Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.533
Filtrar
1.
Molecules ; 28(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838968

RESUMO

With overexpression in various cancers, the gastrin-releasing peptide receptor (GRPR) is a promising target for cancer imaging and therapy. However, the high pancreas uptake of reported GRPR-targeting radioligands limits their clinical application. Our goal was to develop 68Ga-labeled agonist tracers for detecting GRPR-expressing tumors with positron emission tomography (PET), and compare them with the clinically validated agonist PET tracer, [68Ga]Ga-AMBA. Ga-TacBOMB2, TacBOMB3, and TacBOMB4, derived from [Thz14]Bombesin(7-14), were confirmed to be GRPR agonists by a calcium mobilization study, and their binding affinities (Ki(GRPR)) were determined to be 7.62 ± 0.19, 6.02 ± 0.59, and 590 ± 36.5 nM, respectively, via in vitro competition binding assays. [68Ga]Ga-TacBOMB2, [68Ga]Ga-TacBOMB3, and [68Ga]Ga-AMBA clearly visualized PC-3 tumor xenografts in a PET imaging study. [68Ga]Ga-TacBOMB2 showed comparable tumor uptake but superior tumor-to-background contrast ratios when compared to [68Ga]Ga-AMBA. Moreover, [68Ga]Ga-TacBOMB2 and [68Ga]Ga-TacBOMB3 showed a much lower rate of uptake in the pancreas (1.30 ± 0.14 and 2.41 ± 0.72%ID/g, respectively) than [68Ga]Ga-AMBA (62.4 ± 4.26%ID/g). In conclusion, replacing Met14 in the GRPR-targeting sequence with Thz14 retains high GRPR-binding affinity and agonist properties. With good tumor uptake and tumor-to-background uptake ratios, [68Ga]Ga-TacBOMB2 is promising for detecting GRPR-expressing tumors. The much lower pancreas uptake of [68Ga]Ga-TacBOMB2 and [68Ga]Ga-TacBOMB3 suggests that [Thz14]Bombesin(7-14) is a promising targeting vector for the design of GRPR-targeting radiopharmaceuticals, especially for radioligand therapy application.


Assuntos
Bombesina , Receptores da Bombesina , Humanos , Bombesina/química , Receptores da Bombesina/metabolismo , Radioisótopos de Gálio/química , Tomografia por Emissão de Pósitrons/métodos , Pâncreas/metabolismo , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834867

RESUMO

Advances in nanomedicine bring the attention of researchers to the molecular targets that can play a major role in the development of novel therapeutic and diagnostic modalities for cancer management. The choice of a proper molecular target can decide the efficacy of the treatment and endorse the personalized medicine approach. Gastrin-releasing peptide receptor (GRPR) is a G-protein-coupled membrane receptor, well known to be overexpressed in numerous malignancies including pancreatic, prostate, breast, lung, colon, cervical, and gastrointestinal cancers. Therefore, many research groups express a deep interest in targeting GRPR with their nanoformulations. A broad spectrum of the GRPR ligands has been described in the literature, which allows tuning of the properties of the final formulation, particularly in the field of the ligand affinity to the receptor and internalization possibilities. Hereby, the recent advances in the field of applications of various nanoplatforms that are able to reach the GRPR-expressing cells are reviewed.


Assuntos
Neoplasias , Receptores da Bombesina , Humanos , Bombesina , Nanomedicina , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica
3.
Respir Res ; 24(1): 42, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740669

RESUMO

BACKGROUND: Clinical and experimental evidence shows lung fluid volume as a modulator of fetal lung growth with important value in treating fetal lung hypoplasia. Thus, understanding the mechanisms underlying these morphological dynamics has been the topic of multiple investigations with, however, limited results, partially due to the difficulty of capturing or recapitulating these movements in the lab. In this sense, this study aims to establish an ex vivo model allowing the study of lung fluid function in branching morphogenesis and identify the subsequent molecular/ cellular mechanisms. METHODS: Ex vivo lung explant culture was selected as a model to study branching morphogenesis, and intraluminal injections were performed to change the composition of lung fluid. Distinct chloride (Cl-) concentrations (5.8, 29, 143, and 715 mM) or Cl- channels inhibitors [antracene-9-carboxylic acid (A9C), cystic fibrosis transmembrane conductance regulator inhibitor172 (CFTRinh), and calcium-dependent Cl- channel inhibitorA01 (CaCCinh)] were injected into lung lumen at two timepoints, day0 (D0) and D2. At D4, morphological and molecular analyses were performed in terms of branching morphogenesis, spatial distribution (immunofluorescence), and protein quantification (western blot) of mechanoreceptors (PIEZO1 and PIEZO2), neuroendocrine (bombesin, ghrelin, and PGP9.5) and smooth muscle [alpha-smooth muscle actin (α-SMA) and myosin light chain 2 (MLC2)] markers. RESULTS: For the first time, we described effective intraluminal injections at D0 and D2 and demonstrated intraluminal movements at D4 in ex vivo lung explant cultures. Through immunofluorescence assay in in vivo and ex vivo branching morphogenesis, we show that PGP9.5 colocalizes with PIEZO1 and PIEZO2 receptors. Fetal lung growth is increased at higher [Cl-], 715 mM Cl-, through the overexpression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. In contrast, intraluminal injection of CFTRinh or CaCCinh decreases fetal lung growth and the expression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. Finally, the inhibition of PIEZO1/PIEZO2 by GsMTx4 decreases branching morphogenesis and ghrelin, bombesin, MLC2, and α-SMA expression in an intraluminal injection-independent manner. CONCLUSIONS: Our results identify PIEZO1/PIEZO2 expressed in neuroendocrine cells as a regulator of fetal lung growth induced by lung fluid.


Assuntos
Bombesina , Cloretos , Bombesina/metabolismo , Bombesina/farmacologia , Grelina/farmacologia , Pulmão/metabolismo , Mecanotransdução Celular , Morfogênese , Proteínas de Membrana
4.
Proc Natl Acad Sci U S A ; 120(6): e2216230120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36724251

RESUMO

Gastrin releasing peptide receptor (GRPR), a member of the bombesin (BBN) G protein-coupled receptors, is aberrantly overexpressed in several malignant tumors, including those of the breast, prostate, pancreas, lung, and central nervous system. Additionally, it also mediates non-histaminergic itch and pathological itch conditions in mice. Thus, GRPR could be an attractive target for cancer and itch therapy. Here, we report the inactive state crystal structure of human GRPR in complex with the non-peptide antagonist PD176252, as well as two active state cryo-electron microscopy (cryo-EM) structures of GRPR bound to the endogenous peptide agonist gastrin-releasing peptide and the synthetic BBN analog [D-Phe6, ß-Ala11, Phe13, Nle14] Bn (6-14), in complex with Gq heterotrimers. These structures revealed the molecular mechanisms for the ligand binding, receptor activation, and Gq proteins signaling of GRPR, which are expected to accelerate the structure-based design of GRPR antagonists and agonists for the treatments of cancer and pruritus.


Assuntos
Neoplasias , Receptores da Bombesina , Masculino , Humanos , Camundongos , Animais , Receptores da Bombesina/agonistas , Receptores da Bombesina/metabolismo , Microscopia Crioeletrônica , Bombesina/farmacologia , Peptídeo Liberador de Gastrina/metabolismo , Prurido/metabolismo
5.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834815

RESUMO

Targeted tumour therapy has proved to be an efficient alternative to overcome the limitations of conventional chemotherapy. Among several receptors upregulated in cancer cells, the gastrin-releasing peptide receptor (GRP-R) has recently emerged as a promising target for cancer imaging, diagnosing and treatment due to its overexpression on cancerous tissues such as breast, prostate, pancreatic and small-cell lung cancer. Herein, we report on the in vitro and in vivo selective delivery of the cytotoxic drug daunorubicin to prostate and breast cancer, by targeting GRP-R. Exploiting many bombesin analogues as homing peptides, including a newly developed peptide, we produced eleven daunorubicin-containing peptide-drug conjugates (PDCs), acting as drug delivery systems to safely reach the tumour environment. Two of our bioconjugates revealed remarkable anti-proliferative activity, an efficient uptake by all three tested human breast and prostate cancer cell lines, high stability in plasma and a prompt release of the drug-containing metabolite by lysosomal enzymes. Moreover, they revealed a safe profile and a consistent reduction of the tumour volume in vivo. In conclusion, we highlight the importance of GRP-R binding PDCs in targeted cancer therapy, with the possibility of further tailoring and optimisation.


Assuntos
Bombesina , Neoplasias da Próstata , Masculino , Humanos , Receptores da Bombesina/metabolismo , Preparações Farmacêuticas , Peptídeos , Neoplasias da Próstata/metabolismo , Daunorrubicina
6.
Chembiochem ; 24(4): e202200647, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36479913

RESUMO

An increasing number of novel Ru(II) polypyridyl complexes have been successfully applied as photosensitizers (PSs) for photodynamic therapy (PDT). Despite recent advances in optimized PSs with refined photophysical properties, the lack of tumoral selectivity is often a major hurdle for their clinical development. Here, classical maleimide and versatile NHS-activated acrylamide strategies were employed to site-selectively conjugate a promising Ru(II) polypyridyl complex to the N-terminally Cys-modified Bombesin (BBN) targeting unit. Surprisingly, the decreased cell uptake of these novel Ru-BBN conjugates in cancer cells did not hamper the high phototoxic activity of the Ru-containing bioconjugates and even decreased the toxicity of the constructs in the absence of light irradiation. Overall, although deceiving in terms of selectivity, our new bioconjugates could still be useful for advanced cancer treatment due to their nontoxicity in the dark.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Fotoquimioterapia , Rutênio , Complexos de Coordenação/farmacologia , Complexos de Coordenação/efeitos da radiação , Rutênio/farmacologia , Bombesina , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico
7.
Mol Pharm ; 20(1): 267-278, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36542354

RESUMO

Early diagnosis of radiation-induced pulmonary fibrosis (RIPF) in lung cancer patients after radiation therapy is important. A gastrin-releasing peptide receptor (GRPR) mediates the inflammation and fibrosis after irradiation in mice lungs. Previously, our group synthesized a GRPR-targeted positron emission tomography (PET) imaging probe, [64Cu]Cu-NODAGA-galacto-bombesin (BBN), an analogue peptide of GRP. In this study, we evaluated the usefulness of [64Cu]Cu-NODAGA-galacto-BBN for the early prediction of RIPF. We prepared RIPF mice and acquired PET/CT images of [18F]F-FDG and [64Cu]Cu-NODAGA-galacto-BBN at 0, 2, 5, and 11 weeks after irradiation (n = 3-10). We confirmed that [64Cu]Cu-NODAGA-galacto-BBN targets GRPR in irradiated RAW 264.7 cells. In addition, we examined whether [64Cu]Cu-NODAGA-galacto-BBN monitors the therapeutic efficacy in RIPF mice (n = 4). As a result, the lung uptake ratio (irradiated-to-normal) of [64Cu]Cu-NODAGA-galacto-BBN was the highest at 2 weeks, followed by its decrease at 5 and 11 weeks after irradiation, which matched with the expression of GRPR and was more accurately predicted than [18F]F-FDG. These uptake results were also confirmed by the cell uptake assay. Furthermore, [64Cu]Cu-NODAGA-galacto-BBN could monitor the therapeutic efficacy of pirfenidone in RIPF mice. We conclude that [64Cu]Cu-NODAGA-galacto-BBN is a novel PET imaging probe for the early prediction of RIPF-targeting GRPR expressed during the inflammatory response.


Assuntos
Fibrose Pulmonar , Receptores da Bombesina , Animais , Camundongos , Receptores da Bombesina/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/etiologia , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/métodos , Bombesina/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Linhagem Celular Tumoral
8.
Stress ; 26(1): 1-14, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520154

RESUMO

Bombesin receptor-activated protein (BRAP) and its homologous protein in mice, which is encoded by bc004004 gene, were expressed abundantly in brain tissues with unknown functions. We treated bc004004-/- mice with chronic unpredictable mild stress (CUMS) to test whether those mice were more vulnerable to stress-related disorders. The results of forced swimming test, sucrose preference test, and open field test showed that after being treated with CUMS for 28 days or 35 days both bc004004-/- and bc004004+/+ mice exhibited behavioural changes and there was no significant difference between bc004004+/+ and bc004004-/-. However, behavioural changes were observed only in bc004004-/- mice after being exposed to CUMS for 21 days, but not in bc004004+/+ after 21-day CUMS exposure, indicating that lack of BRAP homologous protein may cause vulnerability to stress-related disorders in mice. In addition, bc004004-/- mice showed a reduction in recognition memory as revealed by novel object recognition test. Since memory changes and stress related behavioural changes are all closely related to the hippocampus function we further analyzed the changes of dendrites and synapses of hippocampal neurons as well as expression levels of some proteins closely related to synaptic function. bc004004-/- mice exhibited decreased dendritic lengths and increased amount of immature spines, as well as altered expression pattern of synaptic related proteins including GluN2A, synaptophysin and BDNF in the hippocampus. Those findings suggest that BRAP homologous protein may have a protective effect on the behavioural response to stress via regulating dendritic spine formation and synaptic plasticity in the hippocampus.


Assuntos
Bombesina , Espinhas Dendríticas , Hipocampo , Plasticidade Neuronal , Receptores da Bombesina , Estresse Psicológico , Animais , Camundongos , Bombesina/genética , Bombesina/metabolismo , Doença Crônica , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Depressão/genética , Depressão/metabolismo , Depressão/patologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Receptores da Bombesina/genética , Receptores da Bombesina/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia
9.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077458

RESUMO

Gastrin-releasing peptide receptors (GRPR) are overexpressed in prostate cancer (PCa). Since bombesin analogue aminobenzoic-acid (AMBA) binds to GRPR with high affinity, scandium-44 conjugated AMBA is a promising radiotracer in the PET diagnostics of GRPR positive tumors. Herein, the GRPR specificity of the newly synthetized [44Sc]Sc-NODAGA-AMBA was investigated in vitro and in vivo applying PCa PC-3 xenograft. After the in-vitro assessment of receptor binding, PC-3 tumor-bearing mice were injected with [44Sc]Sc/[68Ga]Ga-NODAGA-AMBA (in blocking studies with bombesin) and in-vivo PET examinations were performed to determine the radiotracer uptake in standardized uptake values (SUV). 44Sc/68Ga-labelled NODAGA-AMBA was produced with high molar activity (approx. 20 GBq/µmoL) and excellent radiochemical purity. The in-vitro accumulation of [44Sc]Sc-NODAGA-AMBA in PC-3 cells was approximately 25-fold higher than that of the control HaCaT cells. Relatively higher uptake was found in vitro, ex vivo, and in vivo in the same tumor with the 44Sc-labelled probe compared to [68Ga]Ga-NODAGA-AMBA. The GRPR specificity of [44Sc]Sc-NODAGA-AMBA was confirmed by significantly (p ≤ 0.01) decreased %ID and SUV values in PC-3 tumors after bombesin pretreatment. The outstanding binding properties of the novel [44Sc]Sc-NODAGA-AMBA to GRPR outlines its potential to be a valuable radiotracer in the imaging of GRPR-positive PCa.


Assuntos
Neoplasias da Próstata , Receptores da Bombesina , Acetatos , Animais , Bombesina , Linhagem Celular Tumoral , Radioisótopos de Gálio , Compostos Heterocíclicos com 1 Anel , Humanos , Masculino , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/metabolismo , Receptores da Bombesina/metabolismo
10.
PET Clin ; 17(4): 621-629, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36153233

RESUMO

Molecular imaging is advancing rapidly with promising new molecular targets emerging for theragnostic, ie, imaging and treatment with the same compound, to provide targeted, personalized medicine. Gastrin-releasing peptide receptors (GRPR) are overexpressed in prostate cancer. Gallium-68 (68Ga) RM2 is a GRPR antagonist and shows high sensitivity and specificity for the detection of primary prostate cancer and recurrent disease. However, compared with the widely used 68Ga-PSMA11 and 18F-DCFPyL, a discordance in uptake pattern is seen reflecting the heterogeneity in tumor biology of prostate cancer. In this review, we present the background, current status, and future perspectives of PET imaging using 68Ga-RM2.


Assuntos
Radioisótopos de Gálio , Neoplasias da Próstata , Bombesina , Radioisótopos de Gálio/química , Humanos , Masculino , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Receptores da Bombesina
11.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820707

RESUMO

Bombesin receptor-activated protein (BRAP) was found to express in the interstitial cells of human fibrotic lungs with unknown function. Its homologous protein, encoded by BC004004 gene, was also present in mouse lung tissues. We used BC004004 -/- mice which lack BRAP homologous protein expression to establish a bleomycin-induced lung fibrotic model. After bleomycin treatment, BC004004 -/- mice exhibited attenuation of pulmonary injury and less pulmonary fibrosis. Fibroblasts from BC004004 -/- mice proliferated at a lower rate and produced less collagen. Autophagy-related gene 5 (ATG5) was identified as a partner interacting with human BRAP. Lacking BRAP homologous protein led to enhanced autophagy activity in mouse lung tissues as well as in isolated lung fibroblasts, indicating a negative regulatory role of this protein in autophagy via interaction with ATG5. Enhanced autophagy process in fibroblasts due to lack of BRAP homologous protein might contribute to the resistance of BC004004 -/- mice to pulmonary fibrosis.


Assuntos
Bleomicina , Fibrose Pulmonar , Animais , Bleomicina/efeitos adversos , Bleomicina/metabolismo , Bombesina/efeitos adversos , Bombesina/metabolismo , Humanos , Pulmão/metabolismo , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Receptores da Bombesina/genética , Receptores da Bombesina/metabolismo
12.
Metallomics ; 14(6)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35648482

RESUMO

Three new bifunctional copper chelators based on the 1,4,7-triazacyclononane (tacn) platform have been synthesized and conjugated to peptides. The first one is constituted of the tacn with two methylpyridinyl and one methylthiazolyl carboxylic acid pendant arms, while, in the second and third ones, the macrocycle is functionalized by three methylpyridinyl groups, with an additional hexynoic acid chain on a carbon of one or two pyridine rings. These three bifunctional chelators have been conjugated to the antagonist DPhe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 peptide for targeting the gastrin-releasing peptide receptor, which is overexpressed in prostate cancer. The resulting monomeric bioconjugates have shown their efficiency to be radiolabeled with ß+ emitter 64Cu, and the hydrophilicity and PC-3 cell internalization properties of these radiolabeled conjugates have been studied. PC-3 cell binding affinity of mono- and dimeric metal-free and natCu metallated conjugates have been evaluated by IC50 measurements. The results demonstrate the potential of these methylpyridinyl tacn derivatives for radiopharmaceutical applications.


Assuntos
Bombesina , Neoplasias da Próstata , Quelantes , Radioisótopos de Cobre , Humanos , Masculino , Peptídeos
13.
J Pharmacol Exp Ther ; 382(2): 66-78, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644465

RESUMO

Allosteric ligands of various G-protein-coupled receptors are being increasingly described and are providing important advances in the development of ligands with novel selectivity and efficacy. These unusual properties allow expanded opportunities for pharmacologic studies and treatment. Unfortunately, no allosteric ligands are yet described for the bombesin receptor family (BnRs), which are proposed to be involved in numerous physiologic/pathophysiological processes in both the central nervous system and peripheral tissues. In this study, we investigate the possibility that the bombesin receptor subtype-3 (BRS-3) specific nonpeptide receptor agonist MK-5046 [(2S)-1,1,1-trifluoro-2-[4-(1H-pyrazol-1-yl)phenyl]-3-(4-[[1-(trifluoromethyl)cyclopropyl]methyl]-1H-imidazol-2-yl)propan-2-ol] functions as a BRS-3 allosteric receptor ligand. We find that in BRS-3 cells, MK-5046 only partially inhibits iodine-125 radionuclide (125I)-Bantag-1 [Boc-Phe-His-4-amino-5-cyclohexyl-2,4,5-trideoxypentonyl-Leu-(3-dimethylamino) benzylamide N-methylammonium trifluoroacetate] binding and that both peptide-1 (a universal BnR-agonist) and MK-5046 activate phospholipase C; however, the specific BRS-3 peptide antagonist Bantag-1 inhibits the action of peptide-1 competitively, whereas for MK-5046 the inhibition is noncompetitive and yields a curvilinear Schild plot. Furthermore, MK-5046 shows other allosteric behaviors, including slowing dissociation of the BRS-3 receptor ligand 125I-Bantag-1, dose-inhibition curves being markedly affected by increasing ligand concentration, and MK-5046 leftward shifting the peptide-1 agonist dose-response curve. Lastly, receptor chimeric studies and site-directed mutagenesis provide evidence that MK-5046 and Bantag-1 have different binding sites determining their receptor high affinity/selectivity. These results provide evidence that MK-5046 is functioning as an allosteric agonist at the BRS-3 receptor, which is the first allosteric ligand described for this family of receptors. SIGNIFICANCE STATEMENT: G-protein-coupled receptor allosteric ligands providing higher selectivity, selective efficacy, and safety that cannot be obtained using usual orthosteric receptor-based strategies are being increasingly described, resulting in enhanced usefulness in exploring receptor function and in treatment. No allosteric ligands exist for any of the mammalian bombesin receptor (BnR) family. Here we provide evidence for the first such example of a BnR allosteric ligand by showing that MK-5046, a nonpeptide agonist for bombesin receptor subtype-3, is functioning as an allosteric agonist.


Assuntos
Peptídeos , Receptores da Bombesina , Animais , Bombesina/metabolismo , Bombesina/farmacologia , Imidazóis , Ligantes , Mamíferos/metabolismo , Peptídeos/farmacologia , Pirazóis , Receptores da Bombesina/metabolismo
14.
Nuklearmedizin ; 61(3): 247-261, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35668669

RESUMO

Addressing molecular targets, that are overexpressed by various tumor entities, using radiolabeled molecules for a combined diagnostic and therapeutic (theranostic) approach is of increasing interest in oncology. The gastrin-releasing peptide receptor (GRPr), which is part of the bombesin family, has shown to be overexpressed in a variety of tumors, therefore, serving as a promising target for those theranostic applications. A large amount of differently radiolabeled bombesin derivatives addressing the GRPr have been evaluated in the preclinical as well as clinical setting showing fast blood clearance and urinary excretion with selective GRPr-binding. Most of the available studies on GRPr-targeted imaging and therapy have evaluated the theranostic approach in prostate and breast cancer applying bombesin derivatives tagged with the predominantly used theranostic pair of 68Ga/177Lu which is the focus of this review.


Assuntos
Neoplasias da Próstata , Receptores da Bombesina , Bombesina/uso terapêutico , Linhagem Celular Tumoral , Humanos , Masculino , Tomografia por Emissão de Pósitrons/métodos , Medicina de Precisão , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos/uso terapêutico
15.
Molecules ; 27(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35744904

RESUMO

The gastrin-releasing peptide receptor (GRPR) is a G-protein-coupled receptor that is overexpressed in many solid cancers and is a promising target for cancer imaging and therapy. However, high pancreas uptake is a major concern in the application of reported GRPR-targeting radiopharmaceuticals, particularly for targeted radioligand therapy. To lower pancreas uptake, we explored Ga-complexed TacsBOMB2, TacsBOMB3, TacsBOMB4, TacsBOMB5, and TacsBOMB6 derived from a potent GRPR antagonist sequence, [Leu13ψThz14]Bombesin(7-14), and compared their potential for cancer imaging with [68Ga]Ga-RM2. The Ki(GRPR) values of Ga-TacsBOMB2, Ga-TacsBOMB3, Ga-TacsBOMB4, Ga-TacsBOMB5, Ga-TacsBOMB6, and Ga-RM2 were 7.08 ± 0.65, 4.29 ± 0.46, 458 ± 38.6, 6.09 ± 0.95, 5.12 ± 0.57, and 1.51 ± 0.24 nM, respectively. [68Ga]Ga-TacsBOMB2, [68Ga]Ga-TacsBOMB3, [68Ga]Ga-TacsBOMB5, [68Ga]Ga-TacsBOMB6, and [68Ga]Ga-RM2 clearly show PC-3 tumor xenografts in positron emission tomography (PET) images, while [68Ga]Ga-TacsBOMB5 shows the highest tumor uptake (15.7 ± 2.17 %ID/g) among them. Most importantly, the pancreas uptake values of [68Ga]Ga-TacsBOMB2 (2.81 ± 0.78 %ID/g), [68Ga]Ga-TacsBOMB3 (7.26 ± 1.00 %ID/g), [68Ga]Ga-TacsBOMB5 (1.98 ± 0.10 %ID/g), and [68Ga]Ga-TacsBOMB6 (6.50 ± 0.36 %ID/g) were much lower than the value of [68Ga]Ga-RM2 (41.9 ± 10.1 %ID/g). Among the tested [Leu13ψThz14]Bombesin(7-14) derivatives, [68Ga]Ga-TacsBOMB5 has the highest tumor uptake and tumor-to-background contrast ratios, which is promising for clinical translation to detect GRPR-expressing tumors. Due to the low pancreas uptake of its derivatives, [Leu13ψThz14]Bombesin(7-14) represents a promising pharmacophore for the design of GRPR-targeting radiopharmaceuticals, especially for targeted radioligand therapy application.


Assuntos
Bombesina , Receptores da Bombesina , Animais , Linhagem Celular Tumoral , Radioisótopos de Gálio , Humanos , Pâncreas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacologia
16.
Brain Res ; 1789: 147950, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35618015

RESUMO

Bombesin (BN) is an itch-specific mediator that causes intense itch-scratching activity in mammals. Although most examinations of BN-induced itch processing have focused on the spinal cord, the involvement of central nervous system mechanisms remains unclear. Here, we investigated how relationships among hypothalamic regions regulate BN-mediated itch-scratch processes. We found that intracerebroventricular (i.c.v.) administration of BN (0.04-4 µg) elicited intense itch scratching in mice, whereas BN (0.4-400 µg) administered via intravenous tail injection failed to evoke a scratching response. Additionally, nalfurafine had no significant effects on BN-induced scratching behavior, indicating that central modulation of BN is distinct from histamine-mediated histaminergic itch and chloroquine-mediated non-histaminergic itch signaling pathways. We labeled BN with a fluorescent tag, 7-nitrobenz-2-oxa-1 (NBD), and traced its fluorescence in the hypothalamus for 30 min following i.c.v. NBD-BN administration. Accordingly, we confirmed that i.c.v. administration of BN enhanced c-Fos expression in the dorsal medial nucleus of the hypothalamus, where neuromedin B receptors and gastrin-releasing peptide receptors are highly expressed. Interestingly, in situ injection of BN into the hypothalamus immediately and robustly induced itch-scratching behavior. Moreover, gene transcripts and western blot assay revealed that BN receptor-dependent PKA/CREB signaling was upregulated in the hypothalamus after i.c.v. administration of BN. Consistently, pretreatment with a PKA inhibitor, Rp-cAMP, significantly reduced BN-induced scratching behavior. Our results indicate that the dorsal medial nucleus of the hypothalamus may be a key nucleus in mediating BN-mediated itch and hypothalamic PKA/CREB signaling is involved in regulating BN-mediated itch.


Assuntos
Bombesina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico , Hipotálamo , Animais , Bombesina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Camundongos , Prurido/induzido quimicamente , Prurido/metabolismo , Receptores da Bombesina/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Mol Pharm ; 19(7): 2231-2247, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35467350

RESUMO

Prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) have both been used in nuclear medicine as targets for molecular imaging and therapy of prostate (PCa) and breast cancer (BCa). Three bioconjugate probes, the PSMA specific: [68Ga]Ga-1, ((HBED-CC)-Ahx-Lys-NH-CO-NH Glu or PSMA-11), the GRPR specific: [68Ga]Ga-2, ((HBED-CC)-4-amino-1-carboxymethyl piperidine-[D-Phe6, Sta13]BN(6-14), a bombesin (BN) analogue), and 3 (the BN analogue: 4-amino-1-carboxymethyl piperidine-[(R)-Phe6, Sta13]BN(6-14) connected with the fluorescent dye, BDP-FL), were synthesized and tested in vitro with PCa and BCa cell lines, more specifically, with PCa cells, PC-3 and LNCaP, with BCa cells, T47D, MDA-MB-231, and with the in-house created PSMA-overexpressing PC-3(PSMA), T47D(PSMA), and MDA-MB-231(PSMA). In addition, biomolecular simulations were conducted on the association of 1 and 2 with PSMA and GRPR. The PSMA overexpression resulted in an increase of cell-bound radioligand [68Ga]Ga-1 (PSMA) for PCa and BCa cells and also of [68Ga]Ga-2 (GRPR), especially in those cell lines already expressing GRPR. The results were confirmed by fluorescence-activated cell sorting with a PE-labeled PSMA-specific antibody and the fluorescence tracer 3. The docking calculations and molecular dynamics simulations showed how 1 enters the PSMA funnel region and how pharmacophore Glu-urea-Lys interacts with the arginine patch, the S1', and S1 subpockets by forming hydrogen and van der Waals bonds. The chelating moiety of 1, that is, HBED-CC, forms additional stabilizing hydrogen bonding and van der Waals interactions in the arene-binding site. Ligand 2 is diving into the GRPR transmembrane (TM) helical cavity, thereby forming hydrogen bonds through its amidated end, water-mediated hydrogen bonds, and π-π interactions. Our results provide valuable information regarding the molecular mechanisms involved in the interactions of 1 and 2 with PSMA and GRPR, which might be useful for the diagnostic imaging and therapy of PCa and BCa.


Assuntos
Antígenos de Superfície , Glutamato Carboxipeptidase II , Neoplasias da Próstata , Receptores da Bombesina , Antígenos de Superfície/metabolismo , Bombesina , Neoplasias da Mama , Feminino , Radioisótopos de Gálio , Glutamato Carboxipeptidase II/metabolismo , Humanos , Ligantes , Masculino , Piperidinas , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/metabolismo , Receptores da Bombesina/metabolismo
18.
Nephrol Dial Transplant ; 37(12): 2366-2385, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-35488871

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a public health problem with no specific therapies in the clinic and the underlying pathogenesis of AKI remains obscure. Bombesin receptor-activated protein (BRAP, C6ORF89 protein) was initially discovered as a ligand for a previously orphan G-protein-coupled receptor bombesin-like receptor-3. At present, accepted biological effects of BRAP include cell cycle progression, wound repair and the activation of histone deacetylases. However, its role in kidney disease is unknown. In this study we have investigated the role of BRAP and underlying mechanisms involved in cisplatin (CP)-induced AKI. METHODS: Here we used Bc004004 (homologous of C6ORF89 in mice) knockout mice and HK2 cells to investigate the effect of BRAP on AKI in vitro and in vivo. We analyzed ChIP-Seq and RNA-Seq data to search for the upstream regulators of BRAP and downstream mediators of BRAP action in AKI. Immunostaining, real-time polymerase chain reaction (PCR), co-immunoprecipitation, a dual-luciferase reporter assay and ChIP-PCR assay were applied to reveal the upstream and downstream regulation mechanism of BRAP during cisplatin-induced AKI. RESULTS: BRAP was downregulated in mice and human kidneys with AKI. Global Bc004004 deletion alleviated tubular cell apoptosis and necroptosis in CP-induced AKI mice, whereas local overexpression of BRAP in kidneys aggravated them. Pan-caspase inhibitor Z-VAD pretreatment attenuated CP-induced blood creatinine increase and kidney injury in wild-type mice but not in BRAP -/- mice. The activation of mixed lineage kinase like-domain was magnified by Z-VAD in CP-treated mice, especially in BRAP -/- mice. The cytoprotective effect of Z-VAD was more substantial than necrostatin-1 (Nec-1, an inhibitor of necroptosis) in CP-treated human kidney proximal tubular epithelial (HK2) cells. Furthermore, Nec-1 pretreatment reduced the CP-induced cell death in BRAP overexpression HK2 cells but did not work in cells with normal BRAP levels. We determined that CP treatment activated the nuclear factor-κB subunit P65 and inhibition of P65 increased the messenger RNA (mRNA) levels of BRAP in HK2 cells. The chromatin immunoprecipitation assay and dual-luciferase reporter gene assay verified P65 binding to the C6ORF89 promoter and reduced its mRNA expression upon CP treatment. Next we found that sirtuin 2 (SIRT2) was downregulated in CP-induced AKI and BRAP levels directly impacted the protein levels of SIRT2. Our findings further confirmed that BRAP regulates the SIRT2 protein levels by affecting SIRT2's interactions with E3 ubiquitin ligase HRD1 and subsequent proteasomal degradation. CONCLUSIONS: Our results demonstrated that BRAP played an important role in tubular cell apoptosis and necroptosis during CP-induced AKI. Safe and efficient BRAP inhibitors might be effective therapeutic options for AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Animais , Humanos , Camundongos , Injúria Renal Aguda/patologia , Apoptose , Bombesina/efeitos adversos , Cisplatino/toxicidade , Camundongos Endogâmicos C57BL , Receptores da Bombesina , RNA Mensageiro , Sirtuína 2
19.
Amino Acids ; 54(5): 733-747, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35279763

RESUMO

Bombesin mediates several biological activities in the gastrointestinal (GI) tract and central nervous system in mammals, including smooth muscle contraction, secretion of GI hormones and regulation of homeostatic mechanisms. Here, we report a novel bombesin-like peptide isolated from Boana raniceps. Its amino acid sequence, GGNQWAIGHFM-NH2, was identified and structurally confirmed by HPLC, MS/MS and 454-pyrosequencing; the peptide was named BR-bombesin. The effect of BR-bombesin on smooth muscle contraction was assessed in ileum and esophagus, and its anti-secretory activity was investigated in the stomach. BR-bombesin exerted significant contractile activity with a concentration-response curve similar to that of commercially available bombesin in ileum strips of Wistar rats. In esophageal strips, BR-bombesin acted as an agonist, as many other bombesin-related peptides act, although with different behavior compared to the muscarinic agonist carbachol. Moreover, BR-bombesin inhibited stomach secretion by approximately 50% compared to the untreated control group. This novel peptide has 80% and 70% similarity with the 10-residue C-terminal domain of human neuromedin B (NMB) and human gastrin releasing peptide (GRP10), respectively. Molecular docking analysis revealed that the GRP receptor had a binding energy equal to - 7.3 kcal.mol-1 and - 8.5 kcal.mol-1 when interacting with bombesin and BR-bombesin, respectively. Taken together, our data open an avenue to investigate BR-bombesin in disorders that involve gastrointestinal tract motility and acid gastric secretion.


Assuntos
Bombesina , Receptores da Bombesina , Animais , Anuros/metabolismo , Bombesina/metabolismo , Bombesina/farmacologia , Mamíferos/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Ratos , Ratos Wistar , Receptores da Bombesina/genética , Receptores da Bombesina/metabolismo , Estômago , Espectrometria de Massas em Tandem
20.
Mol Psychiatry ; 27(3): 1694-1703, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34997193

RESUMO

The amygdala, a critical brain region responsible for emotional behavior, is crucially involved in the regulation of the effects of stress on emotional behavior. In the mammalian forebrain, gastrin-releasing peptide (GRP), a 27-amino-acid mammalian neuropeptide, which is a homolog of the 14-amino-acid amidated amphibian peptide bombesin, is highly expressed in the amygdala. The levels of GRP are markedly increased in the amygdala after acute stress; therefore, it is known as a stress-activated modulator. To determine the role of GRP in emotional behavior under stress, we conducted some behavioral and biochemical experiments with GRP-knockout (KO) mice. GRP-KO mice exhibited a longer freezing response than wild-type (WT) littermates in both contextual and auditory fear (also known as threat) conditioning tests only when they were subjected to acute restraint stress 20 min before the conditioning. To identify the critical neural circuits associated with the regulation of emotional memory by GRP, we conducted Arc/Arg3.1-reporter mapping in the amygdala with an Arc-Venus reporter transgenic mouse line. In the amygdalostriatal transition area (AST) and the lateral side of the basal nuclei, fear conditioning after restraint stress increased neuronal activity significantly in WT mice, and GRP KO was found to negate this potentiation only in the AST. These results indicate that the GRP-activated neurons in the AST are likely to suppress excessive fear expression through the regulation of downstream circuits related to fear learning following acute stress.


Assuntos
Bombesina , Medo , Tonsila do Cerebelo/metabolismo , Animais , Bombesina/metabolismo , Bombesina/farmacologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Peptídeo Liberador de Gastrina/metabolismo , Peptídeo Liberador de Gastrina/farmacologia , Mamíferos/metabolismo , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...