RESUMO
Previous studies arguing for parental care in dinosaurs have been primarily based on fossil accumulations of adults and hatchlings, perinatal and post-hatchlings in nests and nest areas, and evidence of brooding, the majority of which date to the Late Cretaceous. Similarly, the general body proportions of preserved embryonic skeletons of the much older Early Jurassic Massospondylus have been used to suggest that hatchlings were unable to forage for themselves. Here, we approach the question of parental care in dinosaurs by using a combined morphological, chemical, and biomechanical approach to compare early embryonic and hatchling bones of the Early Jurassic sauropodomorph Lufengosaurus with those of extant avian taxa with known levels of parental care. We compare femora, the main weight-bearing limb bone, at various embryonic and post-embryonic stages in a precocious and an altricial extant avian dinosaur with those of embryonic and hatchling Lufengosaurus, and find that the rate and degree of bone development in Lufengosaurus is closer to that of the highly altricial Columba (pigeon) than the precocious Gallus (chicken), providing strong support for the hypothesis that Lufengosaurus was fully altricial. We suggest that the limb bones of Lufengosaurus hatchlings were not strong enough to forage for themselves and would likely need parental feeding.
Assuntos
Aves , Dinossauros , Fósseis , Animais , Dinossauros/anatomia & histologia , Comportamento Alimentar , Fêmur/anatomia & histologia , Desenvolvimento ÓsseoRESUMO
Developing bones can adapt their shape in response to mechanical stresses from neighbouring growing organs. In a new study, Koichi Matsuo and colleagues examine how bone-forming osteoblasts and bone-resorbing osteoclasts coordinate growth in the mouse fibula. They describe the process called 'endo-forming trans-pairing', where bone resorption by osteoclasts in the outer periosteum is paired with bone formation by osteoblasts in the inner endosteum to shape the growing bone. To learn more about the story behind the paper, we caught up with first author Yukiko Kuroda and the corresponding author Koichi Matsuo, Professor at the School of Medicine, Keio University, Japan.
Assuntos
Osso e Ossos , Microscopia/métodos , Osso e Ossos/citologia , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Nervo Isquiático , Desenvolvimento Ósseo , Animais , MorfogêneseRESUMO
OBJECTIVES: The aim of our study is to determine the relationship between MPS maturation and CVM stage determined from CBCTs. MATERIALS AND METHODS: CBCT images of 130 individuals (75 females, 55 males) with a mean age of 15.04 ± 3.11 (9.56-25.05 years) were analyzed. Images were analyzed using the i-CAT Vision software program. The cephalometric images to be examined were also obtained from the same CBCT images with the ImageJ program. The correlation between MPS and CVM stages was evaluated using the Spearman correlation test. The relationship between the skeletal developmental stage and MPS maturation, as assessed by the CVM method, was evaluated with the positive likelihood ratio. RESULTS: Significant correlations were found between CVM and MPS maturation stages. Positive LHR values of cervical vertebral stages were obtained to define the maturation stages of the midpalatal suture. LHR values greater than ten were found between CS2, CS5, and CS6 and maturation stages B, D, and E, respectively. A 15-30% correlation was observed between CS3 and CS4 maturation stages B and C, respectively. A positive correlation of 15% was found between CS3 and stage C. CONCLUSION: MPS fusion is more likely to occur after CS4. The correlation between the CVM and MPS maturation stages is significant (r = 0.858). CVM stages CS2, CS4, and CS6 can be a preliminary indicator for MPS stages B, D, and E, respectively. CS5 shows that MPS fusion has occurred partially or completely. CLINICAL RELEVANCE: A significant relationship exists between skeletal developmental stages and suture maturation.
Assuntos
Tomografia Computadorizada de Feixe Cônico , Humanos , Feminino , Masculino , Adulto , Adolescente , Criança , Adulto Jovem , Tomografia Computadorizada de Feixe Cônico/métodos , Suturas Cranianas/crescimento & desenvolvimento , Suturas Cranianas/diagnóstico por imagem , Desenvolvimento Ósseo/fisiologia , Cefalometria/métodosRESUMO
Lactoferrin (LF) and osteopontin (OPN) are bioactive milk proteins which can form heteroprotein complexes and complex coacervates. This research studied the effect of LF-OPN complexation and complex coacervation on the simulated infant gastrointestinal digestion of LF with subsequent examination of gut and bone health bioactivities in preclinical models. In an infant digestion model, the proteolytic profile of LF was unaltered by the pre-association of LF and OPN. Gastric proteolysis of LF was increased when the model gastric pH was reduced from 5.3 to 4.0, but less so when complexed with OPN. In a model of intestinal inflammation, undigested (79% inhibition) and gastric digestates (26% inhibition) of LF, but not gastrointestinal digestates, inhibited lipopolysaccharide (LPS)-induced NF-κB activation in intestinal epithelial cells. LF-OPN complexation sustained the inhibitory effect (21-43% of the undigested effect, depending on the type of complex) of LF after gastrointestinal digestion, suggesting that the peptides produced were different. In a neonatal rodent model used to study bone development, coacervating LF and OPN improved bone structures with a significant increase of trabecular proportion (BV/TV increase by 21.7%). This resulted in an 11.3% increase in stiffness of bones. Feeding the LF and OPN proteins in coacervate format also increased the levels of OPN, P1NP and M-CSF in blood, signifying a more pronounced impact on bone development. This research demonstrated that LF-OPN complexation and complex coacervation can delay simulated infant gastrointestinal digestion of LF and protect or improve the bioactivity of the proteins.
Assuntos
Desenvolvimento Ósseo , Digestão , Lactoferrina , Osteopontina , Lactoferrina/química , Lactoferrina/farmacologia , Osteopontina/metabolismo , Animais , Humanos , Desenvolvimento Ósseo/efeitos dos fármacos , Lactente , Trato Gastrointestinal/metabolismo , Ratos , InflamaçãoRESUMO
Runx2 (runt related transcription factor 2) and Sp7 (Sp7 transcription factor 7) are crucial transcription factors for bone development. The cotranscription factor Cbfb (core binding factor beta), which enhances the DNA-binding capacity of Runx2 and stabilizes the Runx2 protein, is necessary for bone development. Runx2 is essential for chondrocyte maturation, and Sp7 is partly involved. Runx2 induces the commitment of multipotent mesenchymal cells to osteoblast lineage cells and enhances the proliferation of osteoprogenitors. Reciprocal regulation between Runx2 and the Hedgehog, fibroblast growth factor (Fgf), Wnt, and parathyroid hormone-like hormone (Pthlh) signaling pathways and Dlx5 (distal-less homeobox 5) plays an important role in these processes. The induction of Fgfr2 (Fgf receptor 2) and Fgfr3 expression by Runx2 is important for the proliferation of osteoblast lineage cells. Runx2 induces Sp7 expression, and Runx2+ osteoprogenitors become Runx2+Sp7+ preosteoblasts. Sp7 induces the differentiation of preosteoblasts into osteoblasts without enhancing their proliferation. In osteoblasts, Runx2 is required for bone formation by inducing the expression of major bone matrix protein genes, including Col1a1 (collagen type I alpha 1), Col1a2, Spp1 (secreted phosphoprotein 1), Ibsp (integrin binding sialoprotein), and Bglap (bone gamma carboxyglutamate protein)/Bglap2. Bglap/Bglap2 (osteocalcin) regulates the alignment of apatite crystals parallel to collagen fibrils but does not function as a hormone that regulates glucose metabolism, testosterone synthesis, and muscle mass. Sp7 is also involved in Co1a1 expression and regulates osteoblast/osteocyte process formation, which is necessary for the survival of osteocytes and the prevention of cortical porosity. SP7 mutations cause osteogenesis imperfecta in rare cases. Runx2 is an important pathogenic factor, while Runx1, Runx3, and Cbfb are protective factors in osteoarthritis development.
Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Fator de Transcrição Sp7 , Animais , Humanos , Desenvolvimento Ósseo/genética , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Osteoblastos/metabolismo , Osteoblastos/citologia , Osteogênese/genética , Fator de Transcrição Sp7/metabolismo , Fator de Transcrição Sp7/genéticaRESUMO
The skeleton plays a fundamental role in the maintenance of organ function and daily activities. The insulin-like growth factor (IGF) family is a group of polypeptide substances with a pronounced role in osteoblast differentiation, bone development, and metabolism. Disturbance of the IGFs and the IGF signaling pathway is inextricably linked with assorted developmental defects, growth irregularities, and jeopardized skeletal structure. Recent findings have illustrated the significance of the action of the IGF signaling pathway via growth factors and receptors and its interactions with dissimilar signaling pathways (Wnt/ß-catenin, BMP, TGF-ß, and Hh/PTH signaling pathways) in promoting the growth, survival, and differentiation of osteoblasts. IGF signaling also exhibits profound influences on cartilage and bone development and skeletal homeostasis via versatile cell-cell interactions in an autocrine, paracrine, and endocrine manner systemically and locally. Our review summarizes the role and regulatory function as well as a potentially integrated gene network of the IGF signaling pathway with other signaling pathways in bone and cartilage development and skeletal homeostasis, which in turn provides an enlightening insight into visualizing bright molecular targets to be eligible for designing effective drugs to handle bone diseases and maladies, such as osteoporosis, osteoarthritis, and dwarfism.
Assuntos
Desenvolvimento Ósseo , Cartilagem , Homeostase , Transdução de Sinais , Humanos , Animais , Cartilagem/metabolismo , Homeostase/fisiologia , Desenvolvimento Ósseo/fisiologia , Somatomedinas/metabolismo , Osso e Ossos/metabolismoRESUMO
Gestational growth and development of bone is an understudied process compared to soft tissues and has implications for lifelong health. This study investigated growth and development of human fetal limb bone trabecular architecture using 3D digital histomorphometry of microcomputed tomography data from the femora and humeri of 35 skeletons (17 female and 18 male) with gestational ages between 4 and 9 months. Ontogenetic data revealed: (i) fetal trabecular architecture is similar between sexes; (ii) the proximal femoral metaphysis is physically larger, with thicker trabeculae and greater bone volume fraction relative to the humerus, but other aspects of trabecular architecture are similar between the bones; (iii) between 4 and 9 months gestation there is no apparent sexual or limb dimorphism in patterns of growth, but the size of the humerus and femur diverges early in development. Additionally, both bones exhibit significant increases in mean trabecular thickness (and for the femur alone, bone volume fraction) but minimal trabecular reorganisation (i.e., no significant changes in degree of anisotropy, connectivity density, or fractal dimension). Overall, these data suggest that in contrast to data from the axial skeleton, prenatal growth of long bones in the limbs is characterised by size increase, without major reorganizational changes in trabecular architecture.
Assuntos
Osso Esponjoso , Fêmur , Microtomografia por Raio-X , Humanos , Feminino , Masculino , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/crescimento & desenvolvimento , Fêmur/diagnóstico por imagem , Fêmur/crescimento & desenvolvimento , Fêmur/embriologia , Fêmur/anatomia & histologia , Feto , Úmero/crescimento & desenvolvimento , Úmero/diagnóstico por imagem , Úmero/embriologia , Úmero/anatomia & histologia , Desenvolvimento Ósseo , Idade Gestacional , Desenvolvimento Fetal/fisiologiaRESUMO
For conditions like osteoporosis, changes in bone pore geometry even when porosity is constant have been shown to correlate to increased fracture risk using techniques such as dual-energy x-ray absorptiometry (DXA) and computed tomography (CT). Additionally, studies have found that bone pore geometry can be characterized by ultrasound to determine fracture risk, since certain pore geometries can cause stress concentration which in turn will be a source for fracture. However, it is not yet fully understood if changes in pore geometry can be detected by ultrasound when the porosity is constant. Therefore, this study develops an unsupervised machine learning model classifying pore geometry between bioinspired and quadrilateral pore scaffolds with constant porosity using experimental ultrasound wave transmission data. Our results demonstrate that differences in pore geometry can be detected by ultrasound, even at constant porosity, and that these differences can be distinguished in an unsupervised manner with machine learning. For traumatic bone injuries and late-stage osteoporosis where fracture occurs, tissue scaffolds are used to aid the healing of fractures or bone loss. The scaffold design is optimized to match material properties closely with bone, and healing can be enhanced with ultrasound stimulation. In this study we predict the combined effects of ultrasound parameters, such as wave frequency and mode of displacement, and scaffold material properties on bone tissue growth. We therefore develop an unsupervised machine learning clustering model of bone tissue growth in the scaffolds using finite element analysis and bone growth algorithms evaluating effects of pore geometry, scaffold materials, ultrasound wave type and frequency, and mesenchymal stem cell distribution on bone tissue growth. The computational predictions of tissue growth agreed within 10% of comparable experimental studies. The data corresponding to pore geometry, mesenchymal stem cell distribution, and scaffold material demonstrate distinct clusters of total bone formation, while ultrasound frequency and mesenchymal stem cell distribution show distinct clusters in bone growth rate. These variables can be tuned to tailor the scaffold design and optimize the required amount and rate of bone growth to meet a patient's specific needs.
Assuntos
Aprendizado de Máquina , Alicerces Teciduais , Ondas Ultrassônicas , Alicerces Teciduais/química , Porosidade , Desenvolvimento ÓsseoRESUMO
Background: Presenilin 1 (PSEN1) is one of the genes linked to the prevalence of early onset Alzheimer's disease. In mice, inactivation of Psen1 leads to developmental defects, including vertebral malformation and neural development. However, little is known about the role of PSEN1 during the development in other species. Objective: To investigate the role of PSEN1 in vertebral development and the pathogenic mechanism of neurodegeneration using a pig model. Methods: CRISPR/Cas9 system was used to generate pigs with different mutations flanking exon 9 of PSEN1, including those with a deleted exon 9 (Δexon9). Vertebral malformations in PSEN1 mutant pigs were examined by X-ray, micro-CT and micro-MRI. Neuronal cells from the brains of PSEN1 mutant pigs were analyzed by immunoflourescence, followed by image analysis including morphometric evaluation via image J and 3D reconstruction. Results: Pigs with a PSEN1 null mutation (Δexon9-12) died shortly after birth and had significant axial skeletal defects, whereas pigs carrying at least one Δexon9 allele developed normally and remained healthy. Effects of the null mutation on abnormal skeletal development were also observed in fetuses at day 40 of gestation. Abnormal distribution of astrocytes and microglia in the brain was detected in two PSEN1 mutant pigs examined compared to age-matched control pigs. The founder pigs were bred to establish and age PSEN1ΔE9/+ pigs to study their relevance to clinical Alzheimer's diseases. Conclusions: PSEN1 has a critical role for normal vertebral development and PSEN1 mutant pigs serves as novel resources to study Alzheimer's disease.
Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Presenilina-1 , Animais , Presenilina-1/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Suínos , Mutação/genética , Encéfalo/patologia , Encéfalo/metabolismo , Animais Geneticamente Modificados , Desenvolvimento Ósseo/genética , Coluna Vertebral/patologia , Coluna Vertebral/anormalidadesRESUMO
Fibronectin (FN) is a ubiquitous extracellular matrix glycoprotein essential for the development of various tissues. Mutations in FN cause a unique form of spondylometaphyseal dysplasia, emphasizing its importance in cartilage and bone development. However, the relevance and functional role of FN during skeletal development has remained elusive. To address these aspects, we have generated conditional knockout mouse models targeting the cellular FN isoform in cartilage (cFNKO), the plasma FN isoform in hepatocytes (pFNKO), and both isoforms together in a double knockout (FNdKO). We used these mice to determine the relevance of the two principal FN isoforms in skeletal development from postnatal day one to the adult stage at two months. We identified a distinct topological FN deposition pattern in the mouse limb during different gestational and postnatal skeletal development phases, with prominent levels at the resting and hypertrophic chondrocyte zones and in the trabecular bone. Cartilage-specific cFN emerged as the predominant isoform in the growth plate, whereas circulating pFN remained excluded from the growth plate and confined to the primary and secondary ossification centers. Deleting either isoform independently (cFNKO or pFNKO) yielded only relatively subtle changes in the analyzed skeletal parameters. However, the double knockout of cFN in the growth plate and pFN in the circulation of the FNdKO mice significantly reduced postnatal body weight, body length, and bone length. Micro-CT analysis of the adult bone microarchitecture in FNdKO mice exposed substantial reductions in trabecular bone parameters and bone mineral density. The mice also showed elevated bone marrow adiposity. Analysis of chondrogenesis in FNdKO mice demonstrated changes in the resting, proliferating and hypertrophic growth plate zones, consistent alterations in chondrogenic markers such as collagen type II and X, decreased apoptosis of hypertrophic chondrocytes, and downregulation of bone formation markers. Transforming growth factor-ß1 and downstream phospho-AKT levels were significantly lower in the FNdKO than in the control mice, revealing a crucial FN-mediated regulatory pathway in chondrogenesis and bone formation. In conclusion, the data demonstrate that FN is essential for chondrogenesis and bone development. Even though cFN and pFN act in different regions of the bone, both FN isoforms are required for the regulation of chondrogenesis, cartilage maturation, trabecular bone formation, and overall skeletal growth.
Assuntos
Desenvolvimento Ósseo , Fibronectinas , Lâmina de Crescimento , Camundongos Knockout , Isoformas de Proteínas , Animais , Camundongos , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Fibronectinas/metabolismo , Fibronectinas/genética , Desenvolvimento Ósseo/genética , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/crescimento & desenvolvimento , Cartilagem/metabolismo , Cartilagem/crescimento & desenvolvimento , Condrócitos/metabolismo , Osteogênese , Osso Esponjoso/metabolismo , Osso Esponjoso/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Condrogênese/genéticaRESUMO
Bone development is characterized by complex regulation mechanisms, including signal transduction and transcription factor-related pathways, glycobiological processes, cellular interactions, transportation mechanisms, and, importantly, chemical formation resulting from hydroxyapatite. Any abnormal regulation in the bone development processes causes skeletal system-related problems. To some extent, the avascularity of cartilage and bone makes drug delivery more challenging than that of soft tissues. Recent studies have implemented many novel bone-targeting approaches to overcome drawbacks. However, none of these strategies fully corrects skeletal dysfunction, particularly in growth plate-related ones. Although direct recombinant enzymes (e.g., Vimizim for Morquio, Cerezyme for Gaucher, Elaprase for Hunter, Mepsevii for Sly diseases) or hormone infusions (estrogen for osteoporosis and osteoarthritis), traditional gene delivery (e.g., direct infusion of viral or non-viral vectors with no modifications on capsid, envelope, or nanoparticles), and cell therapy strategies (healthy bone marrow or hematopoietic stem cell transplantation) partially improve bone lesions, novel delivery methods must be addressed regarding target specificity, less immunogenicity, and duration in circulation. In addition to improvements in bone delivery, potential regulation of bone development mechanisms involving receptor-regulated pathways has also been utilized. Targeted drug delivery using organic and inorganic compounds is a promising approach in mostly preclinical settings and future clinical translation. This review comprehensively summarizes the current bone-targeting strategies based on bone structure and remodeling concepts while emphasizing potential approaches for future bone-targeting systems.
Assuntos
Sistemas de Liberação de Medicamentos , Humanos , Animais , Sistemas de Liberação de Medicamentos/métodos , Osso e Ossos/metabolismo , Doenças Ósseas/terapia , Desenvolvimento Ósseo/efeitos dos fármacos , Terapia Genética/métodosRESUMO
Developing long bones alter their shape while maintaining uniform cortical thickness via coordinated activity of bone-forming osteoblasts and bone-resorbing osteoclasts at periosteal and endosteal surfaces, a process we designate trans-pairing. Two types of trans-pairing shift cortical bone in opposite orientations: peri-forming trans-pairing (peri-t-p) increases bone marrow space and endo-forming trans-pairing (endo-t-p) decreases it, via paired activity of bone resorption and formation across the cortex. Here, we focused on endo-t-p in growing bones. Analysis of endo-t-p activity in the cortex of mouse fibulae revealed osteoclasts under the periosteum compressed by muscles, and expression of RANKL in periosteal cells of the cambium layer. Furthermore, mature osteoblasts were localized on the endosteum, while preosteoblasts were at the periosteum and within cortical canals. X-ray tomographic microscopy revealed the presence of cortical canals more closely associated with endo- than with peri-t-p. Sciatic nerve transection followed by muscle atrophy and unloading induced circumferential endo-t-p with concomitant spread of cortical canals. Such canals likely supply the endosteum with preosteoblasts from the periosteum under endo-t-p, allowing bone shape to change in response to mechanical stress or nerve injury.
Assuntos
Osteoblastos , Osteoclastos , Periósteo , Animais , Osteoblastos/metabolismo , Osteoblastos/citologia , Periósteo/citologia , Periósteo/metabolismo , Osteoclastos/metabolismo , Osteoclastos/citologia , Camundongos , Desenvolvimento Ósseo , Osteogênese/fisiologia , Reabsorção Óssea/patologia , Osso Cortical , Ligante RANK/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Splicing and endoplasmic reticulum (ER)-proteostasis are two key processes that ultimately regulate the functional proteins that are produced by a cell. However, the extent to which these processes interact remains poorly understood. Here, we identify SNRPB and other components of the Sm-ring, as targets of the unfolded protein response and novel regulators of export from the ER. Mechanistically, The Sm-ring regulates the splicing of components of the ER export machinery, including Sec16A, a component of ER exit sites. Loss of function of SNRPB is causally linked to cerebro-costo-mandibular syndrome (CCMS), a genetic disease characterized by bone defects. We show that heterozygous deletion of SNRPB in mice resulted in bone defects reminiscent of CCMS and that knockdown of SNRPB delays the trafficking of type-I collagen. Silencing SNRPB inhibited osteogenesis in vitro, which could be rescued by overexpression of Sec16A. This rescue indicates that the role of SNRPB in osteogenesis is linked to its effects on ER-export. Finally, we show that SNRPB is a target for the unfolded protein response, which supports a mechanistic link between the spliceosome and ER-proteostasis. Our work highlights components of the Sm-ring as a novel node in the proteostasis network, shedding light on CCMS pathophysiology.
Assuntos
Desenvolvimento Ósseo , Retículo Endoplasmático , Splicing de RNA , Resposta a Proteínas não Dobradas , Animais , Camundongos , Retículo Endoplasmático/metabolismo , Humanos , Desenvolvimento Ósseo/genética , Camundongos Knockout , Osteogênese/genéticaRESUMO
It is not clear as to whether weight bearing and ambulation may affect bone growth. Our goal was to study the role of mechanical loading (one of the components of ambulation) on endochondral ossification and longitudinal bone growth. Thus, we applied cyclical, biologically relevant strains for a prolonged time period (4 weeks) to one tibia of juvenile mice, while using the contralateral one as an internal control. By the end of the 4-week loading period, the mean tibial growth of the loaded tibiae was significantly greater than that of the unloaded tibiae. The mean height and the mean area of the loaded tibial growth plates were greater than those of the unloaded tibiae. In addition, in female mice we found a greater expression of PTHrP in the loaded tibial growth plates than in the unloaded ones. Lastly, microCT analysis revealed no difference between loaded and unloaded tibiae with respect to the fraction of bone volume relative to the total volume of the region of interest or the tibial trabecular bone volume. Thus, our findings suggest that intermittent compressive forces applied on tibiae at mild-moderate strain magnitude induce a significant and persistent longitudinal bone growth. PTHrP expressed in the growth plate appears to be one growth factor responsible for stimulating endochondral ossification and bone growth in female mice.
Assuntos
Lâmina de Crescimento , Proteína Relacionada ao Hormônio Paratireóideo , Tíbia , Suporte de Carga , Animais , Feminino , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/genética , Tíbia/metabolismo , Tíbia/crescimento & desenvolvimento , Tíbia/diagnóstico por imagem , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/crescimento & desenvolvimento , Camundongos , Suporte de Carga/fisiologia , Estresse Mecânico , Camundongos Endogâmicos C57BL , Desenvolvimento Ósseo , Osteogênese/fisiologiaRESUMO
BACKGROUND: Cam morphology develops during skeletal growth, but its influence on cartilage and the labrum in high-impact athletes later in life is unknown. PURPOSE: To (1) explore the association between the presence and duration of cam morphology during adolescence and the cartilage and labral status 7 to 12 years later and (2) report the prevalence of cartilage loss and labral damage in a population of young male athletes (<32 years old) who played professional soccer during skeletal growth. STUDY DESIGN: Cohort study (Prognosis); Level of evidence, 2. METHODS: A total of 89 healthy male academy soccer players from the Dutch soccer club Feyenoord (aged 12-19 years) were included at baseline. At baseline and 2.5- and 5-year follow-ups, standardized supine anteroposterior pelvis and frog-leg lateral radiographs of each hip were obtained. At 12-year follow-up, magnetic resonance imaging of both hips was performed. Cam morphology was defined by a validated alpha angle ≥60° on radiographs at baseline or 2.5- or 5-year follow-up when the growth plates were closed. Hips with the presence of cam morphology at baseline or at 2.5-year follow-up were classified as having a "longer duration" of cam morphology. Hips with cam morphology only present since 5-year follow-up were classified as having a "shorter duration" of cam morphology. At 12-year follow-up, cartilage loss and labral abnormalities were assessed semiquantitatively. Associations were estimated using logistic regression, adjusted for age and body mass index. RESULTS: Overall, 35 patients (70 hips) with a mean age of 28.0 ± 2.0 years and mean body mass index of 24.1 ± 1.8 participated at 12-year follow-up. Cam morphology was present in 56 of 70 hips (80%). The prevalence of cartilage loss was 52% in hips with cam morphology and 21% in hips without cam morphology (adjusted odds ratio, 4.52 [95% CI, 1.16-17.61]; P = .03). A labral abnormality was present in 77% of hips with cam morphology and in 64% of hips without cam morphology (adjusted odds ratio, 1.99 [95% CI, 0.59-6.73]; P = .27). The duration of cam morphology did not influence these associations. CONCLUSION: The development of cam morphology during skeletal growth was associated with future magnetic resonance imaging findings consistent with cartilage loss in young adults but not with labral abnormalities.
Assuntos
Cartilagem Articular , Futebol , Humanos , Masculino , Adolescente , Estudos Prospectivos , Adulto Jovem , Seguimentos , Futebol/lesões , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/crescimento & desenvolvimento , Cartilagem Articular/patologia , Criança , Imageamento por Ressonância Magnética , Adulto , Desenvolvimento Ósseo , Radiografia , Atletas , Impacto Femoroacetabular/diagnóstico por imagem , Articulação do Quadril/diagnóstico por imagem , Articulação do Quadril/crescimento & desenvolvimentoRESUMO
INTRODUCTION: HIV infection and its treatment compromises skeletal development (growth and maturation). Skeletal maturity is assessed as bone age (BA) on hand and wrist radiographs. BA younger than chronological age (CA) indicates delayed development. We conducted a cross-sectional study to determine differences between BA and CA (i.e., skeletal maturity deviation [SMD]), and risk factors associated with SMD in peripubertal children with and without HIV established on antiretroviral therapy (ART) including use of tenofovir disoproxil fumarate (TDF). METHODS: Children with HIV taking ART for at least two years and a comparison group of HIV-negative children, aged 8-16 years and frequency-matched by age and sex, were recruited from HIV clinics and local schools in the same catchment area, in Harare, Zimbabwe. BA was assessed from non-dominant hand-wrist radiographs using the Tanner Whitehouse 3 method. Negative SMD values correspond to delayed development, i.e., BA younger than CA. Multivariable linear regression models determined factors associated with SMD overall, and in children with HIV. RESULTS: In total, 534 participants (54% males) were included; by design CA was similar in males and females, whether living with or without HIV. Mean (SD) SMD was more negative in CWH than in HIV-negative children in both males [-1.4(1.4) vs. -0.4(1.1) years] and females [-1.1(1.3) vs. -0.0(1.2) years]. HIV infection and weight-for-age Z-score<-2 were associated with more negative SMD in both males and females after adjusting for socio-economic status, orphanhood, pubertal stage, and calcium intake. Age at ART initiation was associated with SMD in both males and females with those starting ART later more delayed: starting ART aged 4-8 years 1.14 (-1.84, -0.43), or over 8 years 1.47 (-2.30, -0.65) (p-value for trend < 0.001). Similar non-significant trends were seen in males. TDF exposure TDF exposure whether < 4years or ≥ 4 years was not associated with delayed development. CONCLUSION: Perinatally-acquired HIV infection and being underweight were independently associated with delayed skeletal maturation in both males and females. Starting ART later was independently associated with skeletal maturation delay in CWH. Given the known effects of delayed development on later health, it is important to find interventions to ensure healthy weight gain through early years and in CWH to initiate ART as early as possible.
Assuntos
Determinação da Idade pelo Esqueleto , Infecções por HIV , Humanos , Estudos Transversais , Feminino , Masculino , Criança , Infecções por HIV/tratamento farmacológico , Zimbábue/epidemiologia , Adolescente , Desenvolvimento Ósseo/efeitos dos fármacos , Tenofovir/uso terapêutico , Fatores de Risco , Fármacos Anti-HIV/uso terapêutico , Estudos de Casos e ControlesRESUMO
Growth and maturation occur in a predictable pattern throughout the body and within each individual bone. In the appendicular skeleton, endochondral ossification predominates in long bones and growth plates. The ends of these long bones are sites of relative weakness in the immature skeleton and prone to injury from acute insult and overuse. We present the normal histoanatomy and physiology of the growth plate complex, highlighting the unique contribution of each component and shared similarities between primary and secondary complexes. Components of the growth plate complex include the physis proper, subjacent vascularity within the growth cartilage, and the ossification front. The second section describes imaging considerations and features of normal and abnormal growth. Finally, we review the Salter-Harris classification for acute fractures and offer examples of characteristic overuse injury patterns involving the epiphyseal (proximal humerus and distal radius), apophyseal (medial epicondyle and tibial tubercle), and secondary growth plate complexes (medial femoral condyle and capitellar osteochondritis dissecans). This article provides a foundation and basic framework to better understand and anticipate potential complications and growth disturbances and to ensure optimal follow-up and early intervention when treatment can be less invasive.
Assuntos
Lâmina de Crescimento , Humanos , Criança , Lâmina de Crescimento/diagnóstico por imagem , Desenvolvimento Ósseo/fisiologia , Fraturas Ósseas/diagnóstico por imagem , Osso e Ossos/diagnóstico por imagemRESUMO
INTRODUCTION: The Hueter-Volkmann law (HVL) of the response of growth plate to compression load is a basic concept in orthopaedics. However, little is known about the origin of HVL and its history. MATERIALS AND METHODS: A literature search was performed in original publications and historical sources. RESULTS: An analysis of all Volkmann´s and Hueter´s texts has shown that none of their publications was based on experiments, but on the data in the literature and their own clinical observations. They did not deal at all with the effect of pressure on the growth plate and mentioned this structure only marginally. The authors coined the opinion that increased pressure retards and decreased pressure accelerates bone growth. Julius Wolff criticized the HVL and concentrated all his arguments in the book "The law of bone remodeling". According to him, increased pressure leads to bone formation, decreased pressure to its resorption. The Wolff-Volkmann dispute was addressed in the German literature by a number of authors. Walther Müller in his monograph "The normal and pathological physiology of the bone" criticized Wolff for his concept of interstitial bone growth. In Müller´s view, HVL applies to the growing bone and Wolff confuses growth with hypertrophy of the mature bone. CONCLUSION: The circumstances of the emergence of HVL are inaccurately and incompletely described in the current literature, as they are mostly taken from secondary sources. HVL, as it is presented today, is not the original formulation, but the result of a long historical evolution.
Assuntos
Lâmina de Crescimento , Ortopedia , Humanos , Ortopedia/história , História do Século XIX , Lâmina de Crescimento/fisiologia , História do Século XX , Desenvolvimento Ósseo/fisiologia , Remodelação Óssea/fisiologiaRESUMO
BACKGROUND: Deviations between the determination of bone age (BA) according to Greulich and Pyle (G&P) and chronological age (CA) are common in Caucasians. Assessing these discrepancies in a population over time requires analysis of large samples and low intra-observer variability in BA estimation, both can be achieved with artificial intelligence-based software. The latest software-based reference curve contrasting the BA determined by G&P to the CA of Central European children dates back over two decades. OBJECTIVE: To examine whether the reference curve from a historical cohort from the Netherlands (Rotterdam cohort) between BA determined by G&P and CA still applies to a current Central European cohort and derive a current reference curve. MATERIALS AND METHODS: This retrospective single-center study included 1,653 children and adolescents (aged 3-17 years) who had received a radiograph of the hand following trauma. The G&P BA estimated using artificial intelligence-based software was contrasted with the CA, and the deviations were compared with the Rotterdam cohort. RESULTS: Among the participants, the mean absolute error between BA and CA was 0.92 years for girls and 0.97 years for boys. For the ages of 8 years (boys) and 11 years (girls) and upward, the mean deviation was significantly greater in the current cohort than in the Rotterdam cohort. The reference curves of both cohorts also differed significantly from each other (P < 0.001 for both boys and girls). CONCLUSION: The BA of the current Central European population and that of the curve from the Rotterdam cohort from over two decades ago differ. Whether this effect can be attributed to accelerated bone maturation needs further evaluation.
Assuntos
Determinação da Idade pelo Esqueleto , Humanos , Criança , Feminino , Masculino , Pré-Escolar , Adolescente , Determinação da Idade pelo Esqueleto/métodos , Estudos Retrospectivos , Países Baixos , Valores de Referência , Desenvolvimento Ósseo/fisiologia , Europa (Continente) , Inteligência ArtificialRESUMO
1. This study was conducted to investigate the effects of dietary supplementation of manganese (Mn) amino acid complexes on growth performance, Mn deposition, meat quality, breast muscle and bone development of broilers.2. A total of 504, one-day-old male Arbor Acres broilers were randomly divided into seven treatments; control diet (CON; basal diet, no extra Mn addition), manganese diet (MnN as Numine®-Mn; CON + 40, 80, 120 or 160 mg Mn/kg), manganese-S group (MnS; CON + 120 mg Mn/kg as MnSO4·H2O), manganese-A diet (MnA as Mn from hydrolysed feather meal; CON + 40 mg Mn/kg as MnA).3. There were no significant differences for average daily gain (ADG) or feed intake (ADFI) among diets during the feed phases (p > 0.05). The FCR in the starter and over the whole period were quadratically affected by dietary MnN dosage and gave the lowest FCR at 80 mg/kg (p < 0.05). The Mn content of thigh muscle, jejunum, heart, pancreas, liver and tibia increased linearly with MnN addition (p < 0.05).4. For meat quality, MnN significantly increased colour (a*), pH45 min and pH24 h, reduced shear force, drip loss and pressure loss of breast muscle (p < 0.05).5. Moreover, MnN significantly upregulated MYOD expression at d 21 and SOD expression at d 42, decreased MuRF1 and Atrogin-1 mRNA level at d 42 in breast muscle. Transcriptome analysis revealed that the regulating effect of MnN on muscle development significantly enriched signalling pathways such as adhesion, ECM-receptor, MAPK, mTOR and AMPK. Furthermore, dietary MnN significantly affected tibia length and growth plate development (p < 0.05) and promoted growth plate chondrocytes by increasing SOX-9, Runx-2, Mef2c, TGF-ß, Ihh, Bcl-2 and Beclin1 and decreasing Bax and Caspase-3 (p < 0.05) expression which affect longitudinal tibial development.6. In conclusion, Mn amino acid complexes could improve growth performance, tissue Mn deposition, breast muscle development, meat quality and bone development.