RESUMO
Although polyhalogenated carbazoles (PHCZs) have been widely detected in the marine environment, their origin is far from clear. In this study, the formation of PHCZs in the chlorination of seawater containing carbazole and its derivatives was investigated. A total of 14 PHCZs including six commonly found and eight unknown congeners were identified in the chlorination of seawater with carbazole. In addition, this study for the first time demonstrated the production of common PHCZs from the chlorination of seawater with 3-methyl carbazole and 3-formyl carbazole, especially 1,8-dibromo-3,6-dichlorocarbazole from 3-methyl carbazole. The formation of PHCZs in the reaction resulted from the halogenation of carbazole by reactive chlorine species (RCS) and mainly reactive bromine species (RBS), forming from the oxidation of bromide by RCS. Results also indicated that the reaction followed a successive halogenation pattern. A higher content of free chlorine and bromide facilitated the generation of RBS, while a higher concentration of DOC exhibited an inhibitory effect. The effects of free chlorine, bromide, DOC, and temperature on the formation of PHCZs were congener-specific. Given the widespread use of chlorination in seawater disinfection, seawater chlorination might be a potential source of PHCZs in the marine environment.
Assuntos
Halogenação , Poluentes Químicos da Água , Brometos , Cloro , Poluentes Químicos da Água/análise , Água do Mar , Desinfecção , Carbazóis/análiseRESUMO
Seawater desalination is practiced in many coastal countries, which is accepted as clean water by the general populations. The untreated seawater reported high concentrations of bromide (50,000 - 80,000 µg/L) and iodide (21 - 60 µg/L) ions, which are reduced to non-detectable levels during thermal desalination while the concentrations of bromide and iodide ions were reduced to 250-600 µg/L and < 4-16 µg/L, respectively during reverse osmosis processes. During the treatment and/or disinfection, many brominated and iodinated disinfection byproducts (Br-DBPs and I-DBPs) are formed in desalinated water, some of which are genotoxic and cytotoxic to the mammalian cells and possible/probable human carcinogens. In this paper, DBPs' formation in desalinated and blended water from source to tap, toxicity to the mammalian cells, their risks to humans and the strategies to control DBPs were investigated. The lifetime excess cancer risks from groundwater, and desalinated and blended water sourced DBPs were 4.15 × 10-6 (4.72 × 10-7 - 1.30 × 10-5), 1.75 × 10-5 (2.58 × 10-6 - 5.25 × 10-5) and 2.59 × 10-5 (4.02 × 10-6 - 8.35 × 10-5) respectively, indicating higher risks from desalinated and blended water (2.56 and 4.51 times respectively) than groundwater systems. Few emerging DBPs in desalinated/blended water showed higher cyto- and genotoxicity in the mammalian cells. The findings were compared with safe drinking water standards and strategies to produce cleaner desalinated water were demonstrated.
Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Animais , Humanos , Desinfetantes/análise , Brometos , Iodetos , Poluentes Químicos da Água/análise , Desinfecção , Água Potável/análise , Halogenação , MamíferosRESUMO
Bromide forms toxic brominated disinfection by-products during disinfection. Current bromide removal technologies are often non-specific and costly due to naturally occurring competing anions. A silver-impregnated graphene oxide (GO) nanocomposite is reported here that reduced the amount of Ag needed for Br- removal by increasing its selectivity towards Br-. GO was impregnated with ionic (GO-Ag+) or nanoparticulate Ag (GO-nAg) and compared against Ag+ or unsupported nAg to identify molecular level interactions. In nanopure water, Ag+ and nAg had the highest Br- removal (â¼0.89 mol Br-/mol Ag+) followed by GO-nAg at 0.77 mol Br-/mol Ag+. However, under anionic competition, the Ag+ removal was reduced to 0.10 mol Br-/mol Ag+ while all nAg forms retained good Br- removal. To understand the removal mechanism, anoxic experiments were performed to prevent nAg dissolution, which resulted in higher Br- removal for all nAg forms compared to oxic conditions. This suggests that reaction of Br- with the nAg surface is more selective than with Ag+. Finally, jar tests showed that anchoring nAg on GO enhances Ag removal during coagulation/flocculation/sedimentation compared to unsupported nAg or Ag+. Thus, our results identify strategies that can be used to design selective and silver-efficient adsorbents for Br- removal in water treatment.
Assuntos
Grafite , Nanopartículas Metálicas , Nanocompostos , Poluentes Químicos da Água , Brometos , Prata , Poluentes Químicos da Água/análiseRESUMO
Fluoroquinolones (FQs) are a class of antibiotics with emerging concern. This study investigated the photochemical properties of two representative FQs, i.e., norfloxacin (NORF) and ofloxacin (OFLO). Results showed that both FQs could sensitize the photo-transformation of acetaminophen under UV-A irradiation, during which excited triplet state (3FQ*) was the main active species. In the presence of 3 mM Brâ¾, the photolysis rate of acetaminophen increased by 56.3% and 113.5% in the solutions with 10 µM NORF and OFLO, respectively. Such an effect was ascribed to the generation of reactive bromine species (RBS), which was verified by 3,5-dimethyl-1H-pyrazole (DMPZ) probing approach. 3FQ* reacts with acetaminophen through one-electron transfer, producing radical intermediates which then couple to each other. Presence of Brâ¾ did not lead to the formation of brominated products but the same coupling products, which suggests that radical bromine species, rather than free bromine, were responsible for the accelerated acetaminophen transformation. According to the identified reaction products and assisted with the theoretical computation, the transformation pathways of acetaminophen under UV-A irradiation were proposed. The results reported herein suggest that sunlight-driven reactions of FQs and Brâ¾ may influence the transformation of coexisting pollutants in surface water environments.
Assuntos
Fluoroquinolonas , Poluentes Químicos da Água , Fluoroquinolonas/química , Brometos , Acetaminofen , Bromo , Poluentes Químicos da Água/análise , Norfloxacino/química , Ofloxacino/química , FotóliseRESUMO
Bromide ion (Br-) is known as a prevalent component in water environments, which exhibits significant impacts on halonitromethanes (HNMs) formation. This study was performed to explore and compare the formation, toxicity, and mechanisms of HNMs from poly(diallyl dimethyl ammonium chloride) (PDDACl) in the absence and presence of Br- in the UV/monochloramine (UV/NH2Cl) disinfection process. The results showed that chlorinated HNMs were found in the absence of Br-, while brominated (chlorinated) HNMs and brominated HNMs were found in the presence of Br-. Furthermore, the peaks of total HNMs were promoted by 2.0 and 2.4 times, respectively when 1.0 and 2.0 mg L-1 Br- were added. Also, the peaks of total HNMs were enhanced with the increase of the NH2Cl dosage, which were reduced with the increase of pH. It should be noted that Br- induced higher toxicity of HNMs, and the cytotoxicity and genotoxicity of HNMs with the addition of 2.0 mg L-1 Br- were 78.0 and 3.7 times those without the addition of Br-, respectively. Meanwhile, both the reaction mechanisms of HNMs produced from PDDACl were speculated in the absence and presence of Br-. Finally, different HNMs species and yields were discovered in these two real water samples compared to those in simulated waters. These findings of this work will be conducive to understanding the significance of Br- affecting HNMs formation and toxicity in the disinfection process.
Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Brometos , Cloreto de Amônio , Halogenação , Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , CloroRESUMO
OBJECTIVE: The aggregation of alpha-synuclein (α-syn) is closely related to the pathogenesis and dysfunction of Parkinson's disease. METHODS: To investigate the potential of nanoparticlemediated therapy, the interactive mechanism between α-syn and n-myristyltrimethylammonium bromide (MTAB) Gold nanoparticles (AuNPs) with different diameters was explored by molecular dynamics simulations. RESULTS: The results indicated that there was a directional interaction between α-syn and n-MTAB AuNPs, in which the driving force for the binding of the C-terminus in α-syn came from electrostatic interactions and the nonamyloid ß component (NAC) domain exhibited weak hydrophobic interactions as well as electrostatic interaction, thereby preventing α-syn aggregation. Energy statistics and analysis showed that for 5-MTAB AuNPs, acidic amino acids such as Glu and Asp played a very important role. CONCLUSIONS: This study not only demonstrated a theoretical foundation for the behavior of biomolecules directionally adsorbed on the surface of biofunctional nanoparticles but also indicated that 5-MTAB AuNPs may be a potential inhibitor against α-syn protein aggregation.
Assuntos
Nanopartículas Metálicas , Doença de Parkinson , Humanos , alfa-Sinucleína/química , Ouro , Brometos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismoRESUMO
A deaminative reductive coupling of amino acid pyridinium salts with aryl bromides has been developed to enable efficient synthesis of noncanonical amino acids and diversification of peptides. This method transforms natural, commercially available lysine, ornithine, diaminobutanoic acid, and diaminopropanoic acid to aryl alanines and homologated derivatives with varying chain lengths. Attractive features include ability to transverse scales, tolerance of pharma-relevant (hetero)aryls and biorthogonal functional groups, and the applicability beyond monomeric amino acids to short and macrocyclic peptide substrates. The success of this work relied on high-throughput experimentation to identify complementary reaction conditions that proved critical for achieving the coupling of a broad scope of aryl bromides with a range of amino acid and peptide substrates including macrocyclic peptides.
Assuntos
Aminoácidos , Brometos , Aminoácidos/química , Aminas/química , Peptídeos/química , OrnitinaRESUMO
Bromine is an important resource that is widely used in medical, automotive, and electronic industries. Waste electronic products containing brominated flame retardants can cause serious secondary pollution, which is why catalytic cracking, adsorption, fixation, separation, and purification have gained significant attention. However, the bromine resources have not been effectively reutilized. The application of advanced pyrolysis technology could help solve this problem via converting bromine pollution into bromine resources. Coupled debromination and bromide reutilization during pyrolysis is an important field of research in the future. This prospective paper presents new insights in terms of the reorganization of different elements and adjustment of bromine phase transition. Furthermore, we proposed some research directions for efficient and environmentally friendly debromination and reutilization of bromine: 1) precise synergistic pyrolysis should be further explored for efficient debromination, such as using persistent free radicals in biomass, polymer hydrogen supply, and metal catalysis, 2) rematching of Br elements and nonmetal elements (C/H/O) will be a promising direction for synthesizing functionalized adsorption materials, 3) oriented control of the bromide migration path should be further studied to obtain different forms of bromine resources, and 4) advanced pyrolysis equipment should be well developed.
Assuntos
Resíduo Eletrônico , Retardadores de Chama , Bromo , Brometos , Pirólise , Estudos Prospectivos , Resíduo Eletrônico/análiseRESUMO
Mn(II)-based perovskite materials are being intensively explored for lighting applications; understanding the role of ligands regarding their photobehavior is fundamental for their development. Herein, we report on two Mn (II) bromide perovskites using monovalent (perovskite 1, P1) and bivalent (perovskite 2, P2) alkyl interlayer spacers. The perovskites were characterized with powder X-ray diffraction (PXRD), electron spin paramagnetic resonance (EPR), steady-state, and time-resolved emission spectroscopy. The EPR experiments suggest octahedral coordination in P1 and tetrahedral coordination for P2, while the PXRD results demonstrate the presence of a hydrated phase in P2 when exposed to ambient conditions. P1 exhibits an orange-red emission, while P2 shows a green photoluminescence, as a result of the different types of coordination of Mn(II) ions. Furthermore, the P2 photoluminescence quantum yield (26%) is significantly higher than that of P1 (3.6 %), which we explain in terms of different electron-phonon couplings and Mn-Mn interactions. The encapsulation of both perovskites into a PMMA film largely increases their stability against moisture, being more than 1000 h for P2. Upon increasing the temperature, the emission intensity of both perovskites decreases without a significant shift in the emission spectrum, which is explained in terms of an increase in the electron-phonon interactions. The photoluminescence decays fit two components in the microsecond regime-the shortest lifetime for hydrated phases and the longest one for non-hydrated phases. Our findings provide insights into the effects of linear mono- and bivalent organic interlayer spacer cations on the photophysics of these kinds of Mn (II)-based perovskites. The results will help in better designs of Mn(II)-perovskites, to increase their lighting performance.
Assuntos
Brometos , Compostos de Cálcio , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , PósRESUMO
Stereochemically defined trisubstituted alkenes with a bromide and a methyl group at a terminus can be readily and stereoretentively derivatized through catalytic cross-coupling, affording unsaturated fragments found in many bioactive natural products. A direct method for generating such entities would be by stereocontrolled catalytic cross-metathesis (CM). Such methods are scarce however. Here, we present a stereoretentive strategy for CM between tri-, Z- or E-di, or monosubstituted olefins and Z- or E-2-bromo-2-butene, affording an assortment of E- or Z-trisubstituted alkenyl bromides. The majority of the transformations were catalyzed by two Mo monoaryloxide pyrrolide (MAP) complexes, one purchasable and the other accessible by well-established protocols. Substrates, such as feedstock trisubstituted olefins, can be purchased; the alkenyl bromide reagents are commercially available or can be prepared in two steps in a multigram scale. The catalytic process can be used to generate products that contain polar moieties, such as an amine or an alcohol, or sterically hindered alkenes that are α- or ß-branched. The utility of the approach is highlighted by a brief and stereocontrolled synthesis of an unsaturated fragment of phomactin A and a concise total synthesis of ambrein. An unexpected outcome of these investigations was the discovery of a new role for the presence of a small-molecule alkene in an olefin metathesis reaction. DFT studies indicate that this additive swiftly reacts with a short-lived Mo alkylidene and probably helps circumvent the formation of catalytically inactive square pyramidal metallacyclobutanes, enhancing the efficiency of a transformation.
Assuntos
Alcenos , Brometos , Estereoisomerismo , Alcenos/química , Indicadores e Reagentes , CatáliseRESUMO
Several strategies and approaches have been reported for improving the resilience and optoelectronic properties of perovskite films. However, fabricating a desirable and stable perovskite absorber layer is still a great challenge due to the optoelectronic and fabrication limitations of the materials. Here, we introduce diethylammonium bromide (DABr) as a post-treatment material for the pre-deposited methylammonium lead iodide (MAPbI3) film to fabricate a high-quality two-dimensional/three-dimensional (2D/3D) stacked hetero-structure perovskite film. The post-treatment method of DABr not only induces the small crystals of MAPbI3 perovskite secondary growth into a large crystal, but also forms a 2D capping layer on the surface of the 3D MAPbI3 film. Meanwhile, the grains and crystallization of 3D film with DABr post-treatment are significantly improved, and the surface defect density is remarkably reduced, which in turn effectively suppressed the charge recombination in the interface between the perovskite layer and the charge transport layer. The perovskite solar cell based on the DABr-treatment exhibited a significantly enhanced power conversion efficiency (PCE) of 19.10% with a notable improvement in the open circuit voltage (VOC) of 1.06 V and good stability, advocating the potential of this perovskite post-treatment approach.
Assuntos
Brometos , Compostos de Cálcio , Óxidos , Recombinação GenéticaRESUMO
The therapeutic efficacy of topically administered drugs, however powerful, is largely affected by their bioavailability and, thus, ultimately, on their aqueous solubility and stability. The aim of this study was to evaluate the use of ionic liquids (ILs) as functional excipients to solubilise, stabilise, and prolong the ocular residence time of diacerein (DIA) in eye drop formulations. DIA is a poorly soluble and unstable anthraquinone prodrug, rapidly hydrolysed to rhein (Rhe), for the treatment of osteoarthritis. DIA has recently been evaluated as an antimicrobial agent for bacterial keratitis. Two ILs based on natural zwitterionic compounds were investigated: L-carnitine C6 alkyl ester bromide (Carn6), and betaine C6 alkyl ester bromide (Bet6). The stabilising, solubilising, and mucoadhesive properties of ILs were investigated, as well as their cytotoxicity to the murine fibroblast BALB/3T3 clone A31 cell line. Two IL-DIA-based eye drop formulations were prepared, and their efficacy against both Staphylococcus aureus and Pseudomonas aeruginosa was determined. Finally, the eye drops were administered in vivo on New Zealand albino rabbits, testing their tolerability as well as their elimination and degradation kinetics. Both Bet6 and Carn6 have good potential as functional excipients, showing solubilising, stabilising, mucoadhesive, and antimicrobial properties; their in vitro cytotoxicity and in vivo ocular tolerability pave the way for their future use in ophthalmic applications.
Assuntos
Anti-Infecciosos , Líquidos Iônicos , Camundongos , Animais , Excipientes , Betaína/farmacologia , Líquidos Iônicos/farmacologia , Carnitina , Soluções Oftálmicas/farmacologia , Brometos , Anti-Infecciosos/farmacologia , Antraquinonas/farmacologia , ÉsteresRESUMO
Cancer metastasis is the primary cause of cancer morbidity and mortality. Anti-metastasis mechanism of skin cancer by 13-butoxyberberine bromide, a novel berberine derivative, has not yet been reported. This study investigated the effects of 13-butoxyberberine bromide on migration and invasion of skin cancer A431 cells. The cytotoxicity of 13-butoxyberberine bromide was determined by MTT assay. The effect of 13-butoxyberberine bromide on cell migration and invasion were examined using a wound-healing assay, transwell migration assay, and transwell invasion assay, respectively. The cell adhesion ability was determined by an adhesion assay. Protein expressions that play important roles in cancer migration and invasion were evaluated by Western blot analysis. The results showed that 13-butoxyberberine bromide effectively inhibited cell migration, invasion, and adhesion in A431 cells. Interestingly, 13-butoxyberberine bromide was more effective for cell migration inhibition than berberine. In addition, 13-butoxyberberine bromide showed anti-migration and anti-invasion effects by down-regulated MMP-2 and MMP-9 expression and up-regulated TIMP-1 and TIMP-2 expression in A431 cells. Moreover, pretreatment with 13-butoxyberberine bromide significantly inhibited EGF-induced cell migration and p-EGFR, ERK, p-ERK, STAT3, and p-STAT3 expressions in A431 cells at lower concentrations when compared with the berberine. These findings indicated that 13-butoxyberberine bromide could be further developed as an anticancer agent.
Assuntos
Berberina , Neoplasias Cutâneas , Humanos , Brometos/farmacologia , Berberina/farmacologia , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Cutâneas/tratamento farmacológico , Invasividade Neoplásica/patologia , Proliferação de CélulasRESUMO
Elemental bromine is among the essential elements for human health. In living organisms, bromide (Br-) and hydrogen peroxide (H2O2) can be catalyzed by eosinophil peroxidase (EPO) to generate a reactive oxygen species (ROS), hypobromous acid (HOBr), which exhibits properties similar to those of hypochlorous acid (HOCl). Moreover, HOBr possesses strong oxidative and antibacterial properties, which are believed to play an important role in the neutrophil host defense system. However, overexpression or misexpression of HOBr can cause organismal and tissue damage, which is closely related to the development of various diseases. Therefore, an increasing number of studies has demonstrated physiological associations with the conversion of Br- to HOBr. With the development of fluorescence imaging technology, developing fluorescent probes with novel structures and high selectivity to detect changes in Br-, HOBr, and the related enzyme EPO levels in organisms has become very important. This paper summarizes Br-, HOBr, and EPO fluorescent probes reported in recent years, including the design principles, mechanisms, optical properties, and bioapplications. Finally, the application prospects and challenges are also discussed.
Assuntos
Brometos , Corantes Fluorescentes , Humanos , Peroxidase de Eosinófilo , Corantes Fluorescentes/química , Peróxido de Hidrogênio , Bromatos/químicaRESUMO
Flow batteries are a promising energy storage solution. However, the footprint and capital cost need further reduction for flow batteries to be commercially viable. The flow cell, where electron exchange takes place, is a central component of flow batteries. Improving the volumetric power density of the flow cell (W/Lcell) can reduce the size and cost of flow batteries. While significant progress has been made on flow battery redox, electrode, and membrane materials to improve energy density and durability, conventional flow batteries based on the planar cell configuration exhibit a large cell size with multiple bulky accessories such as flow distributors, resulting in low volumetric power density. Here, we introduce a submillimeter bundled microtubular (SBMT) flow battery cell configuration that significantly improves volumetric power density by reducing the membrane-to-membrane distance by almost 100 times and eliminating the bulky flow distributors completely. Using zinc-iodide chemistry as a demonstration, our SBMT cell shows peak charge and discharge power densities of 1,322 W/Lcell and 306.1 W/Lcell, respectively, compared with average charge and discharge power densities of <60 W/Lcell and 45 W/Lcell, respectively, of conventional planar flow battery cells. The battery cycled for more than 220 h corresponding to >2,500 cycles at off-peak conditions. Furthermore, the SBMT cell has been demonstrated to be compatible with zinc-bromide, quinone-bromide, and all-vanadium chemistries. The SBMT flow cell represents a device-level innovation to enhance the volumetric power of flow batteries and potentially reduce the size and cost of the cells and the entire flow battery.
Assuntos
Líquidos Corporais , Brometos , Tamanho Celular , Fibras na Dieta , ZincoRESUMO
Tertiary phosphine oxides, phosphine sulfides, and phosphine selenides containing pyridine, imidazole, and pyrazole groups have been synthesized via the reaction of elemental phosphorus or secondary phosphine oxides with functional pyridines, imidazoles, and pyrazoles. Alkyl tris(2-pyridylethyl)phosphonium iodide and bromide are also obtained by quaternization of the corresponding phosphine. Antimicrobial activity of the synthesized compounds, including nitrogen-containing heterocycles, phosphorus, selenium, and sulfur, with respect to Enterococcus durans, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa microorganisms is evaluated. It is found that phosphine chalcogenides bearing imidazole (14, 19), pyrazole (13), and pyridine fragments (5, 9) and phosphonium salts (11, 12) can be considered as new promising antibacterial agents. For some synthesized compounds, LC50 is determined. Phosphine oxide with methylpyrazole fragments (13) and phosphonium salts (11, 12) show strong profile of antimicrobial activity, and cytotoxic effect of phosphonium bromide having a long chain radical (12) is by order of magnitude higher than that of cisplatin. We believe that the results obtained may contribute to the development of highly effective agents for the treatment and prevention of bacterial infections and cancers.
Assuntos
Anti-Infecciosos , Citostáticos , Fósforo , Brometos , Sais , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Pirazóis/farmacologia , Piridinas , Imidazóis/farmacologia , Óxidos , Testes de Sensibilidade MicrobianaRESUMO
The higher levels of halides in seawater increase bromide and iodide in the coastal aquifers, leading to higher concentrations of halogenated disinfection byproducts (DBPs). The populations in the coastal areas are susceptible to increased concentrations of DBPs while many DBPs are cyto- and genotoxic to mammalian cells, and are possible/probable human carcinogens. The implications of seawater intrusion on the concentrations of trihalomethanes (THMs) and haloacetic acids (HAAs), and the risks were analyzed by adding 0.0-2.0 % seawater (SW) (by volume) and chlorine to groundwater. Bromide and iodide concentrations in groundwater (0.0 %SW) were observed as 42.5 and non-detected (ND) µg/L respectively. With 2.0 %SW, these were spiked up to 1100 and 2.1 µg/L respectively. The most common THMs (THM4), iodinated THMs (I-THMs) and HAAs were 30.4, 0.13 and 27.9 µg/L for 0.0 % SW respectively. With 2.0 %SW, these values were 106.3, 1.6 and 72.9 µg/L, respectively. At 0.0 %SW, averages of chronic daily intakes (CDI) for THM4, HAAs and I-THMs were 2.61 × 10-4, 2.26 × 10-4 and 7.69 × 10-7 mg/kg/day respectively, which were increased to 9.97 × 10-4, 4.70 × 10-4 and 9.47 × 10-6 mg/kg/day, respectively for 2.0 %SW. For 0.0 %SW, overall cancer risks from few DBPs was 3.09 × 10-5 (6.46 × 10-6 - 7.23 × 10-5) while at 1.0 % and 2.0 %SW, risks were 4.88 × 10-5 (1.26 × 10-5-1.08 × 10-4) and 4.11 × 10-5 (1.21 × 10-5-9.28 × 10-5) respectively. The reduction of risks for 2.0 %SW was due to the increase of bromoform (TBM), and decrease in bromodichloromethane (BDCM) and dibromochloromethane (DBCM) at 2.0 %SW. The disability-adjusted life years (DALY) loss showed an increasing trend from 0.0 %SW (DALY: 77.30) to 1.0 %SW (DALY: 122.0) while an increase to 2.0 %SW showed a decrease in DALY (DALY: 102.8). Future study on toxicity of other regulated and emerging DBPs is warranted to better predict cancer risks.
Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Animais , Humanos , Desinfecção , Desinfetantes/análise , Brometos , Iodetos , Trialometanos/análise , Água do Mar , Poluentes Químicos da Água/análise , Halogenação , MamíferosRESUMO
The toxicity of bromide to animals and microorganisms has been widely studied, but the mechanism by which bromide toxicity affects plants is rarely studied. This study used the bromophenol compound Tetrabromobisphenol A (TBBPA) as a representative of bromide to explore the physiological and molecular response mechanism of tobacco leaves to TBBPA. In addition, physiological determination, transcriptomics, weighted gene co-expression network analysis (WGCNA) analysis, and random forest prediction model were conducted. The findings from this study indicated that TBBPA limited the photoreaction process by destroying the light-catching antenna protein of tobacco leaves, the activity of the photosystem reaction centers (PSII and PSI), and the linear electron transport efficiency. TBBPA also reduced the rate of the Calvin-Benson cycle by inhibiting the activities of gene such as Rubisco, PGK, and TPI, and finally destroyed the photosynthesis process. Although cyclic electron transport was enhanced under stress conditions, it could not reverse the damage caused by TBBPA on photosynthesis. TBBPA exposure resulted in the accumulation of reactive oxygen species (ROS) in tobacco leaves, and the activities of Superoxide dismutase (SOD), Ascorbate peroxidase (APX), and Glutathione peroxidase (GPX) and their coding genes were significantly down-regulated. Although POD activity and proline (Pro) content were increased, they were insufficient to remove excess O2·- free radicals to relieve ROS stress. WCGNA and random forest models predicted that the damage of TBBPA to the above processes in tobacco was closely related to the increase in abscisic acid (ABA) content. TBBPA affects the Calvin cycle by inducing ABA signal transduction and stomatal closure, which leads to a series of chain reactions, such as electron transport chain obstruction, excess of ROS, decrease in chlorophyll synthesis, and photosystem reaction center damage.
Assuntos
Ácido Abscísico , Tabaco , Ácido Abscísico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Clorofila/metabolismo , Brometos , Fotossíntese , Folhas de Planta/metabolismo , Complexo de Proteína do Fotossistema II/metabolismoRESUMO
Developing efficient and economical technologies for drinking water disinfection remains a challenge. We synthesized Ag/AgBr/LDH doped with various silver mass concentrations and explored its ability to inactivate E. coli under visible light irradiation (λ ≥ 400 nm). Our results indicated a total inactivation of E. coli (107 CFU·mL-1) within 80 min using 2 % Ag/AgBr/LDH in a laboratory-scale test. The method was evaluated for disinfecting three effluent samples collected from one drinking water treatment plant, covering representative water treatment processes. After five consecutive runs, the inactivation efficiency decreased slightly to 89 % in CFU·mL-1, indicating that the photocatalysts had excellent stability and reusability. The mechanisms were analyzed by combining chemical and biological methods. It was verified that singlet oxygen (1O2), hydrogen peroxide (H2O2), and photo-generated electrons (e-) were significant contributors to the inactivation process. Scanning electron microscopy images analysis showed the disruption of the membrane integrity of E. coli by photocatalytic oxidation. Internal component leakage and reduced enzyme activity were also observed in terms of K+ leakage, ß-galactosidase activity, and antioxidant enzyme activity. The results by the transcriptomic analysis implied that Ag/AgBr/LDH regulating the oxidative stress response and cell membrane damage related genes was the main inactivation mechanism.
Assuntos
Água Potável , Escherichia coli , Escherichia coli/fisiologia , Peróxido de Hidrogênio , Compostos de Prata , Brometos , Catálise , LuzRESUMO
Selective functional group interconversions in complex molecular settings underpin many of the challenges facing modern organic synthesis. Currently, a privileged subset of functional groups dominates this landscape, while others, despite their abundance, are sorely underdeveloped. Amines epitomize this dichotomy; they are abundant but otherwise intransigent toward direct interconversion. Here, we report an approach that enables the direct conversion of amines to bromides, chlorides, iodides, phosphates, thioethers, and alcohols, the heart of which is a deaminative carbon-centered radical formation process using an anomeric amide reagent. Experimental and computational mechanistic studies demonstrate that successful deaminative functionalization relies not only on outcompeting the H-atom transfer to the incipient radical but also on the generation of polarity-matched, productive chain-carrying radicals that continue to react efficiently. The overall implications of this technology for interconverting amine libraries were evaluated via high-throughput parallel synthesis and applied in the development of one-pot diversification protocols.