RESUMO
Thermophilic bacteria of four genera in contrast to the commonly used production strains such as Bacillus subtilis, produce homologs other than menaquinone (MK) with seven isoprene units. The number of isoprene units and the configuration of double bonds are essential factors for their biological activity. The goal was to obtain a strain of bacteria that produces a wide range of MK homologs and only all-trans geometrical isomers, which was the strain G. kaustophilus. Using off-line two-dimensional LC-tandem MS in columns with the RP18 phase and the COSMOSIL cholester phase (separation according to the geometric configuration of double bonds) it was shown that thermophilic bacteria grown at different temperatures produce only all-trans isomers of menaquinones from MK-5 (menaquinone with five isoprenyl units) to MK-15 (fifteen isoprenyl units). Therefore, G. kaustophilus appears to be a biotechnologically important strain produces only trans isomers and additionally homologs from 5 to 15 isoprene units.
Assuntos
Bactérias , Butadienos , Vitamina K 2/química , Espectrometria de MassasRESUMO
In Ficus septica, the short-term control of isoprene production and, therefore, isoprene emission has been linked to the hormone balance between auxin (IAA) and jasmonic acid (JA). However, the relationship between long-term changes in isoprene emission and that of plant hormones remains unknown. This study tracked isoprene emissions from F. septica leaves, plant hormone concentrations and signalling gene expression, MEP pathway metabolite concentrations, and related enzyme gene expression for 1 year in the field to better understand the role of plant hormones and their long-term control. Seasonality of isoprenes was mainly driven by temperature- and light-dependent variations in substrate availability through the MEP route, as well as transcriptional and post-transcriptional control of isoprene synthase (IspS). Isoprene emissions are seasonally correlated with plant hormone levels. This was especially evident in the cytokinin profiles, which decreased in summer and increased in winter. Only 4-hydroxy-3-methylbut-2-butenyl-4-diphosphate (HMBDP) exhibited a positive connection with cytokinins among the MEP metabolites examined, suggesting that HMBDP and its biosynthetic enzyme, HMBDP synthase (HDS), play a role in channelling of MEP pathway metabolites to cytokinin production. Thus, it is probable that cytokinins have potential feed-forward regulation of isoprene production. Under long-term natural conditions, the hormonal balance of IAA/JA-Ile was not associated with IspS transcripts or isoprene emissions. This study builds on prior work by revealing differences between short- and long-term hormonal modulation of isoprene emissions in the tropical tree F. septica.
Assuntos
Ficus , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Estações do Ano , Ficus/genética , Ficus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hemiterpenos/metabolismo , Butadienos/metabolismo , Citocininas/metabolismo , Hormônios/metabolismo , Folhas de Planta/metabolismo , Pentanos/metabolismoRESUMO
Human exposure to known carcinogen 1,3-butadiene (BD) is common due to its high concentrations in automobile exhaust, cigarette smoke, and forest fires, as well as its widespread use in the polymer industry. The adverse health effects of BD are mediated by epoxide metabolites such as 3,4-epoxy-1-butene (EB), which reacts with DNA to form 1-hydroxyl-3-buten-1-yl adducts on DNA nucleobases. EB-derived mercapturic acids (1- and 2-(N-acetyl-l-cysteine-S-yl)-1-hydroxybut-3-ene (MHBMA) and N-acetyl-S-(3,4-dihydroxybutyl)-l-cysteine (DHBMA)) and urinary N7-(1-hydroxyl-3-buten-1-yl) guanine DNA adducts (EB-GII) have been used as biomarkers of BD exposure and cancer risk in smokers and occupationally exposed workers. However, low but significant levels of MHBMA, DHBMA, and EB-GII have been reported in unexposed cultured cells, animals, and humans, suggesting that these metabolites and adducts may form endogenously and complicate risk assessment of butadiene exposure. In the present work, stable isotope labeling in combination with high-resolution mass spectrometry was employed to accurately quantify endogenous and exogenous butadiene metabolites and DNA adducts in vivo. Laboratory rats were exposed to 0.3, 0.5, or 3 ppm of BD-d6 by inhalation, and the amounts of endogenous (d0) and exogenous (d6) DNA adducts and metabolites were quantified in tissues and urine by isotope dilution capillary liquid chromatography/high resolution electrospray ionization tandem mass spectrometry (capLC-ESI-HRMS/MS). Our results reveal that EB-GII adducts and MHBMA originate exclusively from exogenous exposure to BD, while substantial amounts of DHBMA are formed endogenously. Urinary EB-GII concentrations were associated with genomic EB-GII levels in tissues of the same animals. Our findings confirm that EB-GII and MHBMA are specific biomarkers of exposure to BD, while endogenous DHBMA predominates at sub-ppm exposures to BD.
Assuntos
Butadienos , Adutos de DNA , Ratos , Animais , Humanos , Butadienos/química , Marcação por Isótopo , Espectrometria de Massas/métodos , DNA , Acetilcisteína/urina , Biomarcadores/urina , Compostos de Epóxi/químicaRESUMO
The impact of microplastics (MPs, plastic particles ≤5 mm) on ecosystems is of great concern. Road surfaces represent a significant source of MPs where plastic fragments are physically and chemically reduced to MPs. However, the literature lacks information on fragmentation tendencies below 11 µm. This study aimed to characterize the occurrence of MPs in road dust in different size fractions down to 1.1 µm. Road dust was collected at five sites near a major road in Kusatsu city, Japan, and partitioned by size into 13 fractions (1.1-850 µm). The coarser fractions accounted for a greater proportion of the dust. The percentage of organic matter, determined by loss on ignition, increased as the fractions became finer. Pyrolysis-gas chromatography-mass spectrometry was used to quantify 12 types of polymers in each fraction. The dust was found to contain nine types of MP, namely, polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polystyrene (PS), styrene/butadiene rubber (SBR), acrylonitrile/butadiene/styrene resin (ABS), polycarbonate (PC), polymethylmethacrylate (PMMA), and polyamide 66 (PA66). The total MP concentration in road dust particles by particle size fraction (concentrationf) began to increase from the 125-250 µm fraction and remained elevated in finer fractions down to 1.1 µm, indicating that MPs in the road dust micronized to at least 1.1 µm. However, for individual polymer types, the tendency for concentrationf to increase or decrease with particle size fraction varied: the concentrationf of some polymers, such as PE and PVC, remained elevated in fractions down to 1.1 µm; the concentrationf of SBR, a rubber-MP, showed a stable or decreasing trend in fractions of 7.0-11 µm and finer. Particles of PE, PVC, and some other plastics might become increasingly finer, even down to 1.1 µm. Further research is needed to understand the comminution limits of these polymers under pertinent environmental conditions.
Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/análise , Microplásticos , Borracha , Butadienos/análise , Poeira/análise , Japão , Tamanho da Partícula , Ecossistema , Polímeros , Polietilenos/análise , Estirenos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análiseRESUMO
Many terpenoids with isoprene unit(s) demonstrating critical biological activities have been isolated and characterized. In this study, we have developed a robust chem-stamp strategy for the construction of the key isoprene unit, which consists of two steps: one-carbon extension of aldehydes to the alkenyl boronates by the boron-Wittig reaction and the rhodium-catalyzed reaction of alkenyl boronates with 2,3-allenols to yield enals. This chem-stamp could readily be applied repeatedly and separately, enabling the modular concise synthesis of many natural and pharmaceutically active terpenoids, including retinal, ß-carotene, vitamin A, tretinoin, fenretinide, acitretin, ALRT1550, nigerapyrone C, peretinoin, and lycopene. Owing to the diversified availability of the starting materials, aldehydes and 2,3-allenols, creation of new non-natural terpenoids has been realized from four dimensions: the number of isoprene units, the side chain, and the two terminal groups.
Assuntos
Hemiterpenos , Terpenos , Butadienos , Aldeídos/química , CatáliseRESUMO
E-waste comprising plastics causes serious ecological problems due to low degradability, but it is capable of producing a high amount of energy by thermochemical conversion. Therefore, the current study focuses on generating clean syngas through plasma gasification of acrylonitrile butadiene styrene (ABS) based computer keyboard plastic waste (CKPW) using CO2 as a gasifying agent. The effect of feed rate, gas flow rate and plasma power on the syngas composition was studied. In addition, a comprehensive investigation of energy, exergy, economic and environmental analyses along with characterization of the obtained products was conducted to evaluate the performance of the system. Based on the experimental results, the optimum process parameters for producing syngas possessing a higher calorific value (15.80 MJ/m3) with a higher percentage of H2 (30.16 vol%) and CO (46.09 vol%) were estimated. The optimum feed flow rates of solid fuel and CO2 gas and torch power were estimated as 40 g/10 min, 0.5 lpm and 1.12 kW, respectively. At these conditions, the system could achieve a maximum energy and exergy efficiency of 46.06% and 44.34%, respectively, while the levelized cost of syngas (LCOSover) was estimated as 25.45 INR/kWh, including the social cost. Likewise, the lower values of the estimated global warming potential (370.19 gCO2eq/h) illustrate the better sustainability of the process. The obtained oil with the estimated LHV of 39.13 MJ/kg could be an alternative fuel for diesel and the residue containing a higher proportion of TiO2 has medical applications upon further enrichment. The reaction mechanism of ABS conversion to syngas under plasma gasification conditions is proposed.
Assuntos
Acrilonitrila , Eliminação de Resíduos , Eliminação de Resíduos/métodos , Gases/análise , Dióxido de Carbono , Butadienos , Plásticos , EstirenosRESUMO
Bifacial photovoltaics (PV) are gaining rapid attention and their ability to generate more electricity is accelerating their deployment globally. However, literature on optimal bifacial PV is presented for the installation parameters of the system. In this study, we use response surface methodology (RSM) to investigate the flex and roadside reflector wastes as alternate reflectors for bifacial PV modules by using a statistical model. Our primary objective in this study is to examine the significant influence of key input factors (front irradiation, rear irradiation, temperature, thickness, and height) on the irradiance factor, total solar reflectance, and power extracted. The results show that the power extraction of the bifacial PV module using the waste flex material is 9%, higher than that of the road side sticker waste. The result indicates that among all other input factors, front irradiation is the most significant parameter.
Assuntos
Acrilonitrila , Estireno , Cloreto de Polivinila , Butadienos , Reciclagem/métodos , ResíduosRESUMO
In recent years, there has been a growing interest in changes in dynamic mechanical properties of mixed rubber during dynamic shear, yet the influence of vulcanized characteristics on the dynamic shear behavior of vulcanized rubber, particularly the effect of cross-linking density, has received little attention. This study focuses on styrene-butadiene rubber (SBR) and aims to investigate the impact of different cross-linking densities (Dc) on dynamic shear behavior using molecular dynamics (MD) simulations. The results reveal a remarkable Payne effect, where the storage modulus experiences a significant drop when the strain amplitude (γ0) exceeds 0.1, which can be attributed to the fracture of the polymer bond and the decrease in the molecular chain's flexibility. The influence of various Dc values mainly resides at the level of molecular aggregation in the system, where higher Dc values impede molecular chain motion and lead to an increase in the storage modulus of SBR. The MD simulation results are verified through comparisons with existing literature.
Assuntos
Gastrópodes , Borracha , Animais , Simulação de Dinâmica Molecular , Elastômeros , ButadienosRESUMO
An efficient, mild, and economical approach for regioselective synthesis of 4-aryl/alkyl-1-peroxy-but-3-en-2-ols from 1-substituted-1,3-butadienes using hydroperoxides and catalyzed by TBAI has been developed. This method can be executed in a simple operation with no dry conditions required and having tolerance to a wide range of substrates to access corresponding hydroxyperoxidates in good yields. Thus, an excellent regioselective orthogonal dioxygenation in a diene system has been achieved.
Assuntos
Butadienos , CatáliseRESUMO
This is the first report on the molecular characterization of isoprene synthase (ISPS) from the moss Calohypnum plumiforme. After isoprene emission from C. plumiforme was confirmed, the cDNA encoding C. plumiforme ISPS (CpISPS) was narrowed down using a genome database associated with protein structure prediction, and a CpISPS gene was identified. The recombinant CpISPS, produced in Escherichia coli, converted dimethylallyl diphosphate to isoprene. Phylogenetic analysis indicated similarity between the amino acid sequences of CpISPS and moss diterpene cyclases (DTCs) but not ISPSs of higher plants, implying that CpISPS is derived from moss DTCs and is evolutionarily unrelated to canonical ISPSs of higher plants. CpISPS is a novel class I cyclase of the terpene synthase-c subfamily harboring αß domains. This study will help further study of isoprene biosynthesis and the physiological functions of isoprene in mosses.
Assuntos
Alquil e Aril Transferases , Briófitas , Diterpenos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alquil e Aril Transferases/genética , Briófitas/genética , Briófitas/metabolismo , Butadienos , Evolução MolecularRESUMO
Little is known about how brominated flame retardants (NBFRs) and microplastics (MPs) co-pollution influences soil organisms. Here, we investigated the impacts of acrylonitrile butadiene styrene (ABS)-MPs in soil on the 28-d dynamic bioaccumulation, tissue damage, and transcriptional responses of decabromodiphenyl ethane (DBDPE) in Eisenia fetida by simulating different pollution scenarios (10 mg kg-1 DBDPE, 10 mg kg-1 DBDPE accompanied by 0.1 % ABS-MPs, and 10 mg kg-1 DBDPE accompanied by 0.1 % ABS-resin). The results show ABS resin did not influence DBDPE bioaccumulation or distribution, but ABS-MPs, particularly 74-187 µm size of MPs, prolonged DBDPE equilibrium time and significantly promoted DBDPE bioaccumulation in tissue (1.76-2.38 folds) and epidermis (2.72-3.34 folds). However, ABS-MPs and ABS-resin reduced DBDPE concentrations of intestines by 22.2-30.6 % and 37.3 %, respectively. DBDPE-MPs caused more serious epidermis and intestines damages than DBDPE. Additionally, compared to the control, DBDPE significantly up-regulated 1957 genes and down-regulated 2203 genes; meanwhile, DBDPE-MPs up-regulated 1475 genes and down-regulated 2231 genes. DBDPE and DBDPE-MPs both regulated lysosome, phagosome, and apoptosis as the top 3 enriched pathways, while DBDPE-MPs specifically regulated signaling pathways and compound metabolism. This study demonstrated that the presence of ABS-MPs aggravated the biotoxicity of DBDPE, providing scientific information for assessing the ecological risks of MPs and additives from e-waste in soil.
Assuntos
Acrilonitrila , Oligoquetos , Animais , Microplásticos , Plásticos/toxicidade , Acrilonitrila/toxicidade , Bioacumulação , Butadienos/toxicidade , Poliestirenos/toxicidade , SoloRESUMO
This work describes an easy and effective process for preparing a homogeneous polybutadiene (PB) dielectric elastomer with improved actuated strain by utilizing a photochemical thiol-ene click reaction. The carboxyl groups and various ester groups are used for grafting on the PB. Since the length of the alkyl chains of the ester groups will significantly influence the polarities of the carbonyl groups and hydrogen bonding effect, the influence of polarity and hydrogen bonding effect on the dielectric properties and mechanical properties of the modified polybutadienes is carefully discussed. Very interestingly, it is found that the increment of dielectric constant of PB modified by carboxyl groups is the lowest one compared to other modified PBs with the ester groups. Meanwhile, the modified PBs with the ester groups could achieve pretty low dielectric loss factor, and finally, a high dielectric constant (3.6), low dielectric loss factor (0.0005), and large actuated strain (≈25%) of the modified polybutadienes could be achieved by the modified PBs with butyl acrylate groups. This work provides a simple and effective method for the designing and synthesizing of a homogeneous high electromechanical performance dielectric elastomer with high dielectric constant and low dielectric loss.
Assuntos
Butadienos , Elastômeros , Elastômeros/química , Ligação de Hidrogênio , Compostos de SulfidrilaRESUMO
Engineering cyanobacteria for the production of isoprene and other terpenoids has gained increasing attention in the field of biotechnology. Several studies have addressed optimization of isoprene synthesis in cyanobacteria via enzyme and pathway engineering. However, only little attention has been paid to the optimization of cultivation conditions. In this study, an isoprene-producing strain of Synechocystis sp. PCC 6803 and two control strains were grown under a variety of cultivation conditions. Isoprene production, as quantified by modified membrane inlet mass spectrometer (MIMS) and interpreted using Flux Balance Analysis (FBA), increased under violet light and at elevated temperature. Increase of thermotolerance in the isoprene producer was attributed to the physical presence of isoprene, similar to plants. The results demonstrate a beneficial effect of isoprene on cell survival at higher temperatures. This increased thermotolerance opens new possibilities for sustainable bio-production of isoprene and other products.
Assuntos
Synechocystis , Synechocystis/metabolismo , Temperatura , Hemiterpenos/metabolismo , Butadienos/metabolismoRESUMO
We summarize the history and review the literature on isoprene in exhaled breath and discuss the current evidence and models that describe its endogenous origin and consequence for understanding isoprene levels and their variations in exhaled breath.
Assuntos
Testes Respiratórios , Butadienos , Humanos , Hemiterpenos , Expiração , PentanosRESUMO
Recent discoveries of isoprene-metabolizing microorganisms suggest they might play an important role in the global isoprene budget. Under anoxic conditions, isoprene can be used as an electron acceptor and is reduced to methylbutene. This study describes the proteogenomic profiling of an isoprene-reducing bacterial culture to identify organisms and genes responsible for the isoprene hydrogenation reaction. A metagenome-assembled genome (MAG) of the most abundant (89% relative abundance) lineage in the enrichment, Acetobacterium wieringae, was obtained. Comparative proteogenomics and reverse transcription-PCR (RT-PCR) identified a putative five-gene operon from the A. wieringae MAG upregulated during isoprene reduction. The operon encodes a putative oxidoreductase, three pleiotropic nickel chaperones (2 × HypA, HypB), and one 4Fe-4S ferredoxin. The oxidoreductase is proposed as the putative isoprene reductase with a binding site for NADH, flavin adenine dinucleotide (FAD), two pairs of canonical [4Fe-4S] clusters, and a putative iron-sulfur cluster site in a Cys6-bonding environment. Well-studied Acetobacterium strains, such as A. woodii DSM 1030, A. wieringae DSM 1911, or A. malicum DSM 4132, do not encode the isoprene-regulated operon but encode, like many other bacteria, a homolog of the putative isoprene reductase (~47 to 49% amino acid sequence identity). Uncharacterized homologs of the putative isoprene reductase are observed across the Firmicutes, Spirochaetes, Tenericutes, Actinobacteria, Chloroflexi, Bacteroidetes, and Proteobacteria, suggesting the ability of biohydrogenation of unfunctionalized conjugated doubled bonds in other unsaturated hydrocarbons. IMPORTANCE Isoprene was recently shown to act as an electron acceptor for a homoacetogenic bacterium. The focus of this study is the molecular basis for isoprene reduction. By comparing a genome from our isoprene-reducing enrichment culture, dominated by Acetobacterium wieringae, with genomes of other Acetobacterium lineages that do not reduce isoprene, we shortlisted candidate genes for isoprene reduction. Using comparative proteogenomics and reverse transcription-PCR we have identified a putative five-gene operon encoding an oxidoreductase referred to as putative isoprene reductase.
Assuntos
Acetobacterium , Oxirredutases , Oxirredutases/genética , Acetobacterium/genética , Butadienos/metabolismoRESUMO
A systematic investigation was conducted on the emission of hexachlorobutadiene (HCBD) from two tetrachloroethylene factories that used the acetylene method (F1) and the tetrachloride transformation method (F2). The levels of HCBD in the air for F1 were found to be in the range of 1.46-1170 µg/m3, whereas F2 had levels in the range of 1.96-5530 µg/m3. Similarly, the levels of HCBD in the soil for F1 were found to be in the range from 42.2 to 140 µg/kg, whereas F2 had levels in the range from 4.13 to 2180 µg/kg. Samples obtained from the air, soil, and sludge in the reaction area of the tetrachloroethylene factories in China showed high levels of HCBD. The F1 method unintentionally produced more HCBD than the F2 method during tetrachloroethylene production, leading to greater harm. The results of the risk assessment suggested the presence of harmful health effects on workers in the workplace. The investigation findings highlight the need for improved management systems to ensure the safe production of tetrachloroethylene.
Assuntos
Poluentes do Solo , Tetracloroetileno , Humanos , Butadienos/toxicidade , Solo , Poluentes do Solo/análiseRESUMO
Microbial infections and nosocomial diseases associated with biomaterial have become a major problem of public health and largely lead to revision surgery, which is painful and quite expensive for patients. These infections are caused by formation of biofilm, which present a difficulty of treatment with conventional antibiotics. The aim of our study is to investigate the theoretical adhesion of Staphylococcus aureus and Pseudomonas aeruginosa on four 3-dimensional printing filament materials used in the manufacture of medical equipment. Thus, the physicochemical properties of these microorganisms and all filament materials were determined using the contact angle measurements. Our results indicated that bacterial surfaces were hydrophilic, strongly electron donating and weakly electron accepting. In contrast, nylon, acrylonitrile butadiene-styrene, polyethylene terephthalate, and polylactic acid surfaces were hydrophobic and more electron-donor than electron-acceptor. In addition, according to the values of total free interaction energy ΔGTotal, Staphylococcus aureus was found unable to adhere to the filament materials except polyethylene terephthalate surface. However, Pseudomonas aeruginosa showed adhesion capacity only for acrylonitrile butadiene-styrene and polyethylene terephthalate surfaces. These findings imply that the usage of these 3D printed materials in the medical area necessitates more research into enhancing their resistance to bacterial adherence.
Assuntos
Acrilonitrila , Infecção Hospitalar , Infecções Estafilocócicas , Humanos , Aderência Bacteriana , Pseudomonas aeruginosa , Staphylococcus aureus , Butadienos/farmacologia , Polietilenotereftalatos/química , Biofilmes , EstirenosRESUMO
Hydroxyl-terminated polybutadiene (HTPB)-based piezoelectric polymer (m-HTPB) is prepared for the first time by functionalized branch chain modification strategy. In the presence of HTPB with >98.8% cis-1,4 content, the C=C bond partly breaks down, and functionalized acetylferrocene groups are introduced to the cis-1,4 polybutadiene branch chain, retaining the high cis-1,4 content of HTPB. The whole process is conducted under mild conditions, without complicated manipulations. The microstructure and molecular weight of m-HTPB are characterized by Fourier-transform infrared (FTIR) spectra, 1H or 13C nuclear magnetic resonance spectrum (NMR), and gel permeation chromatography (GPC). The thermal properties of HTPB and m-HTPB are determined by differential scanning calorimetry (DSC). Electrochemical investigations reveal that m-HTPB exhibits higher conductance compared with HTPB. The m-HTPB flexible piezoelectric polymer is further used for in situ and real-time pressure monitoring. This simple and effective strategy provides a promising polymeric material for flexible piezoelectric sensors.
Assuntos
Butadienos , Elastômeros , Elastômeros/química , Butadienos/química , Espectroscopia de Ressonância MagnéticaRESUMO
Aromatic prenyltransferases from cyanobactin biosynthetic pathways catalyse the chemoselective and regioselective intramolecular transfer of prenyl/geranyl groups from isoprene donors to an electron-rich position in these macrocyclic and linear peptides. These enzymes often demonstrate relaxed substrate specificity and are considered useful biocatalysts for structural diversification of peptides. Herein, we assess the isoprene donor specificity of the N1-tryptophan prenyltransferase AcyF from the anacyclamide A8P pathway using a library of 22 synthetic alkyl pyrophosphate analogues, of which many display reactive groups that are amenable to additional functionalization. We further used AcyF to introduce a reactive moiety into a tryptophan-containing cyclic peptide and subsequently used click chemistry to fluorescently label the enzymatically modified peptide. This chemoenzymatic strategy allows late-stage modification of peptides and is useful for many applications.
Assuntos
Dimetilaliltranstransferase , Triptofano , Triptofano/química , Peptídeos , Peptídeos Cíclicos/química , Butadienos , Hemiterpenos , Dimetilaliltranstransferase/metabolismo , Especificidade por SubstratoRESUMO
Vulcanized acrylonitrile-butadiene rubber (NBR)/poly (vinyl chloride) (PVC) blends are mainly served as insulation rubber-plastic materials. However, methods to reuse the waste NBR/PVC composites lack research. Here, we found that the mechanochemically modified waste NBR/PVC composites powders (WNPP) could be an alternative to fresh NBR. According to the results, the optimal replacement amount of WNPP for NBR was 20%, and the highest feasible proportion was 40%. WNPP treated by solid-state shear milling technology (S3M) would have a high degree of desulfurization, and the cross-linked chains within WNPP would be transformed into free chains. While co-vulcanizing, the sulfur agents and heat would induce the free chains of WNPP to react with the polymer chains of the NBR substrate, thereby generating dangling chains to form a robust interfacial layer. It was beneficial for the improvement of the mechanical properties of reclaimed products. And the strain of the excellent recycled sample (20C) reached 707%. Moreover, the modified WNPP in the co-vulcanized rubber represented heterogeneity because of the internal residual crosslinked network and the not-melting PVC plastic phase. Although the heterogeneity of WNPP damaged the continuity of the NBR matrix, it also brought a better hysteresis loss capability to the composite. In conclusion, this work expanded the mechanochemical application scope in recycling NBR/PVC wastes.