Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Science ; 386(6717): 105-110, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39361762

RESUMO

Fungus-farming ants cultivate multiple lineages of fungi for food, but, because fungal cultivar relationships are largely unresolved, the history of fungus-ant coevolution remains poorly known. We designed probes targeting >2000 gene regions to generate a dated evolutionary tree for 475 fungi and combined it with a similarly generated tree for 276 ants. We found that fungus-ant agriculture originated ~66 million years ago when the end-of-Cretaceous asteroid impact temporarily interrupted photosynthesis, causing global mass extinctions but favoring the proliferation of fungi. Subsequently, ~27 million years ago, one ancestral fungal cultivar population became domesticated, i.e., obligately mutualistic, when seasonally dry habitats expanded in South America, likely isolating the cultivar population from its free-living, wet forest-dwelling conspecifics. By revealing these and other major transitions in fungus-ant coevolution, our results clarify the historical processes that shaped a model system for nonhuman agriculture.


Assuntos
Formigas , Coevolução Biológica , Fungos , Simbiose , Animais , Agricultura , Formigas/microbiologia , Formigas/genética , Domesticação , Fungos/genética , Fungos/classificação , Fotossíntese , Filogenia , América do Sul
2.
Nat Commun ; 13(1): 129, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013233

RESUMO

Large mammal herbivores are important drivers of plant evolution and vegetation patterns, but the extent to which plant trait and ecosystem geography currently reflect the historical distribution of extinct megafauna is unknown. We address this question for South and Central America (Neotropical biogeographic realm) by compiling data on plant defence traits, climate, soil, and fire, as well as on the historical distribution of extinct megafauna and extant mammal herbivores. We show that historical mammal herbivory, especially by extinct megafauna, and soil fertility explain substantial variability in wood density, leaf size, spines and latex. We also identified three distinct regions (''antiherbiomes''), differing in plant defences, environmental conditions, and megafauna history. These patterns largely matched those observed in African ecosystems, where abundant megafauna still roams, and suggest that some ecoregions experienced savanna-to-forest shifts following megafauna extinctions. Here, we show that extinct megafauna left a significant imprint on current ecosystem biogeography.


Assuntos
Adaptação Fisiológica , Coevolução Biológica , Extinção Biológica , Herbivoria/fisiologia , Defesa das Plantas contra Herbivoria/fisiologia , Dispersão Vegetal/fisiologia , Plantas/classificação , África , Animais , América Central , Ecossistema , Incêndios/história , Florestas , História Antiga , Mamíferos , Filogeografia , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Plantas/anatomia & histologia , Solo , Clima Tropical
3.
Viruses ; 13(4)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924398

RESUMO

The emergence of the Zika virus (ZIKV) mirrors its evolutionary nature and, thus, its ability to grow in diversity or complexity (i.e., related to genome, host response, environment changes, tropism, and pathogenicity), leading to it recently joining the circle of closed congenital pathogens. The causal relation of ZIKV to microcephaly is still a much-debated issue. The identification of outbreak foci being in certain endemic urban areas characterized by a high-density population emphasizes that mixed infections might spearhead the recent appearance of a wide range of diseases that were initially attributed to ZIKV. Globally, such coinfections may have both positive and negative effects on viral replication, tropism, host response, and the viral genome. In other words, the possibility of coinfection may necessitate revisiting what is considered to be known regarding the pathogenesis and epidemiology of ZIKV diseases. ZIKV viral coinfections are already being reported with other arboviruses (e.g., chikungunya virus (CHIKV) and dengue virus (DENV)) as well as congenital pathogens (e.g., human immunodeficiency virus (HIV) and cytomegalovirus (HCMV)). However, descriptions of human latent viruses and their impacts on ZIKV disease outcomes in hosts are currently lacking. This review proposes to select some interesting human latent viruses (i.e., herpes simplex virus 2 (HSV-2), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), human parvovirus B19 (B19V), and human papillomavirus (HPV)), whose virological features and co-exposition with ZIKV may provide evidence of the syndemism process, shedding some light on the emergence of the ZIKV-induced global congenital syndrome in South America.


Assuntos
Coinfecção/complicações , Coinfecção/virologia , Microcefalia/etiologia , Viroses/complicações , Infecção por Zika virus/etiologia , Coevolução Biológica , Reservatórios de Doenças/virologia , Humanos , Microcefalia/virologia , América do Sul , Tropismo Viral , Viroses/classificação , Latência Viral , Replicação Viral , Zika virus/patogenicidade , Infecção por Zika virus/congênito
4.
Curr Opin Virol ; 47: 79-85, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33647556

RESUMO

The virosphere is fascinatingly vast and diverse, but as mandatory intracellular parasites, viral particles must reach the intracellular space to guarantee their species' permanence on the planet. While most known viruses that infect animals explore the endocytic pathway to enter the host cell, a diverse group of ancient viruses that make up the phylum Nucleocytoviricota appear to have evolved to explore new access' routes to the cell's cytoplasm. Giant viruses of amoeba take advantage of the phagocytosis process that these organisms exploit a lot, while phycodnavirus must actively break through a algal cellulose cell wall. The mechanisms of entry into the cell and the viruses themselves are diverse, varying in the steps of adhesion, entry, and uncoating. These are clues left by evolution about how these organisms shaped and were shaped by convoluting with eukaryotes.


Assuntos
Vírus Gigantes/fisiologia , Internalização do Vírus , Amoeba/virologia , Animais , Coevolução Biológica , Chlorella/virologia , Vírus Gigantes/classificação , Ligação Viral , Desenvelopamento do Vírus
5.
Sci Rep ; 11(1): 6902, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767294

RESUMO

The problem of finding the correct set of partners for a given pair of interacting protein families based on multi-sequence alignments (MSAs) has received great attention over the years. Recently, the native contacts of two interacting proteins were shown to store the strongest mutual information (MI) signal to discriminate MSA concatenations with the largest fraction of correct pairings. Although that signal might be of practical relevance in the search for an effective heuristic to solve the problem, the number of MSA concatenations with near-native MI is large, imposing severe limitations. Here, a Genetic Algorithm that explores possible MSA concatenations according to a MI maximization criteria is shown to find degenerate solutions with two error sources, arising from mismatches among (i) similar and (ii) non-similar sequences. If mistakes made among similar sequences are disregarded, type-(i) solutions are found to resolve correct pairings at best true positive (TP) rates of 70%-far above the very same estimates in type-(ii) solutions. A machine learning classification algorithm helps to show further that differences between optimized solutions based on TP rates are not artificial and may have biological meaning associated with the three-dimensional distribution of the MI signal. Type-(i) solutions may therefore correspond to reliable results for predictive purposes, found here to be more likely obtained via MI maximization across protein systems having a minimum critical number of amino acid contacts on their interaction surfaces (N > 200).


Assuntos
Aprendizado de Máquina , Modelos Genéticos , Proteínas/metabolismo , Alinhamento de Sequência , Coevolução Biológica , Evolução Molecular , Proteínas/genética
6.
Nat Commun ; 11(1): 5951, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230120

RESUMO

Rabies is a viral zoonosis transmitted by vampire bats across Latin America. Substantial public health and agricultural burdens remain, despite decades of bats culls and livestock vaccinations. Virally vectored vaccines that spread autonomously through bat populations are a theoretically appealing solution to managing rabies in its reservoir host. We investigate the biological and epidemiological suitability of a vampire bat betaherpesvirus (DrBHV) to act as a vaccine vector. In 25 sites across Peru with serological and/or molecular evidence of rabies circulation, DrBHV infects 80-100% of bats, suggesting potential for high population-level vaccine coverage. Phylogenetic analysis reveals host specificity within neotropical bats, limiting risks to non-target species. Finally, deep sequencing illustrates DrBHV super-infections in individual bats, implying that DrBHV-vectored vaccines might invade despite the highly prevalent wild-type virus. These results indicate DrBHV as a promising candidate vector for a transmissible rabies vaccine, and provide a framework to discover and evaluate candidate viral vectors for vaccines against bat-borne zoonoses.


Assuntos
Betaherpesvirinae/fisiologia , Quirópteros/virologia , Raiva/epidemiologia , Raiva/veterinária , Animais , Betaherpesvirinae/classificação , Betaherpesvirinae/genética , Coevolução Biológica , Bovinos , Quirópteros/classificação , Genoma Viral/genética , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Especificidade de Hospedeiro , Mamíferos/classificação , Mamíferos/virologia , Peru/epidemiologia , Filogenia , Raiva/prevenção & controle , Raiva/transmissão , Vírus da Raiva/imunologia , Vírus da Raiva/fisiologia , Estudos Soroepidemiológicos , Superinfecção/veterinária , Superinfecção/virologia
7.
J Evol Biol ; 33(7): 957-965, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32277841

RESUMO

Genital coevolution is a pervasive phenomenon as changes in one sex tend to impose fitness consequences on the other, generating sexual conflict. Sexual conflict is often thought to cause stronger selection on males due to the Darwin-Bateman's anisogamy paradigm. However, recent studies have demonstrated that female genitalia may be equally elaborated and perform diverse extra-copulatory functions. These characteristics suggest that female genitals can also be primary targets of selection, especially where natural selection acts on female-exclusive functions such as oviposition. Here, we test this hypothesis in a statistical phylogenetic framework across the whole beetle (Coleoptera) phylogeny, investigating whether coevolution of specific genital traits may be triggered by changes in females. We focus on traits of the proctiger, which composes part of the male terminalia and the female ovipositor. Our results present a comprehensive case of male-female genital coevolution and provide solid statistical evidence for a female-initiated coevolutionary process where the vast majority of evolutionary transitions in males have occurred only after changes in females. We corroborate the hypothesis that female traits may change independently and elicit counter-adaptations in males. Furthermore, by showing a consistent pattern across the phylogeny of the most diverse group of animals, our results suggest that this female-driven dynamics may persist through long time scales.


Assuntos
Coevolução Biológica , Besouros/genética , Filogenia , Seleção Genética , Animais , Besouros/anatomia & histologia , Feminino , Genitália/anatomia & histologia , Masculino
8.
Proteins ; 88(4): 625-632, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31693206

RESUMO

The analysis of amino acid coevolution has emerged as a practical method for protein structural modeling by providing structural contact information from alignments of amino acid sequences. In parallel, chemical cross-linking/mass spectrometry (XLMS) has gained attention as a universally applicable method for obtaining low-resolution distance constraints to model the quaternary arrangements of proteins, and more recently even protein tertiary structures. Here, we show that the structural information obtained by XLMS and coevolutionary analysis are effectively complementary: the distance constraints obtained by each method are almost exclusively associated with non-coincident pairs of residues, and modeling results obtained by the combination of both sets are improved relative to considering the same total number of constraints of a single type. The structural rationale behind the complementarity of the distance constraints is discussed and illustrated for a representative set of proteins with different sizes and folds.


Assuntos
Aminoácidos/química , Coevolução Biológica , Proteínas/química , Sequência de Aminoácidos , Reagentes de Ligações Cruzadas , Humanos , Espectrometria de Massas , Modelos Moleculares , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas/fisiologia , Relação Estrutura-Atividade , Termodinâmica
9.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;26: e20200128, 2020. ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135154

RESUMO

As in previous contributions to the JVATiTD, the aim of this note is to bring some general information on a particular aspect of the scorpion biology. An attempt is made to explain the possible coevolution of telson morphology and venom glands, which took place during several hundred million years and in particular since scorpions migrated from aquatic to terrestrial environments. Three components can be directly associated with predation and defensive behaviours: (1) morphology of the chelae and structure of the chelae fingers granulations; (2) morphology of the metasoma and in particular of the telson; (3) evolution of tegumentary glands in the telson toward different types of venom glands. Since a number of recent contributions already treated some of these aspects, I will limit my comments to the possible evolution of the telson in relation to the evolution of venom glands. As in previous contributions, the content of this article is basically addressed to non-specialists on scorpions whose research embraces scorpions in several fields such as venom toxins and public health.(AU)


Assuntos
Animais , Venenos , Comportamento Predatório , Escorpiões , Coevolução Biológica
10.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20200128, 2020. graf
Artigo em Inglês | VETINDEX | ID: vti-32206

RESUMO

As in previous contributions to the JVATiTD, the aim of this note is to bring some general information on a particular aspect of the scorpion biology. An attempt is made to explain the possible coevolution of telson morphology and venom glands, which took place during several hundred million years and in particular since scorpions migrated from aquatic to terrestrial environments. Three components can be directly associated with predation and defensive behaviours: (1) morphology of the chelae and structure of the chelae fingers granulations; (2) morphology of the metasoma and in particular of the telson; (3) evolution of tegumentary glands in the telson toward different types of venom glands. Since a number of recent contributions already treated some of these aspects, I will limit my comments to the possible evolution of the telson in relation to the evolution of venom glands. As in previous contributions, the content of this article is basically addressed to non-specialists on scorpions whose research embraces scorpions in several fields such as venom toxins and public health.(AU)


Assuntos
Animais , Venenos de Escorpião/análise , Venenos de Escorpião/biossíntese , Exoesqueleto/química , Coevolução Biológica
11.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31676475

RESUMO

The geographic mosaic theory of coevolution (GMC) posits that coevolutionary dynamics go beyond local coevolution and are comprised of the following three components: geographic selection mosaics, coevolutionary hot spots, and trait remixing. It is unclear whether the GMC applies to bacteria, as horizontal gene transfer and cosmopolitan dispersal may violate theoretical assumptions. Here, we test key GMC predictions in an antibiotic-producing bacterial symbiont (genus Pseudonocardia) that protects the crops of neotropical fungus-farming ants (Apterostigma dentigerum) from a specialized pathogen (genus Escovopsis). We found that Pseudonocardia antibiotic inhibition of common Escovopsis pathogens was elevated in A. dentigerum colonies from Panama compared to those from Costa Rica. Furthermore, a Panama Canal Zone population of Pseudonocardia on Barro Colorado Island (BCI) was locally adapted, whereas two neighboring populations were not, consistent with a GMC-predicted selection mosaic and a hot spot of adaptation surrounded by areas of maladaptation. Maladaptation was shaped by incongruent Pseudonocardia-Escovopsis population genetic structure, whereas local adaptation was facilitated by geographic isolation on BCI after the flooding of the Panama Canal. Genomic assessments of antibiotic potential of 29 Pseudonocardia strains identified diverse and unique biosynthetic gene clusters in BCI strains despite low genetic diversity in the core genome. The strength of antibiotic inhibition was not correlated with the presence/absence of individual biosynthetic gene clusters or with parasite location. Rather, biosynthetic gene clusters have undergone selective sweeps, suggesting that the trait remixing dynamics conferring the long-term maintenance of antibiotic potency rely on evolutionary genetic changes within already-present biosynthetic gene clusters and not simply on the horizontal acquisition of novel genetic elements or pathways.IMPORTANCE Recently, coevolutionary theory in macroorganisms has been advanced by the geographic mosaic theory of coevolution (GMC), which considers how geography and local adaptation shape coevolutionary dynamics. Here, we test GMC in an ancient symbiosis in which the ant Apterostigma dentigerum cultivates fungi in an agricultural system analogous to human farming. The cultivars are parasitized by the fungus Escovopsis The ants maintain symbiotic actinobacteria with antibiotic properties that help combat Escovopsis infection. This antibiotic symbiosis has persisted for tens of millions of years, raising the question of how antibiotic potency is maintained over these time scales. Our study tests the GMC in a bacterial defensive symbiosis and in a multipartite symbiosis framework. Our results show that this multipartite symbiotic system conforms to the GMC and demonstrate that this theory is applicable in both microbes and indirect symbiont-symbiont interactions.


Assuntos
Aclimatação/fisiologia , Actinobacteria/metabolismo , Antibacterianos/metabolismo , Coevolução Biológica , Simbiose/fisiologia , Actinobacteria/genética , Animais , Antibacterianos/farmacologia , Formigas/microbiologia , Vias Biossintéticas/genética , Costa Rica , Interações entre Hospedeiro e Microrganismos/fisiologia , Hypocreales/efeitos dos fármacos , Hypocreales/patogenicidade , Metabolismo Secundário/genética , Simbiose/genética
12.
Parasit Vectors ; 12(1): 473, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604471

RESUMO

BACKGROUND: A considerable amount of evidence has favored ecological host-fitting, rather than coevolution, as the main mechanism responsible for trypanosome divergence. Nevertheless, beyond the study of human pathogenic trypanosomes, the genetic basis of host specificity among trypanosomes isolated from forest-inhabiting hosts remains largely unknown. METHODS: To test possible scenarios on ecological host-fitting and coevolution, we combined a host capture recapture strategy with parasite genetic data and studied the genetic variation, population dynamics and phylogenetic relationships of Trypanosoma terrestris, a recently described trypanosome species isolated from lowland tapirs in the Brazilian Pantanal and Atlantic Forest biomes. RESULTS: We made inferences of T. terrestris population structure at three possible sources of genetic variation: geography, tapir hosts and 'putative' vectors. We found evidence of a bottleneck affecting the contemporary patterns of parasite genetic structure, resulting in little genetic diversity and no evidence of genetic structure among hosts or biomes. Despite this, a strongly divergent haplotype was recorded at a microgeographical scale in the landscape of Nhecolândia in the Pantanal. However, although tapirs are promoting the dispersion of the parasites through the landscape, neither geographical barriers nor tapir hosts were involved in the isolation of this haplotype. Taken together, these findings suggest that either host-switching promoted by putative vectors or declining tapir population densities are influencing the current parasite population dynamics and genetic structure. Similarly, phylogenetic analyses revealed that T. terrestris is strongly linked to the evolutionary history of its perissodactyl hosts, suggesting a coevolving scenario between Perissodactyla and their trypanosomes. Additionally, T. terrestris and T. grayi are closely related, further indicating that host-switching is a common feature promoting trypanosome evolution. CONCLUSIONS: This study provides two lines of evidence, both micro- and macroevolutionary, suggesting that both host-switching by ecological fitting and coevolution are two important and non-mutually-exclusive processes driving the evolution of trypanosomes. In line with other parasite systems, our results support that even in the face of host specialization and coevolution, host-switching may be common and is an important determinant of parasite diversification.


Assuntos
Perissodáctilos/parasitologia , Trypanosoma/classificação , Jacarés e Crocodilos/parasitologia , Animais , Teorema de Bayes , Coevolução Biológica , Análise por Conglomerados , Fenômenos Ecológicos e Ambientais , Ecossistema , Variação Genética , Genética Populacional , Interações Hospedeiro-Parasita , Filogenia , Dinâmica Populacional , Trypanosoma/genética , Trypanosoma/crescimento & desenvolvimento
13.
J Mol Evol ; 87(1): 7-15, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30456441

RESUMO

The definition of a genomic signature (GS) is "the total net response to selective pressure". Recent isolation and sequencing of naturally occurring organisms, hereby named entoorganisms, within Acanthamoeba polyphaga, raised the hypothesis of a common genomic signature despite their diverse and unrelated evolutionary origin. Widely accepted and implemented tests for GS detection are oligonucleotide relative frequencies (OnRF) and relative codon usage (RCU) surveys. A common pattern and strong correlations were unveiled from OnRFs among A. polyphaga's Mimivirus and virophage Sputnik. RCU showed a common A-T bias at third codon position. We expanded tests to the amoebal mitochondrial genome and amoeba-resistant bacteria, achieving strikingly coherent results to the aforementioned viral analyses. The GSs in these entoorganisms of diverse evolutionary origin are coevolutionarily conserved within an intracellular environment that provides sanctuary for species of ecological and biomedical relevance.


Assuntos
Acanthamoeba/genética , Coevolução Biológica/genética , Mimiviridae/genética , Amoeba/genética , Animais , Bactérias/genética , Códon/genética , Evolução Molecular , Genoma Viral , Genômica , Mitocôndrias/genética , Parasitos/genética , Proteínas Virais/genética , Virófagos/genética
14.
Rev. salud bosque ; 9(2): 27-34, 2019. graf
Artigo em Espanhol | COLNAL, LILACS | ID: biblio-1102787

RESUMO

La epigenética es el estudio de los cambios de los genes y su expresión que no generan modificaciones en la secuencia de ADN. Esta implica una serie de mecanismos como la metilación de citosinas del ADN, lo cual se manifiesta en el fenotipo y genera heredabilidad, también llamada heren-cia "suave y fuerte". Aquí es importante recordar que el fenotipo es una condición emergente del genotipo y de la epigenética. La epigenética mantiene una correcta impronta genómica en condiciones naturales y sin perturbaciones, por el contrario, anormalidades epigenéticas generan una expresión génica y fenotípica inapropiada. Las modifica-ciones fenotípicas se presentan en plantas, animales y seres humanos, lo que finalmente se expresa en los ecosistemas generando una condición emergente más allá de la condición humana: la salud. De acuerdo a lo anterior y desde la perspectiva del pensamiento complejo, la salud es la expresión de la vida per se, razón por la cual la epigenética forma parte de los factores que permiten la emergencia de la salud. En otras palabras, la salud surge como consecuencia de la interacción entre genética, cultura, sociedad, economía, pensamiento, vivencias y experiencias, y es el reflejo de lo que nos hace plenamente humanos.


Epigenetics refers to the study of gene-changes and its expression without altering DNA sequencing. It implies a series of mechanisms such as DNA cytokine methylation. Such mechanism generates heritability and is expressed in the phenotype. Heritability has also become known as soft and strong heredity. The phenotype is an emergent condition stemming from both the genotype and Epigenetics, thus responding to the four dimensions of biological evolution. Under natural, undisturbed conditions, Epigenetics maintains an appropriate genomic imprinting, while epigenetic abnormalities create gene and phenotypic inappropriate expressions. Phenotypic modifications are also present in plants, animals and human beings. Such, ultimately is expressed in ecosystems generating an emerging condition that stretches beyond the human condition and constitutes that which is referred to as health. According to the complex thought approach, health goes beyond determination and balance; health is the very expression of life per se. It emerges as a consequence of genetics, economics, thought and experiences, encompassing that which reflects what makes us fully humans


Epigenética é o estudo das alterações genéticas e de sua expressão sem gerar modificações na sequência do DNA. Envolve uma série de mecanismos, como a metilação da DNA pela citosina, que se manifesta no fenótipo, gerando herdabilidade, denominada herança "mole e forte". O fenótipo é uma condição emergen-te do genótipo e, por sua vez, da epigenética, respondendo às quatro dimensões da evolução biológica. A epigenética em condições naturais, sem distúrbios, mantém uma impressão genómica certa, ao contrário, as anormalidades epigenéticas geram um gene inadequado e expressão fenotípica. Da mesma forma, modificações fenotípicas são apresentadas em plantas, animais e seres humanos, que são finalmente expressas em ecossistemas, gerando uma condição emergente além da condição humana: Saúde. De acordo com o exposto e sob a perspectiva do pensamento complexo, a saúde vai além da determinação, do equilíbrio, sendo a expressão da vida em si. A epigenética é uma dimensão que infere na emergência, mas não um fator determinístico. Finalmente, a saúde surge como conseqüência da genética, da cultura, da condição social e econômica, do pensamento, em fim, das experiências, refletindo o que nos torna plenamente humanos.


Assuntos
Humanos , Epigenômica , Fenótipo , Evolução Biológica , Coevolução Biológica , Coevolução Biológica/genética
15.
Proc Natl Acad Sci U S A ; 115(47): 12017-12022, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30404910

RESUMO

Ecological interactions shape adaptations through coevolution not only between pairs of species but also through entire multispecies assemblages. Local coevolution can then be further altered through spatial processes that have been formally partitioned in the geographic mosaic theory of coevolution. A major current challenge is to understand the spatial patterns of coadaptation that emerge across ecosystems through the interplay between gene flow and selection in networks of interacting species. Here, we combine a coevolutionary model, network theory, and empirical information on species interactions to investigate how gene flow and geographical variation in selection affect trait patterns in mutualistic networks. We show that gene flow has the surprising effect of favoring trait matching, especially among generalist species in species-rich networks typical of pollination and seed dispersal interactions. Using an analytical approximation of our model, we demonstrate that gene flow promotes trait matching by making the adaptive landscapes of different species more similar to each other. We use this result to show that the progressive loss of gene flow associated with habitat fragmentation may undermine coadaptation in mutualisms. Our results therefore provide predictions of how spatial processes shape the evolution of species-rich interactions and how the widespread fragmentation of natural landscapes may modify the coevolutionary process.


Assuntos
Coevolução Biológica/genética , Adaptação Fisiológica , Evolução Biológica , Ecossistema , Fluxo Gênico/genética , Geografia , Modelos Genéticos , Polinização , Simbiose
16.
World J Gastroenterol ; 24(28): 3071-3089, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30065554

RESUMO

Helicobacter pylori (H. pylori) is present in roughly 50% of the human population worldwide and infection levels reach over 70% in developing countries. The infection has classically been associated with different gastro-intestinal diseases, but also with extra gastric diseases. Despite such associations, the bacterium frequently persists in the human host without inducing disease, and it has been suggested that H. pylori may also play a beneficial role in health. To understand how H. pylori can produce such diverse effects in the human host, several studies have focused on understanding the local and systemic effects triggered by this bacterium. One of the main mechanisms by which H. pylori is thought to damage the host is by inducing local and systemic inflammation. However, more recently, studies are beginning to focus on the effects of H. pylori and its metabolism on the gastric and intestinal microbiome. The objective of this review is to discuss how H. pylori has co-evolved with humans, how H. pylori presence is associated with positive and negative effects in human health and how inflammation and/or changes in the microbiome are associated with the observed outcomes.


Assuntos
Microbioma Gastrointestinal/fisiologia , Infecções por Helicobacter/fisiopatologia , Helicobacter pylori/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Inflamação/fisiopatologia , Coevolução Biológica/fisiologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/fisiopatologia , Infecções por Helicobacter/epidemiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Humanos , Inflamação/microbiologia
17.
PLoS One ; 13(6): e0198727, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29912912

RESUMO

Cutaneous leishmaniasis is a neglected parasitic disease that manifests in infected individuals under different phenotypes, with a range of factors contributing to its broad clinical spectrum. One factor, Leishmania RNA Virus 1 (LRV1), has been described as an endosymbiont present in different species of Leishmania. LRV1 significantly worsens the lesion, exacerbating the immune response in both experimentally infected animals and infected individuals. Little is known about the composition and genetic diversity of these viruses. Here, we investigated the relationship between the genetic composition of LRV1 detected in strains of Leishmania (Viannia) braziliensis and L. (V.) guyanensis and the interaction between the endosymbiont and the parasitic species, analyzing an approximately 850 base pair region of the viral genome. We also included one LRV1 sequence detected in L. (V.) shawi, representing the first report of LRV1 in a species other than L. braziliensis and L. guyanensis. The results illustrate the genetic diversity of the LRV1 strains analyzed here, with smaller divergences detected among viral sequences from the same parasite species. Phylogenetic analyses showed that the LRV1 sequences are grouped according to the parasite species and possibly according to the population of the parasite in which the virus was detected, corroborating the hypothesis of joint evolution of the viruses with the speciation of Leishmania parasites.


Assuntos
Leishmania/virologia , Leishmaniavirus/genética , Coevolução Biológica/genética , Variação Genética/genética , Genoma Viral/genética , Leishmania braziliensis/virologia , Leishmania guyanensis/virologia , Leishmaniose/parasitologia , Filogenia , Análise de Sequência de DNA , América do Sul , Especificidade da Espécie
18.
Mol Ecol ; 26(24): 6921-6937, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29134724

RESUMO

Leafcutter ants propagate co-evolving fungi for food. The nearly 50 species of leafcutter ants (Atta, Acromyrmex) range from Argentina to the United States, with the greatest species diversity in southern South America. We elucidate the biogeography of fungi cultivated by leafcutter ants using DNA sequence and microsatellite-marker analyses of 474 cultivars collected across the leafcutter range. Fungal cultivars belong to two clades (Clade-A and Clade-B). The dominant and widespread Clade-A cultivars form three genotype clusters, with their relative prevalence corresponding to southern South America, northern South America, Central and North America. Admixture between Clade-A populations supports genetic exchange within a single species, Leucocoprinus gongylophorus. Some leafcutter species that cut grass as fungicultural substrate are specialized to cultivate Clade-B fungi, whereas leafcutters preferring dicot plants appear specialized on Clade-A fungi. Cultivar sharing between sympatric leafcutter species occurs frequently such that cultivars of Atta are not distinct from those of Acromyrmex. Leafcutters specialized on Clade-B fungi occur only in South America. Diversity of Clade-A fungi is greatest in South America, but minimal in Central and North America. Maximum cultivar diversity in South America is predicted by the Kusnezov-Fowler hypothesis that leafcutter ants originated in subtropical South America and only dicot-specialized leafcutter ants migrated out of South America, but the cultivar diversity becomes also compatible with a recently proposed hypothesis of a Central American origin by postulating that leafcutter ants acquired novel cultivars many times from other nonleafcutter fungus-growing ants during their migrations from Central America across South America. We evaluate these biogeographic hypotheses in the light of estimated dates for the origins of leafcutter ants and their cultivars.


Assuntos
Agaricales/genética , Formigas/microbiologia , Coevolução Biológica , Animais , Formigas/classificação , América Central , Marcadores Genéticos , Genética Populacional , Genótipo , Repetições de Microssatélites , América do Norte , Filogenia , Filogeografia , América do Sul , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA