Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.153
Filtrar
1.
Emerg Infect Dis ; 28(4): 844-847, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35318919

RESUMO

Patients infected with severe acute respiratory syndrome coronavirus 2 might have bacterial and fungal superinfections develop. We describe a clinical case of coronavirus disease with pulmonary aspergillosis associated with Bordetella hinzii pneumonia in an immunocompetent patient in France. B. hinzii infections are rare in humans and develop secondary to immunosuppression or debilitating diseases.


Assuntos
Bordetella , COVID-19 , Pneumonia , Humanos , SARS-CoV-2
2.
J Vet Med Sci ; 84(4): 574-581, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35153249

RESUMO

Bordetella bronchiseptica (B. bronchiseptica) is associated with respiratory tract infections in laboratory animals. In our laboratory animal facility, B. bronchiseptica was isolated from 21 of 27 apparently healthy rabbits obtained from a breeding farm contaminated with B. bronchiseptica. Restriction fragment length polymorphism (RFLP) analysis showed that the flagellin genotype of isolates from the laboratory animal facility and breeding farm was type A, which is seen relatively frequently in rabbits in Europe. To examine its pathogenicity, guinea pigs, rats, and mice were inoculated intranasally with a representative strain isolated in the laboratory animal facility. Following inoculation of 107 colony forming unit (cfu), severe inflammation was observed in the lungs of guinea pig and mice, although the inflammation was less severe in rats. The strain was recovered from the trachea and lungs of these species after inoculation with lower dose such as 103 or 104 cfu. These results suggest that the isolated strain causes respiratory tract infection in guinea pigs, rats, and mice, and that its pathogenicity higher in mice than in rats. This study extends our knowledge of interpreting the microbiologic status of laboratory animals, which will contribute to the development of reliable and reproducible animal experiments.


Assuntos
Infecções por Bordetella , Bordetella bronchiseptica , Bordetella , Infecções Respiratórias , Doenças dos Roedores , Animais , Animais de Laboratório , Infecções por Bordetella/microbiologia , Infecções por Bordetella/veterinária , Bordetella bronchiseptica/genética , Cobaias , Inflamação/veterinária , Camundongos , Coelhos , Ratos , Infecções Respiratórias/microbiologia , Infecções Respiratórias/veterinária , Virulência
3.
Front Cell Infect Microbiol ; 12: 798317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223538

RESUMO

A variety of bacteria have evolved the ability to interact with environmental phagocytic predators such as amoebae, which may have facilitated their subsequent interactions with phagocytes in animal hosts. Our recent study found that the animal pathogen Bordetella bronchiseptica can evade predation by the common soil amoeba Dictyostelium discoideum, survive within, and hijack its complex life cycle as a propagation and dissemination vector. However, it is uncertain whether the mechanisms allowing interactions with predatory amoebae are conserved among Bordetella species, because divergence, evolution, and adaptation to different hosts and ecological niches was accompanied by acquisition and loss of many genes. Here we tested 9 diverse Bordetella species in three assays representing distinct aspects of their interactions with D. discoideum. Several human and animal pathogens retained the abilities to survive within single-celled amoeba, to inhibit amoebic plaque expansion, and to translocate with amoebae to the fruiting body and disseminate along with the fruiting body. In contrast, these abilities were partly degraded for the bird pathogen B. avium, and for the human-restricted species B. pertussis and B. parapertussis. Interestingly, a different lineage of B. parapertussis only known to infect sheep retained the ability to interact with D. discoideum, demonstrating that these abilities were lost in multiple lineages independently, correlating with niche specialization and recent rapid genome decay apparently mediated by insertion sequences. B. petrii has been isolated sporadically from diverse human and environmental sources, has acquired insertion sequences, undergone genome decay and has also lost the ability to interact with amoebae, suggesting some specialization to some unknown niche. A genome-wide association study (GWAS) identified a set of genes that are potentially associated with the ability to interact with D. discoideum. These results suggest that massive gene loss associated with specialization of some Bordetella species to a closed life cycle in a particular host was repeatedly and independently accompanied by loss of the ability to interact with amoebae in an environmental niche.


Assuntos
Amoeba , Bordetella bronchiseptica , Bordetella , Dictyostelium , Amoeba/microbiologia , Animais , Bordetella/genética , Bordetella bronchiseptica/genética , Dictyostelium/microbiologia , Estudo de Associação Genômica Ampla , Ovinos/genética
4.
Nat Commun ; 13(1): 693, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121734

RESUMO

Intracellular pathogens are challenged with limited space and resources while replicating in a single host cell. Mechanisms for direct invasion of neighboring host cells have been discovered in cell culture, but we lack an understanding of how bacteria directly spread between host cells in vivo. Here, we describe the discovery of intracellular bacteria that use filamentation for spreading between the intestinal epithelial cells of a natural host, the rhabditid nematode Oscheius tipulae. The bacteria, which belong to the new species Bordetella atropi, can infect the nematodes following a fecal-oral route, and reduce host life span and fecundity. Filamentation requires UDP-glucose biosynthesis and sensing, a highly conserved pathway that is used by other bacteria to detect rich conditions and inhibit cell division. Our results indicate that B. atropi uses a pathway that normally regulates bacterial cell size to trigger filamentation inside host cells, thus facilitating cell-to-cell dissemination.


Assuntos
Bordetella/crescimento & desenvolvimento , Mucosa Intestinal/citologia , Rhabditoidea/citologia , Animais , Bordetella/classificação , Bordetella/patogenicidade , Divisão Celular/genética , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Genoma Bacteriano/genética , Interações Hospedeiro-Patógeno , Hibridização in Situ Fluorescente , Mucosa Intestinal/microbiologia , Espaço Intracelular/microbiologia , Redes e Vias Metabólicas/genética , Microscopia Eletrônica de Transmissão , Filogenia , RNA Ribossômico 16S/genética , Rhabditoidea/genética , Rhabditoidea/microbiologia , Análise de Sequência de DNA , Virulência
6.
PLoS One ; 16(10): e0259318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34714887

RESUMO

PURPOSE: The purpose of this study was to characterize the nasopharyngeal microbiota of infants with possible and confirmed pertussis compared to healthy controls. METHODS: This prospective study included all infants <1 year with microbiologically confirmed diagnosis of pertussis attended at a University Hospital over a 12-month period. For each confirmed case, up to 2 consecutive patients within the same age range and meeting the clinical case definition of pertussis but testing PCR-negative were included as possible cases. A third group of asymptomatic infants (healthy controls) were also included. Nasopharyngeal microbiota was characterized by sequencing the V3-V4 region of the 16S rRNA gene. Common respiratory DNA/RNA viral co-infection was tested by multiplex PCR. RESULTS: Twelve confirmed cases, 21 possible cases and 9 healthy controls were included. Confirmed whooping cough was primarily driven by detection of Bordetella with no other major changes on nasopharyngeal microbiota. Possible cases had limited abundance or absence of Bordetella and a distinctive microbiota with lower bacterial richness and diversity and higher rates of viral co-infection than both confirmed cases and healthy controls. Bordetella reads determined by 16S rRNA gene sequencing were found in all 12 confirmed cases (100%), 3 out of the 21 possible cases (14.3%) but in any healthy control. CONCLUSION: This study supports the usefulness of 16S rRNA gene sequencing for improved sensitivity on pertussis diagnosis compared to real-time PCR and to understand other microbial changes occurring in the nasopharynx in children <1 year old with suspected whooping cough compared to healthy controls.


Assuntos
Microbiota , Coqueluche/microbiologia , Bordetella/genética , Bordetella/isolamento & purificação , Bordetella/patogenicidade , Estudos de Casos e Controles , Feminino , Humanos , Lactente , Masculino , Cavidade Nasal/microbiologia , Faringe/microbiologia , RNA Ribossômico 16S/genética , Coqueluche/diagnóstico
7.
Sci Rep ; 11(1): 17535, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475490

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disease caused by dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) protein, and is marked by an accumulation of mucus in affected airways resulting in persistent infection and chronic inflammation. Quantitative differences in inflammatory markers have been observed in CF patient serum, tracheal cells, and bronchoalveolar lavage fluid, in the absence of detectable infection, implying that absent CFTR function alone may result in dysregulated immune responses. To examine the relationship between absent CFTR and systemic inflammation, 22 analytes were measured in CF mice (F508del/F508del) sera using the MSD multiplex platform. Pro-inflammatory cytokines IL-2, TNF-α, IL-17α, IFN-γ, IL-1ß, and MIP-3α are significantly elevated in infection-naïve CF mice (p < 0.050). Anti-inflammatory cytokines IL-10 and IL-4 are also significantly increased (p = 0.00003, p = 0.004). Additionally, six general markers of inflammation are significantly different from non-CF controls (p < 0.050). To elucidate the effects of chronic infection on the CF inflammatory profile, we examined CF mice exposed to spontaneous Bordetella pseudohinzii infections. There are no statistical differences in nearly all inflammatory markers when compared to their infection-naïve CF counterparts, except in the Th2-derived IL-4 and IL-5 which demonstrate significant decreases following exposure (p = 0.046, p = 0.045). Lastly, following acute infection, CF mice demonstrate elevations in nearly all inflammatory markers, but exhibit a shortened return to uninfected levels over time, and suppression of Th1-derived IL-2 and IL-5 (p = 0.043, p = 0.011). These results imply that CF mice have a persistent inflammatory profile often indistinguishable from chronic infection, and a dysregulated humoral response during and following active infection.


Assuntos
Infecções por Bordetella/complicações , Bordetella/isolamento & purificação , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/microbiologia , Citocinas/sangue , Inflamação/diagnóstico , Mutação , Animais , Infecções por Bordetella/metabolismo , Infecções por Bordetella/microbiologia , Fibrose Cística/genética , Fibrose Cística/patologia , Modelos Animais de Doenças , Feminino , Inflamação/sangue , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Viruses ; 13(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34578315

RESUMO

Bordetella bronchiseptica is a respiratory animal pathogen that shows growing resistance to commonly used antibiotics, which has necessitated the examination of new antimicrobials, including bacteriophages. In this study, we examined the previously isolated and partially characterized B. bronchiseptica siphoviruses of the genus Vojvodinavirus (LK3, CN1, CN2, FP1 and MW2) for their ability to inhibit bacterial growth and biofilm, and we examined other therapeutically important properties through genomic analysis and lysogeny experiments. The phages inhibited bacterial growth at a low multiplicity of infection (MOI = 0.001) of up to 85% and at MOI = 1 for >99%. Similarly, depending on the phages and MOIs, biofilm formation inhibition ranged from 65 to 95%. The removal of biofilm by the phages was less efficient but still considerably high (40-75%). Complete genomic sequencing of Bordetella phage LK3 (59,831 bp; G + C 64.01%; 79 ORFs) showed integrase and repressor protein presence, indicating phage potential to lysogenize bacteria. Lysogeny experiments confirmed the presence of phage DNA in bacterial DNA upon infection using PCR, which showed that the LK3 phage forms more or less stable lysogens depending on the bacterial host. Bacterial infection with the LK3 phage enhanced biofilm production, sheep blood hemolysis, flagellar motility, and beta-lactam resistance. The examined phages showed considerable anti-B. bronchiseptica activity, but they are inappropriate for therapy because of their temperate nature and lysogenic conversion of the host bacterium.


Assuntos
Bacteriófagos , Bordetella bronchiseptica/virologia , Terapia por Fagos , Siphoviridae , Animais , Antibacterianos/farmacologia , Bactérias , Bacteriófagos/genética , Biofilmes/crescimento & desenvolvimento , Bordetella/genética , Bordetella bronchiseptica/efeitos dos fármacos , DNA Bacteriano/genética , Lisogenia , Ovinos , Siphoviridae/genética
9.
Sci Rep ; 11(1): 18461, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531515

RESUMO

Antibiotic resistance is a serious threat that occurs globally in the health sector due to increased consumption of inappropriate antibiotics. Guidelines for prescribing antibiotics for ARTIs have been issued in general practice to promote rational antibiotic prescribing. This study was conducted to compare the effectiveness of cefixime and tetracycline as a solution to improve monitoring of appropriate antibiotic use in the treatment of ARTIs. All stock isolates were rejuvenated first, and cultured on standard media and Kirby-Bauer disc diffusion method was used for susceptibility testing in accordance with the Clinical and Laboratory Standard Institute's (CLSI) recommendations. Identification of bacteria from a single isolate was carried out to determine which bacteria were resistant to cefixime and tetracycline. A total of 466 single isolates of bacteria were analyzed, which showed a percentage of resistance to cefixime 38.0%, and tetracycline 92.86%. Bacterial isolates were resistant to cefixime and tetracycilne was a genus of Haemophilus, Streptococcus, Corynebacterium, Staphylococcus, and bordetella. Cefixime compared to tetracycline was proven to be superior in terms of the effectiveness of ARIs treatment.


Assuntos
Antibacterianos/toxicidade , Cefixima/toxicidade , Farmacorresistência Bacteriana , Infecções Respiratórias/tratamento farmacológico , Tetraciclina/toxicidade , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Bordetella/efeitos dos fármacos , Cefixima/administração & dosagem , Cefixima/uso terapêutico , Corynebacterium/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Cálculos da Dosagem de Medicamento , Haemophilus/efeitos dos fármacos , Humanos , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/microbiologia , Staphylococcus/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Tetraciclina/administração & dosagem , Tetraciclina/uso terapêutico
10.
Emerg Infect Dis ; 27(11): 2904-2907, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34388087

RESUMO

Patients with severe acute respiratory syndrome coronavirus 2 infection may have bacterial co-infections, including pneumonia and bacteremia. Bordetella hinzii infections are rare, may be associated with exposure to poultry, and have been reported mostly among immunocompromised patients. We describe B. hinzii pneumonia and bacteremia in a severe acute respiratory syndrome coronavirus 2 patient.


Assuntos
Bacteriemia , Infecções por Bordetella/complicações , Bordetella , COVID-19 , Bacteriemia/complicações , Bacteriemia/diagnóstico , Bordetella/genética , Infecções por Bordetella/diagnóstico , COVID-19/complicações , Humanos
11.
Emerg Infect Dis ; 27(9): 2459-2461, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34424178

RESUMO

A patient in Virginia, USA, who had previously undergone multiple kidney transplantations showed signs of Bordetella hinzii bacteremia and meningitis. This emerging pathogen has been increasingly identified as a clinically significant pathogen in immunosuppressed and, less frequently, immunocompetent patients. This patient was treated and recovered without further issue.


Assuntos
Bordetella , Transplante de Rim , Meningite , Humanos , Transplante de Rim/efeitos adversos , Virginia/epidemiologia
12.
BMC Infect Dis ; 21(1): 833, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412580

RESUMO

BACKGROUND: Bordetella avium, an aerobic bacterium that rarely causes infection in humans, is a species of Bordetella that generally inhabits the respiratory tracts of turkeys and other birds. It causes a highly contagious bordetellosis. Few reports describe B. avium as a causative agent of eye-related infections. CASE PRESENTATION: We report a case of acute infectious endophthalmitis associated with infection by B. avium after open trauma. After emergency vitrectomy and subsequent broad-spectrum antibiotic treatment, the infection was controlled successfully, and the patient's vision improved. CONCLUSIONS: B. avium can cause infection in the human eye, which can manifest as acute purulent endophthalmitis. Nanopore targeted sequencing technology can quickly identify this organism. Emergency vitrectomy combined with lens removal and silicone oil tamponade and the early application of broad-spectrum antibiotics are key for successful treatment.


Assuntos
Bordetella avium , Bordetella , Extração de Catarata , Endoftalmite , Endoftalmite/diagnóstico , Endoftalmite/tratamento farmacológico , Endoftalmite/cirurgia , Humanos , Vitrectomia
13.
Emerg Infect Dis ; 27(11): 2966-2968, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34463239

RESUMO

Although Bordetella hinzii coccobacilli is most commonly identified in respiratory tracts of birds and rodents, this organism has occasionally been isolated in human infections. We describe a case of B. hinzii spontaneous bacterial peritonitis in Missouri, USA. Whole-genome sequencing of blood and peritoneal fluid isolates confirmed B. hinzii infection.


Assuntos
Infecções por Bordetella , Bordetella , Peritonite , Bordetella/genética , Infecções por Bordetella/diagnóstico , Humanos , Missouri , Peritonite/diagnóstico
14.
J Med Case Rep ; 15(1): 365, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34253232

RESUMO

BACKGROUND: Bordetella trematum is unknown to most clinicians and microbiologists. However, this Gram-negative opportunistic bacterium can be responsible for ulcer superinfection but also bacteremia and sometimes death by septic shock. CASE REPORT: We report the case of erysipelas due to B. trematum with bacteremia in an immunocompromised 88-year-old Caucasian patient. CONCLUSION: In immunocompromised patients, unusual microbial agents such as B. trematum can be responsible for cutaneous and systemic infections, requiring specific antibiotic therapy. Therefore, clinicians should be aware of the need for specific bacterial identification such as matrix-assisted laser desorption ionization time-of-flight mass spectrometry and 16S ribosomal RNA sequencing in the context of atypical evolution of erysipelas in such patients.


Assuntos
Bacteriemia , Bordetella , Erisipela , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Braço , Bacteriemia/tratamento farmacológico , Bordetella/genética , Erisipela/diagnóstico , Erisipela/tratamento farmacológico , Humanos , RNA Ribossômico 16S
15.
Nat Commun ; 12(1): 4495, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301946

RESUMO

Zoonotic transfer of animal pathogens to human hosts can generate novel agents, but the genetic events following such host jumps are not well studied. Here we characterize the mechanisms driving adaptive evolution of the emerging zoonotic pathogen Bordetella hinzii in a patient with interleukin-12 receptor ß1 deficiency. Genomic sequencing of 24 B. hinzii isolates cultured from blood and stool over 45 months revealed a clonal lineage that had undergone extensive within-host genetic and phenotypic diversification. Twenty of 24 isolates shared an E9G substitution in the DNA polymerase III ε-subunit active site, resulting in a proofreading deficiency. Within this proofreading-deficient clade, multiple lineages with mutations in DNA repair genes and altered mutational spectra emerged and dominated clinical cultures for more than 12 months. Multiple enzymes of the tricarboxylic acid cycle and gluconeogenesis pathways were repeatedly mutated, suggesting rapid metabolic adaptation to the human environment. Furthermore, an excess of G:C > T:A transversions suggested that oxidative stress shaped genetic diversification during adaptation. We propose that inactivation of DNA proofreading activity in combination with prolonged, but sub-lethal, oxidative attack resulting from the underlying host immunodeficiency facilitated rapid genomic adaptation. These findings suggest a fundamental role for host immune phenotype in shaping pathogen evolution following zoonotic infection.


Assuntos
Adaptação Fisiológica/genética , Bordetella/genética , Evolução Molecular , Hospedeiro Imunocomprometido/genética , Animais , Proteínas de Bactérias/genética , Zoonoses Bacterianas/microbiologia , Bordetella/classificação , Bordetella/fisiologia , DNA Polimerase III/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Mutação , Filogenia , Aves Domésticas/microbiologia , Receptores de Interleucina-12/deficiência , Receptores de Interleucina-12/genética
17.
J Infect Chemother ; 27(5): 740-746, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33386260

RESUMO

Bordetella trematum and Kerstersia gyiorum are rare gram-negative bacilli that are not frequently detected in human infections. In this report, we describe a case of a 48-year-old man who presented to our hospital with an infected wound on his leg. Discharges from the cracks of the granulation were collected and evaluated in our microbiology laboratory. Gram staining of the specimen showed polymorphonuclear leukocytes and abundant gram-negative bacilli. Three types of colonies were isolated on blood agar and were identified as B. trematum and Alcaligenes faecalis using VITEK MS. Moreover, K. gyiorum and B. trematum were identified and confirmed via 16S ribosomal RNA (rRNA) gene sequencing. The patient successfully recovered following application of meropenem antibacterial therapy and surgical debridement. This is the first reported case of complex wound infection caused by both B. trematum and K. gyiorum. Identification of B. trematum has recently been made possible by routine bacterial identification using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS). However, K. gyiorum isolation is still rare, and species identification requires 16S rRNA sequencing. Thus, this case highlighted the importance of using multiple methods, such as MALDI-TOF MS and 16S rRNA gene sequencing, for identification of rarely isolated species from clinical specimens.


Assuntos
Bordetella , Dermatite , Alcaligenaceae , Bordetella/genética , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494150

RESUMO

Bacterial pathogens expose on the cell surface a variety of complex carbohydrate molecules. Gram-negative bacteria produce lipopolysaccharides, which are the main components of the outer membrane of bacterial envelopes and play a major role in host-pathogen interactions. B. pertussis, B. parapertussis, B. bronchiseptica, and B. holmesii, are mammalian respiratory pathogens, having substantial economic impact on human health and agriculture. B. pertussis is responsible for whooping cough (pertussis) and B. holmesii is the second pertussis etiological factor, but the current anti-pertussis vaccines do not provide cross-protection. The structural data on any given hypothetical carbohydrate antigen is a prerequisite for further analysis of structure-related activities and their interaction with hosts. 1H NMR spectra constitute fingerprints of the analyzed glycans and provide unique identity information. The concept of structure-reporter groups has now been augmented by 1H,13C-correlation spectra of the Bordetella oligosaccharides. The comparative analysis of Bordetellae oligosaccharides (OS) revealed that the hexasaccharide, comprising the α-GlcpN, α-GlcpA, 4,6-disubstituted-ß-Glcp, 2,7-disubstituted-l-α-d-Hepp, 3,4-disubstituted-l-α-d-Hepp, and Kdo, constitute the least variable OS segment. This minimal common element in the structure of lipopolysaccharides of Bordetellae could be used to devise a universal cross-protective vaccine component against infections with various bacteria from the genus Bordetella.


Assuntos
Bordetella , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oligossacarídeos/química , Polissacarídeos Bacterianos/química , Bordetella pertussis , Humanos , Oligossacarídeos/isolamento & purificação , Polissacarídeos Bacterianos/isolamento & purificação , Análise Espectral , Coqueluche/microbiologia
20.
Mol Genet Genomics ; 296(1): 21-31, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32944788

RESUMO

The lungs possess an effective antimicrobial system and a strong ability to eliminate microorganisms in healthy organisms, and were once considered sterile. With the development of culture-independent sequencing technology, the richness and diversity of porcine lung microbiota have been gaining attention. In order to study the relationship between lung microbiota and porcine respiratory disease complex (PRDC), the lung microbiota in healthy and diseased swine bronchoalveolar lavage fluids were analyzed and compared using the Illumina MiSeq sequencing platform. The predominant microbial communities of healthy and diseased swine were similar at the phylum level, mainly composed of Proteobacteria, Firmicutes, Tenericutes, and Bacteroidetes. However, the bacterial taxonomic communities of healthy and diseased swine differed at the genus level. The higher relative abundances of Lactococcus, Enterococcus, Staphylococcus, and Lactobacillus genera in healthy swine might provide more benefits for lung health, while the enhanced richness of Streptococcus, Haemophilus, Pasteurella, and Bordetella genera in diseased swine might be closely related to pathogen invasion and the occurrence of respiratory disease. In conclusion, the observed differences in the richness and diversity of lung microbiota can provide novel insights into their relationship with PRDC. Analyses of swine lung microbiota communities might produce an effective strategy for the control and prevention of respiratory tract infections.


Assuntos
DNA Bacteriano/genética , Pulmão/microbiologia , Microbiota/genética , Infecções Respiratórias/microbiologia , Suínos/microbiologia , Animais , Bordetella/classificação , Bordetella/genética , Bordetella/isolamento & purificação , Bordetella/patogenicidade , Líquido da Lavagem Broncoalveolar/microbiologia , Enterococcus/classificação , Enterococcus/genética , Enterococcus/isolamento & purificação , Haemophilus/classificação , Haemophilus/genética , Haemophilus/isolamento & purificação , Haemophilus/patogenicidade , Sequenciamento de Nucleotídeos em Larga Escala , Lactobacillus/classificação , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Lactococcus/classificação , Lactococcus/genética , Lactococcus/isolamento & purificação , Pasteurella/classificação , Pasteurella/genética , Pasteurella/isolamento & purificação , Pasteurella/patogenicidade , Filogenia , RNA Ribossômico 16S/genética , Staphylococcus/classificação , Staphylococcus/genética , Staphylococcus/isolamento & purificação , Streptococcus/classificação , Streptococcus/genética , Streptococcus/isolamento & purificação , Streptococcus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...