescein diacetate (FDA) increased up to 49% and 40% with inoculation of Bac 144, which was considered to be correlated with hydrocarbon degradation recorded as 46%. An increase of 20%, 14% and 9% in shoot length of plant at 5%, 10% and 15% level of oil was recorded treated with Bac 144 as compared to untreated plants. A percent increase of 14.89%, 16.85%, and 13.87% in chlorophyll, carotenoid, and proline content of plant was observed by inoculation with Bac 144 under oil stress. Significant reduction of 14% and 18%, 21% was recorded in the malondialdehyde content of plant due to inoculation of Bac 144. A considerable increase of 21.33%, 19.5%, and 24.5% in super oxide dismutase, catalase, and peroxidase dismutase activity was also observed in plants inoculated with strain Bac 144. These findings suggested that Bac-144 can be considered as efficient candidate for bioremediation of hydrocarbons.


Assuntos
Bacillus , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Bacillus/genética , Biodegradação Ambiental , Hidrocarbonetos , Petróleo/análise , RNA Ribossômico 16S , Microbiologia do Solo , Poluentes do Solo/análise
8.
J Hazard Mater ; 423(Pt A): 127024, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34481401

RESUMO

The present work mechanistically addressed the problem of arsenic (As) contamination in agricultural soils by using locally isolated Bacillus sp. strain ZH16 and biogenic molybdenum nanoparticles (MoNPs) simultaneously for the first time. The interactions of MoNPs with strain ZH16 and ZH16-inoculated wheat plants were examined under As non-spiked and spiked conditions. The biogenic MoNPs showed efficient biocompatibility with strain ZH16 by promoting indole-3-acetic acid synthesis, phosphate solubilization and ACC deaminase activity without and with As stress. The results from greenhouse experiment revealed that co-application of biogenic MoNPs and bacterial strain ZH16 significantly promoted the morphological parameters, nutrients content and ionic balance of wheat plants under normal and As spiked conditions. Furthermore, combining the bacterial strain ZH16 with biogenic MoNPs dramatically reduced As translocation in plants (30.3%) as compared to ZH16-inoculated wheat plants. Conclusively, our results elucidate the importance of synergistic application of plant growth promoting rhizobacteria (PGPR) and biogenic MoNPs to counteract global food safety issues in a sustainable manner. The biogenic NPs could serve as stabilizing agent for PGPR by facilitating their colonization in plant holobiont regardless of environmental conditions. These novel advancements will provide new insights into nano-oriented PGPR research in the agricultural sector.


Assuntos
Arsênio , Bacillus , Nanopartículas , Arsênio/toxicidade , Homeostase , Molibdênio , Nutrientes , Raízes de Plantas , Microbiologia do Solo , Triticum
9.
Microbiol Res ; 254: 126920, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34800863

RESUMO

The signal molecule surfactin in biofilm formation has been extensively studied in B. subtilis, but there is rare reports in other Bacillus species. In this study, we compared the surfactin-Spo0A-SinI-SinR/SlrR signalling in regulating biofilm formation amongst four Bacillus species including B. subtilis, B. amyloliquefaciens, B. velezensis, and B. licheniformis. The role of surfactin in biofilm formation was dependent on Bacillus species and strains, and the importance of surfactin was as following: B. velezensis R9 = B. amyloliquefaciens WH1 > B. licheniformis 285-3 > B. subtilis CYY. The global regulator Spo0A was essential and very conservative for biofilm formation in all four Bacillus species. The regulators SinI and SinR played different roles to regulate biofilm formation in different Bacillus species. SinI had no obvious roles in B. velezensis, B. amyloliquefaciens and B. subtilis but had a positive role in B. licheniformis. SinR had no obvious roles in B. subtilis, but played a positive role in B. velezensis, B. amyloliquefaciens and B. licheniformis. The regulator SlrR played a positive role in the biofilm formation of all four Bacillus species. Collectively, surfactin, Spo0A and SlrR are essential for the biofilm formation in all four Bacillus species, and SinR and SinI plays different roles in different Bacillus species.


Assuntos
Bacillus , Biofilmes , Transdução de Sinais , Bacillus/genética , Lipopeptídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Especificidade da Espécie
10.
Pest Manag Sci ; 78(1): 86-94, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34437749

RESUMO

BACKGROUND: Systemic resistance stimulated by rhizosphere bacteria is an important strategy for the management of plant viruses. The efficacy of Bacillus subtilis subsp. subtilis was assessed for protection of cucumber and Arabidopsis against Cucumber mosaic virus (CMV). Moreover, transcriptomic analysis was carried out for A. thaliana colonized with B. subtilis subsp. subtilis and infected with CMV. RESULTS: Treatment with a cell suspension of Bacillus revealed a significant reduction of CMV severity in comparison to their control. All Arabidopsis mutants treated with B. subtilis showed a clear reduction in CMV accumulation. Disease severity data and virus concentration titer measurements correlated with gene up-regulation in microarray and reverse transcription quantitative polymerase chain reaction (RT-qPCR) experiments. Bacillus treatment increased Arabidopsis growth characteristics (fresh and dry weights and number of leaflets) under pot conditions. The molecular mechanisms by which Bacillus activated resistance to CMV were investigated. Using the microarray hybridization technique, we were able to determine the mechanism of resistance elicited by B. subtilis against CMV. The transcriptomic analysis confirmed the up-regulation of more than 250 defense-related genes in Arabidopsis expressing induced systemic resistance (ISR). RT-qPCR results validated the overexpression of defense genes (YLS9 and PR1 in Arabidopsis and PR1 and LOX in cucumber), implying their important roles in the stimulated defense response. CONCLUSION: Through the study of microarray and RT-qPCR analyses, it can be concluded that the overexpression of pathogenesis-related genes was necessary to stimulate CMV defense in cucumber and Arabidopsis by B. subtilis subsp. subtilis. © 2021 Society of Chemical Industry.


Assuntos
Arabidopsis , Bacillus , Cucumovirus , Arabidopsis/genética , Doenças das Plantas/genética
11.
Chemosphere ; 286(Pt 2): 131795, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34371360

RESUMO

Biofilm formation ability of bacteria makes them potential in the field of tannery effluent treatment. However, the hazardous nature of effluent and environmental conditions may disturb the biofilm formation ability of bacteria which ultimately affects their effluent treatment efficiency. Accordingly, we isolated and characterized biofilm-forming bacteria Bacillus vallismortis (MT027009), Bacillus haynesii (MT027008), and Alcaligenes aquatilis (MT027005) from tannery sludge and examined them for biofilm formation under variable environmental conditions. Biofilm formation in tryptic soy broth (TSB) at different incubation times (24-120 h) revealed that the biofilm formation activity of the strain B. haynesii was not affected by incubation time, whereas the increase in biofilm formation was observed in the case of B. vallismortis (28 %) and A. aquatilis (52 %) after 48 h. The medium pH (pH 5.0-9.0) had a limited effect on biofilm formation except in the case of A. aquatilis at pH 5.0 (94 %) and pH 9.0 (80 %). Furthermore, compared to the controls (only TSB), the strains B. vallismortis, B. haynesii, and A. aquatilis showed enhanced biofilm formation in undiluted tannery effluent (28, 33, and 21 %) and 25 mg L-1 Cr(VI) (23 %, 48 % 32 %). The biofilm structure was influenced by Cr(VI) as revealed by scanning electron microscopy (SEM) analysis. The results of Cr(VI) bioreduction studies suggest that bacterial biofilm (60-99 %) has a greater potential to remove Cr(VI) than planktonic cells (43-94 %). The results of the study provide important data on biofilm formation by indigenous bacteria in effluent environment conditions, making them potential isolates for tannery effluent treatment.


Assuntos
Esgotos , Poluentes Químicos da Água , Alcaligenes , Bacillus , Bactérias , Biodegradação Ambiental , Biofilmes , Cromo/análise , Resíduos Industriais/análise , Poluentes Químicos da Água/análise
12.
J Colloid Interface Sci ; 605: 881-887, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34371431

RESUMO

While chemical methods are often used to convert graphene oxide (GO) to reduced graphene oxide (RGO), chemical reduction is often environmentally unfriendly due to the high toxicity of many chemical reducing agents. To address this limitation, Bacillus sphaericus was used here for the green reduction of GO to RGO. Successful reduction was confirmed by various advanced characterization techniques including Ultraviolet-Visible (UV-vis), X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscope and Energy Dispersive Spectrometer (SEM-EDS). With a new peak attributable to RGO at 261 nm appearing in UV-vis and XRD spectra of the reduced product also developed a new peak at 2θ = 24.6° characteristic of RGO. Successful reduction was also supported by Raman spectroscopy which showed that the ratio of the intensity band (D band: G band) increased from 0.99 to 1.17. FTIR and XPS both confirmed that specific OH (3399 cm-1), CO (1734 cm-1) and COC (287 eV) bonds were reduced. Cyclic voltammograms (CVs) showed that the produced RGO exhibited good conductivity (changed from 0.8 to 1.1 mW·cm-2). This work developed a green and easy operated method of synthesizing RGO using microorganisms.


Assuntos
Bacillus , Grafite , Bacillaceae , Óxidos
13.
Chemosphere ; 286(Pt 2): 131723, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426131

RESUMO

Screening endophyte is the most important but also difficult to achieve a successful application in endophyte assisted phytoremediation process. Traditional screening procedure faced certain limitations including long time, difficulty in ascertaining the optimum strain and insignificant promotion efficiency of the selected strain in application. In this study, a novel endophyte screening method was established using microfluidic technology, realizing the real time observation of plant root phenotyping and allowing simultaneous incubation of different endophyte-plant systems. Using this method within two weeks, showed that endophyte Bacillus paramycoides (PE1), which possessed the best capability to improve phytoremediation efficiency from hyperaccumulator P. acinosa was successfully screened by evaluating root growth rate and effluent heavy metal (HM) concentration. PE1 increased root growth rate by 54.31 % and reduced the Cd concentration of chip effluent by 46.33 %. The results were verified by pot experiment, which showed that with PE1 inoculation, the biomass of P. acinosa promoted 42.50 % and Cd removal efficiency increased 55.49 %. Besides, significant and positive correlations were observed among the phytoremediation indicators obtained from microfluidic and traditional method, indicating the feasibility of microfluidic method. Our research provided a new and efficient method for endophyte screening, which could give a better understanding of endophyte assisted phytoremediation technology of HM contaminated soil.


Assuntos
Metais Pesados , Poluentes do Solo , Bacillus , Biodegradação Ambiental , Cádmio , Endófitos , Metais Pesados/análise , Microfluídica , Solo , Poluentes do Solo/análise
14.
Sci Total Environ ; 802: 149841, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34455282

RESUMO

Biocalcification is a natural biochemical process, which has been regarded as a promising method for sequestering heavy metals or carbon dioxide in the environment, healing cracks in concrete structures, and stabilizing soil. One of the key factors in this process is calcium carbonate-producing bacteria. The purpose of this study was to maximize the production of calcium carbonate by alkaliphilic Bacillus psychrodurans LC40 isolated from a limestone cave, by manipulating the medium composition for fast and non-detrimental crack healing, and to investigate the mechanism of its production. Strain LC40 could grow well in the strongly alkaline region (pH 9.5-11), indicating its alkaliphilic nature. The optimal medium for calcium carbonate production contained 2% tryptone, 1.5% urea, 0.15% NaHCO3, and 150 mM calcium formate (pH 6). Using this medium, the yield of calcium carbonate at 72 h was approximately 8.6-fold higher than that obtained through Urea-CaCl2 medium. In this culture, the urease and carbonic anhydrase activities were observed simultaneously, and the pH of the medium was found to have increased to 9.4, leading to maximum calcium carbonate production. This suggests that this pH value is achieved by the synergistic action of the two enzymes, resulting in a high calcium carbonate yield. The crystals were characterized by FESEM, EDS and XRD, which confirmed the production of rhombohedral and spherical calcium carbonate crystals containing vaterite and calcite. Strain LC40 completely healed a 0.75 mm wide crack in a very short time of 3 days using the optimized medium as a cementation solution. Our findings indicate that B. psychrodurans LC40 could be a promising candidate for the development of eco-friendly biosealant applicable to environmentally stressed concrete structures.


Assuntos
Bacillaceae , Bacillus , Carbonato de Cálcio , Materiais de Construção , Urease
15.
Sci Total Environ ; 806(Pt 4): 151357, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742792

RESUMO

The extensive use of the diphenyl ether herbicide lactofen in recent years has caused serious environmental problems. Therefore, detoxification and elimination of lactofen from the environment are urgently required. In this study, the lactofen-degrading strain Bacillus sp. YS-1 was isolated, which achieved a 97.6% degradation rate of 50 mg/L lactofen within 15 h. The ester bond of lactofen was hydrolyzed, which generated acifluorfen, and then, the nitro group was reduced to the amino group, which generated aminoacifluorfen. Finally, the amino group was acetylated, which formed acetylated aminoacifluorfen, a novel end product in the degradation of lactofen. The toxicity of acetylated aminoacifluorfen to the root and seedling growth of cucumber and sorghum was significantly decreased compared with that of lactofen. The two esterase genes rhoE and rapE, encoding two esterases responsible for lactofen hydrolysis to acifluorfen, were cloned and expressed. The amino acid sequences encoded by rhoE and rapE were 27.78% and 88.21% identical with known esterases, respectively. The optimum temperatures for RhoE and RapE degradation of lactofen were 35 °C and 25 °C, respectively, and both esterases displayed maximal activity at pH 8.0. Both RhoE and RapE prioritized the degradation of (S)-(+)-lactofen, (S)-(-)-quizalofop-ethyl, and (S)-(-)-diclofop-methyl. This study provided the resources of bacterial strain and hydrolyzing enzyme for the removal of lactofen from the environment and the bioremediation of herbicide-contaminated soil.


Assuntos
Bacillus , Herbicidas , Biodegradação Ambiental , Esterases , Éteres Difenil Halogenados
16.
Appl Microbiol Biotechnol ; 106(1): 329-340, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34913995

RESUMO

Preliminary antibacterial metabolite production screening unveiled that B. amyloliquefaciens MTCC 12,713 associated with the intertidal red alga Kappaphycus alverezii exhibited potential inhibitory effects against drug-resistant pathogens methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Four homologous siderophore types of bacillibactins were isolated from a heterotrophic marine bacterium through bioactivity-guided purification. All detectable natural product gene clusters in B. amyloliquefaciens MTCC 12,713 were analyzed by sequencing the complete genome of the bacterium. The studied compounds displayed broad spectrum bactericidal activity against multidrug-resistant strains with a range of minimum inhibitory concentration values from 1.56 to 6.25 µg/mL, whereas standard antibiotic chloramphenicol was active at 6.25 to 12.5 µg/mL. Structure-bioactivity relationship assessment showed that higher electronic values were responsible for antibacterial properties against the nosocomial pathogens. The 2, 3-dihydroxybenzoate (dhb)-assisted biosynthetic pathway of catecholate-enclosed bacillibactins was proposed through the bacillibactin synthase multienzyme complex catalysis followed by dimerization of dhbACEBF operons with 16 genes (~ 12 kb bacterial genome). The present findings recognized an undescribed 4-methoxy-11'-pentanoyloxy-bacillibactin C as a source of potential antibacterial agent for use against drug-resistant pathogens for pharmaceutical applications. KEY POINTS: • Bacillus amyloliquefaciens in association with Kappaphycus alverezii was isolated • Four antibacterial bacillibactin analogs were identified from symbiotic bacterium • 4-Methoxy-11'-pentanoyloxy-bacillibactin C showed potential antibacterial activity.


Assuntos
Bacillus , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Oligopeptídeos , Sideróforos
17.
Arch Microbiol ; 204(1): 44, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34932137

RESUMO

The Bacillus velezensis YYC strain was isolated from the tomato rhizosphere. In a previous experiment, it increased tomato growth and induced systemic resistance against Ralstonia solanacearum. However, information on its genomic content is lacking. The complete genome sequence of the bacterium was described in this study. The genome size was 3,973,236 bp and consisted of 4034 genes in total, with a mean G + C content of 46.52%. In addition, 86 tRNAs and 27 ribosomal RNAs were identified. Fourteen clusters of secondary metabolites were identified. The KEGG database analysis showed that 69 genes were related to quorum sensing, which were important for microbe-plant interaction. In addition, genes involved in promoting plant growth and triggering plant immunity were identified from the genome. Based on digital DNA-DNA hybridizations (dDDH), B. velezensis YYC was most closely related with B. velezensis FZB42. The complete genome data of B. velezensis YYC will provide a basis for explanation of its growth-promoting mechanism and biocontrol mechanism.


Assuntos
Bacillus , Lycopersicon esculentum , Bacillus/genética , Genoma Bacteriano , Rizosfera
18.
Arch Microbiol ; 204(1): 47, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34932158

RESUMO

In the present study, the taxonomic positions of Evansella polygoni, Evansella clarkii, Bacillus shivajii and Bacillus tamaricis were evaluated using phylogenetic and genome-based comparisons. In phylogenetic (based on 16S rRNA sequencing) and phylogenomic (based on concatenation of protein-marker genes) trees, Bacillus shivajii and Bacillus tamaricis were placed between genera Evansella and Alteribacter. The amino acid identity (AAI) values suggested that Bacillus shivajii and Bacillus tamaricis were members of the genus Evansella. The average nucleotide identity (ANI) value between Evansella polygoni and Evansella clarkii was higher than the threshold values for bacterial species delineation, indicating that they belong to the same species. Based on the results, we propose to reclassify Evansella polygoni as a later heterotypic synonym of Evansella clarkii and transfer Bacillus shivajii and Bacillus tamaricis to the genus Evansella as Evansella shivajii comb. nov. and Evansella tamaricis comb. nov.


Assuntos
Ácidos Graxos , Bacillus , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Arch Microbiol ; 204(1): 26, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34921627

RESUMO

The aim of this study was to evaluate the probiotic potential of Bacillus strains with antibacterial activity against Vibrio spp. in vitro. 13 Bacillus strains were selected using Bacillus-selective agar. Among the strains elected in the preliminary screening for antagonistic effect, only the strain PJ_11 with better antibacterial ability was selected and used in further experiments. Based on the morphological and biochemical features with phylogenetic analysis of the 16S rRNA sequencing, selected strain was identified as B. pumilus. PJ_11 showed probiotic properties such as able to survive in wide range of temperatures and salinity, tolerance to 0.3% oxgal and pH 2.0, and high cell-adhesion activity. In this study, there was no special feature regarding the inhibitory effect of the isolate against Gram-positive or Gram-negative indicator bacteria. However, the inhibition effect of the culture was found to be greater than that of the supernatant. PJ_11 exhibited strong antibacterial activity against Vibrio vulnificus, Vibrio parahaemolyticus and Vibrio anguillarum that were isolated from fish (Dicentrarchus labrax) with disease symptoms. The inhibition diameter of strain PJ_11 ranged from 17.63 to 26.68 mm. In co-culture assay with the strain PJ_11 culture, the growth of V. vulnificus, V. parahaemolyticus and V. anguillarum was inhibited after 120 h with an initial level of 1.0 × 108 CFU/mL. PJ_11 had antibiotic susceptibility to commonly used antibiotics in aquaculture but only resistant to chloramphenicol. Isolate was non-hemolytic. These findings suggested that the strain PJ_11 is good probiotic candidate and may have potential applications to prevent/control vibriosis in aquaculture.


Assuntos
Bacillus , Vibrio , Aquicultura , Bacillus/genética , Filogenia , RNA Ribossômico 16S/genética , Água
20.
PLoS One ; 16(12): e0260253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34919572

RESUMO

Microbial synthesis of silver nanoparticles is more advantageous and is eco-friendly to combat the various vectors that cause diseases in humans. Hence, in the present study a Bacillus strain is isolated from marine habitat and is evaluated for its ability to synthesize silver nanoparticles (AgNPs) and its efficacy evaluated against the immature stages of selected mosquito species. The effective candidate was confirmed to be Bacillus marisflavi after 16S rRNA sequencing. The synthesis of AgNPs was confirmed by UV-Vis spectrophotometer. Atomic Force Microscopic (AFM) analysis showed spherical nanoparticles. Size analysis using Scanning Electron Microscope (SEM) showed particles of nano size averaging 78.77 nm. The diameter of the particles analyzed by Dynamic Light Scattering (DLS) showed 101.6 nm with a poly-dispersive index of 0.3. Finally the elemental nature of the nanoparticles was identified by Fourier-transform infrared spectroscopy (FTIR). LC50 and LC90 values for the ovicidal, larvicidal and pupicidal efficacy of the AgNPs against the egg, larvae and pupae of Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi respectively were evaluated. The present study revealed that the nanoparticles have an excellent toxic effect against the disease transmitting vector mosquitoes. Hence, the rapid synthesis of AgNPs would be an appropriate eco-friendly tool for biocontrol of vector mosquitoes.


Assuntos
Aedes/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Bacillus/química , Culex/efeitos dos fármacos , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Prata/farmacologia , Aedes/fisiologia , Animais , Anopheles/fisiologia , Organismos Aquáticos , Bacillus/genética , Bacillus/metabolismo , Culex/fisiologia , Química Verde , Concentração Inibidora 50 , Inseticidas/química , Larva/efeitos dos fármacos , Larva/fisiologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia , Tamanho da Partícula , Pupa/efeitos dos fármacos , Pupa/fisiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Prata/química , Zigoto/efeitos dos fármacos , Zigoto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...