Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.236
Filtrar
1.
J Vis ; 23(11): 31, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733547

RESUMO

Pulsatile erythrocyte flow in human retinal capillaries reflects the capillary-blood flow system's mechanical condition and represents a fundamental functioning aspect of retinal microcirculation. Inside the capillary, the erythrocytes are continuously accelerated and decelerated by systemic pressure and hydrostatic and osmotic pressures periodically with the heartbeat. This process can be described by the Navier-Stokes equation: ρ(∂v/∂t+v∙∇v)=-∇P+∇∙T, ρ is the density, v is the velocity, P is the pressure, and T represents the stress tensor. The time variation of the flow velocity (∂v/∂t), i.e., the acceleration, is a higher-order dynamics term (compared to velocity) of the pulsatile flow, reflects the temporal variation of the hemodynamic forces, and informs the dynamic mechanical properties of the erythrocyte-capillary system. Higher-order dynamics relating to the acceleration of the erythrocytes in retinal capillaries have not been investigated in the human eye due to inadequate technical measures. This study aims to characterize the higher-order retinal hemodynamics and identify sensitive biomarkers for quantifying age-related changes in the retinal microcirculation using high-speed adaptive optics near-confocal ophthalmoscopy. In human subjects in normal physical health with different ages, we demonstrate that higher-order hemodynamic characteristics of the erythrocyte flow in the retinal capillary can disclose age-related differences in the retinal microcirculation.


Assuntos
Capilares , Hemodinâmica , Humanos , Aceleração , Oftalmoscopia , Retina
3.
J Chromatogr A ; 1707: 464248, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37598532

RESUMO

Surface silanols (Si-OH) play a vital role on fused silica surfaces in chromatography. Here, we used an atmospheric-pressure, gas-phase reactor to modify the inner surface of a gas chromatography, fused silica capillary column (0.53 mm ID) with a small, reactive silane (tris(dimethylamino)methylsilane, TDMAMS). The deposition of TDMAMS on planar witness samples around the capillary was confirmed with X-ray photoelectron spectroscopy (XPS), ex situ spectroscopic ellipsometry (SE), and wetting. The number of surface silanols on unmodified and TDMAMS-modified native oxide-terminated silicon were quantified by tagging with dimethylzinc (DMZ) via atomic layer deposition (ALD) and counting the resulting zinc atoms with high sensitivity-low energy ion scattering (HS-LEIS). A bare, clean native oxide - terminated silicon wafer has 3.66 OH/nm2, which agrees with density functional theory (DFT) calculations from the literature. After TDMAMS modification of native oxide-terminated silicon, the number of surface silanols decreases by a factor of ca. 10 (to 0.31 OH/nm2). Intermediate surface testing (IST) was used to characterize the surface activities of functionalized capillaries. It suggested a significant deactivation/passivation of the capillary with some surface silanols remaining; the modified capillary shows significant deactivation compared to the native/unmodified fused silica tubing. We believe that this methodology for determining the number of residual silanols on silanized fused silica will be enabling for chromatography.


Assuntos
Silanos , Silício , Capilares , Dióxido de Silício , Óxidos
4.
J Stroke Cerebrovasc Dis ; 32(9): 107300, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572602

RESUMO

BACKGROUND AND PURPOSE: Human amylin is a 37 amino-acid pancreatic peptide that forms neuro-toxic aggregates that deposit in the endothelium of brain capillaries of patients with diabetes, potentially contributing to cerebral small vessel ischemic injury. Pathogenic amylin also deposits in the capillary endothelium in other organs, including the skin. The aim of this study was to test the hypothesis that skin capillary amylin deposition correlates with cerebral small vessel amylin deposition, potentially providing a clinically useful marker of cerebral amylin deposition. METHODS: Immunohistochemistry (IHC) was performed for human amylin and collagen IV in brain and skin sections of rats (age 15-16 months) with pancreatic overexpression of amyloidogenic human amylin polypeptide (HIP rats), and control rats (Wild type; WT; rats that express non-amyloidogenic rat amylin) using antibodies binding amylin (n = 5 male and 5 female rats for each group) and antibodies binding Hypoxia inducing factor (HIF)-1α and HIF-2α (n = 3 for each group). The reactive amylin-aldehyde 4-hydroxynonenal (4-HNE) adduct was measured in skin homogenates. (n = 4 for each group) RESULTS: Brain capillaries isolated from HIP rats had higher amylin content compared to WT rats using Western blot with anti-amylin antibody (p = 0.0010). The HIF-1α and HIF-2α immunoreactivity signals in skin from HIP and WT rats were similar (p = 0.2 for HIF-1 α, and p = 0.75 for HIF-2α). Amylin-4HNE adduct formation was higher in HIP rats compared to WT rats (p = 0.0014). There was phenotypic similarity between brain and skin capillary amylin based on co-staining for human amylin and collagen IV in both HIP and WT rats. CONCLUSION: Skin and brain capillary amylin deposition are similar providing evidence that a skin biopsy might be providing a potential biomarker for diabetes-associated intracranial vasculopathy.


Assuntos
Capilares , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Ratos , Humanos , Masculino , Animais , Feminino , Lactente , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Capilares/metabolismo , Encéfalo/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Colágeno/metabolismo
5.
Crit Rev Biomed Eng ; 51(3): 1-19, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560877

RESUMO

Nailfold capillaroscopy is a tool which is non-invasive in nature and can be useful for diagnosis, research, therapeutic study and prognosis. Research shows that specific capillary morphology patterns are identified for diabetic subjects, hypertensive subjects and normal controls. In this study, we have proposed RATHEW approach of classifying these three classes of subjects. RATHEW approach employs a three step process for classifying nailfold images: one, identify six abnormality parameters from the image dataset; two, score these abnormality parameters based on the defined scoring rules; and three, combine them mathematically to segregate them into three classes. This technique can be further enhanced to grade the severity of disease and organ involvement. This can bring in a paradigm shift to the disease detection and therapeutic study mechanism.


Assuntos
Capilares , Unhas , Humanos , Unhas/diagnóstico por imagem , Unhas/irrigação sanguínea , Capilares/diagnóstico por imagem , Angioscopia Microscópica/métodos
6.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37573137

RESUMO

AIMS: The medical capillary catheters occupy a high proportion of medical diagnosis, monitoring, and treatment devices, and will cause serious cross-infection without being disinfected adequately. This paper presents a new plasma structure for efficient inactivation of harmful microorganisms in medical capillaries. METHODS AND RESULTS: An innovative coaxial-dual-gap dielectric barrier discharge reactor powered by nanosecond-pulsed power supply was designed for disinfection of Escherichia coli (E. coli) inside and outside medical capillary catheters in this work. Atmospheric helium plasma (AHP) and atmospheric air plasma (AAP) were successfully obtained inside and outside capillary (0.6 mm inner diameter and 1.0 mm outer diameter), respectively. The electrical and optical characteristics of AHP and AAP were investigated. As the threshold of applied voltage amplitude (Uamp) was <7.0 kV, only one helium glow discharge was generated inside the capillary at the rising and falling stages of pulse voltage. As the Uamp exceeded the threshold, two helium glow discharges were generated that further caused generation of air discharge. Under the Uamp of 9.0 kV, the production of AHP lowered the breakdown voltage in air gap, resulting in the formation of high-volume and uniform AAP, which was conducive to the realization of full inactivation. The inactivation rates of E. coli reached 98.13% and 99.99% by 2 min AHP and 0.5 min AAP treatment, respectively. CONCLUSIONS: The electrical stress of AHP and the reactive oxygen and nitrogen species produced by AAP were contributed to the inactivation of E. coli. The results of SEM (Scanning Electron Microscope) show that plasma treatment can destroy the cellular structure of E. coli.


Assuntos
Escherichia coli , Hélio , Escherichia coli/fisiologia , Capilares , Descontaminação , Oxigênio
7.
Microvasc Res ; 150: 104593, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37582460

RESUMO

Nailfold capillary density is an essential physiological parameter for analyzing nailfold health; however, clinical images of the nailfold are taken in many situations, and most clinicians subjectively analyze nailfold images. Therefore, based on the improved "you only look once v5" (YOLOv5) algorithm, this study proposes an automated method for measuring nailfold capillary density. The improved technique can effectively and rapidly detect distal capillaries by incorporating methods or structures such as 9mosaic, spatial pyramid pooling cross-stage partial construction, bilinear interpolation, and efficient intersection over union. First, the modified YOLOv5 algorithm was used to detect nailfold capillaries. Subsequently, the number of distal capillaries was filtered using the 90° method. Finally, the capillary density was calculated. The results showed that the Average Precision (AP)@0.5 value of the proposed approach reached 85.2 %, which was an improvement of 4.93 %, 5.24 %, and 107 % compared with the original YOLOv5, YOLOv6, and simple-faster rapid-region convolutional network (R-CNN), respectively. For different nailfold images, using the density calculated by nailfold experts as a benchmark, the calculated results of the proposed method were consistent with the manually calculated results and superior to those of the original YOLOv5.


Assuntos
Capilares , Unhas , Unhas/irrigação sanguínea , Angioscopia Microscópica/métodos , Algoritmos
8.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L277-L287, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37431588

RESUMO

Failure of the lung's endothelial barrier underlies lung injury, which causes the high mortality acute respiratory distress syndrome (ARDS). Multiple organ failure predisposes to the mortality, but mechanisms are poorly understood. Here, we show that mitochondrial uncoupling protein 2 (UCP2), a component of the mitochondrial inner membrane, plays a role in the barrier failure. Subsequent lung-liver cross talk mediated by neutrophil activation causes liver congestion. We intranasally instilled lipopolysaccharide (LPS). Then, we viewed the lung endothelium by real-time confocal imaging of the isolated, blood-perfused mouse lung. LPS caused alveolar-capillary transfer of reactive oxygen species and mitochondrial depolarization in lung venular capillaries. The mitochondrial depolarization was inhibited by transfection of alveolar Catalase and vascular knockdown of UCP2. LPS instillation caused lung injury as indicated by increases in bronchoalveolar lavage (BAL) protein content and extravascular lung water. LPS or Pseudomonas aeruginosa instillation also caused liver congestion, quantified by liver hemoglobin and plasma aspartate aminotransferase (AST) increases. Genetic inhibition of vascular UCP2 prevented both lung injury and liver congestion. Antibody-mediated neutrophil depletion blocked the liver responses, but not lung injury. Knockdown of lung vascular UCP2 mitigated P. aeruginosa-induced mortality. Together, these data suggest a mechanism in which bacterial pneumonia induces oxidative signaling to lung venular capillaries, known sites of inflammatory signaling in the lung microvasculature, depolarizing venular mitochondria. Successive activation of neutrophils induces liver congestion. We conclude that oxidant-induced UCP2 expression in lung venular capillaries causes a mechanistic sequence leading to liver congestion and mortality. Lung vascular UCP2 may present a therapeutic target in ARDS.NEW & NOTEWORTHY We report that mitochondrial injury in lung venular capillaries underlies barrier failure in pneumonia, and venular capillary uncoupling protein 2 (UCP2) causes neutrophil-mediated liver congestion. Using in situ imaging, we found that epithelial-endothelial transfer of H2O2 activates UCP2, depolarizing mitochondria in venular capillaries. The conceptual advance from our findings is that mitochondrial depolarization in lung capillaries mediates liver cross talk through circulating neutrophils. Pharmacologic blockade of UCP2 could be a therapeutic strategy for lung injury.


Assuntos
Lesão Pulmonar , Pneumonia Bacteriana , Síndrome do Desconforto Respiratório , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Capilares/metabolismo , Peróxido de Hidrogênio , Fígado/metabolismo , Mitocôndrias/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Lesão Pulmonar/metabolismo , Pneumonia Bacteriana/metabolismo , Proteínas Mitocondriais/metabolismo
9.
Am J Physiol Regul Integr Comp Physiol ; 325(3): R299-R307, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458379

RESUMO

Hypertension augments while exercise training corrects the increased vesicle trafficking (transcytosis) across the blood-brain barrier (BBB) within preautonomic areas and the autonomic imbalance. There is no information on a possible mechanism(s) conditioning these effects. Knowing that Mfsd2a is the major transporter of docosahexaenoic acid (DHA) and that Mfsd2a knockout mice exhibited leaky BBB, we sought to identify its possible involvement in hypertension- and exercise-induced transcytosis across the BBB. Spontaneously hypertensive rats (SHR) and Wistar rats were submitted to treadmill training (T) or kept sedentary (S) for 4 wk. Resting hemodynamic/autonomic parameters were recorded in conscious chronically cannulated rats. BBB permeability within the hypothalamic paraventricular nucleus (PVN) was evaluated in anesthetized rats. Brains were harvested for Mfsd2a and caveolin-1 (an essential protein for vesicle formation) expression. SHR-S versus Wistar-S exhibited elevated arterial pressure (AP) and heart rate (HR), increased vasomotor sympathetic activity, reduced cardiac parasympathetic activity, greater pressure variability, reduced HR variability, and depressed baroreflex control. SHR-S also showed increased BBB permeability, reduced Mfsd2a, and increased caveolin-1 expression. SHR-T versus SHR-S exhibited increased Mfsd2a density, reduced caveolin-1 protein expression, and normalized PVN BBB permeability, which were accompanied by resting bradycardia, partial AP drop, reduced sympathetic and normalized cardiac parasympathetic activity, increased HR variability, and reduced pressure variability. No changes were observed in Wistar-T versus Wistar-S. Training is an efficient tool to rescue Mfsd2a expression, which by transporting DHA into the endothelial cell reduces caveolin-1 availability and vesicles' formation. Exercise-induced Mfsd2a normalization is an important mechanism to correct both BBB function and autonomic control in hypertensive subjects.


Assuntos
Hipertensão , Simportadores , Animais , Ratos , Barreira Hematoencefálica/metabolismo , Capilares/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Endogâmicos SHR , Ratos Wistar , Simportadores/metabolismo
10.
Medicina (Kaunas) ; 59(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37512166

RESUMO

Background and Objectives: Chronic ionizing radiation has biological effects on exposed healthcare workers, particularly on the skin. Capillaroscopy of the nail bed represents an easy, low cost, and non-invasive test to obtain information on the effects of chronic radiation exposure in healthcare workers. The aim of this study was to evaluate which capillaroscopic parameters are most associated with biological damage by chronic radiation exposure. Materials and Methods: We conducted a case-control study, in which cases were represented by healthcare workers exposed to ionizing radiations and controls by healthy subjects. We recorded anamnestic and personal data, including age and gender, before capillaroscopic examination of proximal nail folds of the fingers of both hands. Ten morphological qualitative/quantitative parameters were taken into consideration, assigning each of them a score on a scale from 0 to 3 (0 = no changes, 1 = <33% abnormal capillaries, 2 = 33-66% of abnormal capillaries, 3 = >66% of abnormal capillaries, for single magnification field at 200×). The parameters evaluated were: changes in the length, distribution and density of capillary loops, reduced visibility, decreased flow, visibility of the sub-papillary plexus, and presence of morphological atypia, such as ectasia, tortuosity, hemorrhage, and signs of neoangiogenesis. Results: We enrolled 20 cases and 20 controls. The two groups did not differ significantly for gender and age. Cases differed from controls in a statistically significant way for the following parameters: decreased capillary length (number of shortened capillaries) (p < 0.05), increased visibility of the subpapillary venous plexus (p < 0.05), tortuosity (p < 0.01), neoangiogenesis (p < 0.01), and ectasias (p < 0.001). Conclusions: We found that some capillaroscopic parameters, such as variability in length of capillaries, visibility of subpapillary venous plexus, presence of ectasias, tortuosity, and neoangiogenesis signs, are particularly associated with exposure to ionizing radiation in healthcare professionals. Alterations of these parameters may represent capillaroscopic clues of biological damage by chronic radiation exposure in healthcare professionals. Based on these observations, capillaroscopy may provide clinical data useful to the prevention and follow-up of radiation-exposed healthcare professionals.


Assuntos
Capilares , Angioscopia Microscópica , Humanos , Estudos de Casos e Controles , Pessoal de Saúde , Diagnóstico Precoce , Atenção à Saúde
11.
J Chromatogr A ; 1705: 464189, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37442068

RESUMO

This study reports the development of a Taylor Dispersion Analysis (TDA) method for the size characterization of Extracellular Vesicles (EVs), which are highly heterogeneous nanoscale cell-derived vesicles (30-1000 nm). Here, we showed that TDA, conducted in uncoated fused silica capillaries (50 µm i.d.) using a conventional Capillary Electrophoresis instrument, is able to provide absolute sizing (requiring no calibration) of bovine milk-derived EVs in a small sample volume (∼ 7 nL) and over their entire size range, even the smallest ones (< 70 nm) not accessible via other techniques that provide nanoparticle sizing in suspension. TDA size measurements were repeatable (RSD < 10%) and the average EV sizes were found in the range of 120-210 nm, in very good agreement with those measured with Nanoparticle Tracking Analysis, commonly used for EV characterization. TDA allowed quantitative estimation of EVs for concentrations ≥ 2 × 1011 EVs/mL. Furthermore, TDA was able to detect minor changes in EV size (i.e. by ∼25 nm upon interaction with specific anti-CD9 antibodies of ∼150 kDa), and to highlight the impact of extraction methods (i.e. milk pretreatment: freezing, acid precipitation or centrifugation; the type of size-exclusion chromatography column) and of fluorescent labeling (i.e. intravesicular or surface labeling) on the isolated EV population size. In parallel to EV sizing, TDA allowed to detect molecular contaminants (average sizes ∼1-13 nm) present within the sample, rendering this method a valuable tool to assess the quality and quantity of EV isolates.


Assuntos
Capilares , Vesículas Extracelulares , Centrifugação , Controle de Qualidade
12.
Anal Chem ; 95(31): 11823-11830, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37505089

RESUMO

A novel concept for highly versatile automated analyses of dried blood spot (DBS) samples by commercial capillary electrophoresis (CE) is presented. Two interchangeable CE cartridges with different fused-silica capillaries were used for the DBS elutions and the DBS eluate analyses, respectively. The application of one CE cartridge with a wide-bore capillary reduced DBS processing times to a minimum (1-2 min per sample) while fitting the other CE cartridge with a narrow-bore capillary served for highly efficient CE analyses. A comprehensive investigation of major variables affecting liquid handling in CE (capillary length, internal diameter, and temperature) was carried out with the aim of optimizing both procedures and enabling their maximum flexibility. The application of two CE cartridges also enabled the employment of CE detectors with different instrumental set-ups and/or principles as was demonstrated by the optical detection of nonsteroidal anti-inflammatory drugs (NSAIDs) and the conductivity detection of amino acids (AAs). The presented methods were optimized for the automated CE analyses of 36 DBS samples formed by a volumetric collection of 5 µL of capillary blood onto Whatman 903 discs and processed by direct in-vial elution using the CE instrument. The precision of liquid transfers for the automated DBS elutions was better than 0.9% and the precision of CE analyses did not exceed 5.1 and 12.3% for the determination of NSAIDs and AAs, respectively. Both methods were linear (R2 ≥ 0.996) over the therapeutic (NSAIDs) and the endogenous (AAs) concentration ranges, had limits of quantification below the typical analyte concentrations in human blood, and achieved sample throughputs of more than 6 DBSs per hour.


Assuntos
Aminoácidos , Eletroforese Capilar , Humanos , Eletroforese Capilar/métodos , Teste em Amostras de Sangue Seco/métodos , Condutividade Elétrica , Capilares
13.
Anal Chem ; 95(30): 11316-11325, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37402321

RESUMO

Although the traditional enzyme-linked immunosorbent assay (ELISA) has been widely applied in pathogen detection and clinical diagnostics, it always suffers from complex procedures, a long incubation time, unsatisfying sensitivity, and a single signal readout. Here, we developed a simple, rapid, and ultrasensitive platform for dual-mode pathogen detection based on a multifunctional nanoprobe integrated with a capillary ELISA (CLISA) platform. The novel capture antibodies-modified capillaries can act as a swab to combine in situ trace sampling and detection procedures, eliminating the dissociation between sampling and detection in traditional ELISA assays. With excellent photothermal and peroxidase-like activity, the Fe3O4@MoS2 nanoprobe with a unique p-n heterojunction was chosen as an enzyme substitute and amplified signal tag to label the detection antibody for further sandwich immune sensing. As the analyte concentration increased, the Fe3O4@MoS2 probe could generate dual-mode signals, including remarkable color changes from the chromogenic substrate oxidation as well as photothermal enhancement. Moreover, to avoid false negative results, the excellent magnetic capability of the Fe3O4@MoS2 probe can be used to pre-enrich the trace analytes, amplifying the detection signal and enhancing the immunoassay's sensitivity. Under optimal conditions, specific and rapid detection of SARS-CoV-2 has been realized successfully based on this integrated nanoprobe-enhanced CLISA platform. The detection limits were 5.41 pg·mL-1 for the photothermal assay and 150 pg·mL-1 for the visual colorimetric assay. More importantly, the simple, affordable, and portable platform can also be expanded to rapidly detect other targets such as Staphylococcus aureus and Salmonella typhimurium in practical samples, making it a universal and attractive tool for multiple pathogen analysis and clinical testing in the post COVID-19 era.


Assuntos
COVID-19 , Capilares , Humanos , Molibdênio , COVID-19/diagnóstico , SARS-CoV-2 , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos
14.
Talanta ; 265: 124924, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437393

RESUMO

Point-of-care testing methods currently utilize rapid, portable, inexpensive, and multiplexed on-site detection. Microfluidic chips have become a very promising platform with broad development prospects due to their breakthrough improvement in miniaturization and integration. However, the conventional microfluidic chips still have disadvantages, such as difficulty in fabrication processing, long production time and high cost, which hinder its applications in the fields of POCT and in vitro diagnostics. In this study, a capillary-based microfluidic chip with the characteristics of low cost and easy fabrication was developed for the rapid detection of acute myocardial infarction (AMI). Several short capillaries, which were already conjugated with the capture antibodies respectively, were connected by peristaltic pump tubes and then formed the working capillary. Two working capillaries were encapsulated in the plastic shell and ready for the immunoassay. Multiplex detection of Myoglobin (Myo), cardiac troponin I (cTnI) and creatine kinase-MB (CK-MB) were chosen to demonstrate the feasibility and analytical performance of the microfluidic chip, which requires rapid and accurate detection during diagnosis and therapy for AMI. The capillary-based microfluidic chip required tens of minutes to prepared, and its cost was less than $1. The limit of detection (LOD) was 0.5 ng/mL for Myo, 0.1 ng/mL for cTnI and 0.5 ng/mL for CK-MB respectively. The capillary-based microfluidic chips with easy fabrication and low cost hold promise for the portable and low-cost detection of target biomarkers.


Assuntos
Microfluídica , Infarto do Miocárdio , Humanos , Capilares , Infarto do Miocárdio/diagnóstico , Troponina I , Creatina Quinase Forma MB , Biomarcadores , Mioglobina
15.
Microvasc Res ; 150: 104576, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37414357

RESUMO

Vascular injury eventually resulting in the establishment of cardiovascular disease is a serious complication in rheumatoid arthritis (RA). Nailfold videocapillaroscopy (NVC) is a non-invasive imaging modality that enables the quantitative and qualitative assessment of the peripheral microvasculature. Nevertheless, capillaroscopic patterns remain inadequately defined in RA, especially regarding their clinical significance as potential markers of systemic vascular impairment. Consecutive RA patients underwent NVC using a standardized protocol, to assess the following parameters: capillary density, avascular areas, capillary dimensions, microhemorrhages, subpapillary venous plexus, and presence of ramified, bushy, crossed and tortuous capillaries. Carotid-femoral pulse wave velocity (PWV) and pulse pressure were measured as well-acknowledged markers of large artery stiffening. The vast majority of our cohort (n = 44) presented a combination of non-specific and abnormal capillaroscopic parameters. Capillary ramification was associated with both PWV and pulse pressure, even after adjustment for cardiovascular risk factors and systemic inflammation. Our study highlights the high prevalence of a wide range of capillaroscopic deviations from the normal patterns in RA. Furthermore, it provides for the first time evidence of an association between structural disorders of the microcirculation and markers of macrovascular dysfunction, suggesting that NVC might have a role as an index of generalised vascular impairment in RA.


Assuntos
Artrite Reumatoide , Rigidez Vascular , Humanos , Capilares , Estudos Transversais , Análise de Onda de Pulso , Artrite Reumatoide/complicações , Artrite Reumatoide/diagnóstico , Angioscopia Microscópica/métodos , Unhas/irrigação sanguínea
16.
J Theor Biol ; 572: 111584, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37482178

RESUMO

The time a red blood cell (RBC) spends in the microvasculature is of prime importance for a number of physiological processes. In this work, we present a methodology for computing an approximation of the so-called transit time distribution (TTD), i.e., the probabilistic description of how long a RBC will reside within the network. As a proof of concept, we apply this methodology to three flavors of the mesh networks. We show that each network type supports multiple distinct steady-state configurations and we present tools for analyzing the associated collection of TTDs, ranging from standard measures like mean capillary transit time (MCTT) and capillary transit time heterogeneity (CTTH) to novel metrics.


Assuntos
Capilares , Microvasos , Eritrócitos , Veias , Microcirculação
17.
Invest Ophthalmol Vis Sci ; 64(10): 15, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37450310

RESUMO

Purpose: Capillary flow plays an important role in the nourishment and maintenance of healthy neural tissue and can be observed directly and non-invasively in the living human retina. Despite their importance, patterns of normal capillary flow are not well understood due to limitations in spatial and temporal resolution of imaging data. Methods: Capillary flow characteristics were studied in the retina of three healthy young individuals using a high-resolution adaptive optics ophthalmoscope. Imaging with frame rates of 200 to 300 frames per second was sufficient to capture details of the single-file flow of red blood cells in capillaries over the course of about 3 seconds. Results: Erythrocyte velocities were measured from 72 neighboring vessels of the parafoveal capillary network for each subject. We observed strong variability among vessels within a given subject, and even within a given imaged field, across a range of capillary flow parameters including maximum and minimum velocities, pulsatility, abruptness of the systolic peak, and phase of the cardiac cycle. The observed variability was not well explained by "local" factors such as the vessel diameter, tortuosity, length, linear cell density, or hematocrit of the vessel. Within a vessel, a moderate relation between the velocities and hematocrit was noted, suggesting a redistribution of plasma between cells with changes in flow. Conclusions: These observations advance our fundamental understanding of normal capillary physiology and raise questions regarding the potential role of network-level effects in explaining the observed flow heterogeneity.


Assuntos
Capilares , Retina , Humanos , Capilares/fisiologia , Eritrócitos/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Veias , Vasos Retinianos/fisiologia
18.
Curr Neurovasc Res ; 20(3): 334-345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37403388

RESUMO

BACKGROUND: A protective and regulatory barrier between the blood and the brain is constituted by the blood-brain barrier (BBB), which comprises microvascular endothelial cells providing homeostatic regulation of the central nervous system (CNS). Inflammation compromises the BBB and contributes to many CNS disorders. Anti-inflammatory effects are exerted by glucocorticoids (GCs) on a variety of cells. These GCs include dexamethasone (Dex), which is used for the treatment of inflammatory diseases and recently for the treatment of COVID-19. AIM: The purpose of this study was to determine whether low or high concentrations of Dex can attenuate the inflammatory response induced by lipopolysaccharide (LPS) in the in vitro BBB model. METHODS: Brain endothelial cells (bEnd.5) were cultured and exposed to LPS (100ng/ml) and subsequently co-treated with Dex to investigate whether selected concentrations of Dex (0.1, 5, 10, 20µM) can modulate the inflammatory effects of LPS on bEnd.5 cells. Cell viability, cell toxicity, and cell proliferation were investigated, as well as the monitoring of membrane permeability (Trans Endothelial Electrical Resistance-TEER), and Enzyme-Linked Immune Assay (ELISA) kits were used to identify and quantify the presence of inflammatory cytokines (TNF-α and IL-1ß). RESULTS: Dex, at a lower dosage (0.1µM, but not higher doses), was able to attenuate the inflammatory effects of LPS on bEnd.5 cells. Lower doses of Dex (0.1µM) had no detrimental effects on bEnd.5 cells, while higher Dex doses (5-20µM) decreased bEnd.5 viability, increased bEnd.5 cell toxicity, increased bEnd.5 cell monolayer permeability, and increased proinflammatory cytokine secretion. CONCLUSION: These results indicate that treatment of brain vascular inflammation with low doses of Dex should be advocated, while higher doses promote vascular inflammation.


Assuntos
Barreira Hematoencefálica , COVID-19 , Humanos , Barreira Hematoencefálica/metabolismo , Lipopolissacarídeos/toxicidade , Células Endoteliais , Capilares/metabolismo , COVID-19/metabolismo , Tratamento Farmacológico da COVID-19 , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo , Glucocorticoides/farmacologia , Dexametasona/farmacologia , Dexametasona/metabolismo
19.
Stroke ; 54(8): 2172-2177, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37381898

RESUMO

BACKGROUND: Subarachnoid hemorrhage (SAH) is characterized by an acute reduction of cerebral blood flow and subsequent cortical infarcts, but the underlying mechanisms are not well understood. Since pericytes regulate cerebral perfusion on the capillary level, we hypothesize that pericytes may reduce cerebral perfusion after SAH. METHODS: Pericytes and vessel diameters of cerebral microvessels were imaged in vivo using NG2 (neuron-glial antigen 2) reporter mice and 2-photon microscopy before and 3 hours after sham surgery or induction of SAH by perforating the middle cerebral artery with an intraluminal filament. Twenty-four hours after, SAH pericyte density was assessed by immunohistochemistry. RESULTS: SAH caused pearl-string-like constrictions of pial arterioles, slowed down blood flow velocity in pial arterioles by 50%, and reduced the volume of intraparenchymal arterioles and capillaries by up to 70% but did not affect pericyte density or induce capillary constriction by pericytes. CONCLUSIONS: Our results suggest that perfusion deficits after SAH are not induced by pericyte-mediated capillary constrictions.


Assuntos
Pericitos , Hemorragia Subaracnóidea , Camundongos , Animais , Pericitos/fisiologia , Capilares , Hemorragia Subaracnóidea/complicações , Vasoconstrição/fisiologia , Perfusão
20.
Biomed Phys Eng Express ; 9(4)2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276847

RESUMO

The blood flow velocity in the nailfold capillary is an important indicator of the status of microcirculation. The conventional manual processing method is both laborious and prone to human artifacts. A feasible way to solve this problem is to use machine learning to assist in image processing and diagnosis. Inspired by the Two-Stream Convolutional Networks, this study proposes an optical flow-assisted two-stream network to segment nailfold blood vessels. Firstly, we use U-Net as the spatial flow network and the dense optical flow as the temporal stream. The results show that the optical flow information can effectively improve the integrity of the segmentation of blood vessels. The overall accuracy is 94.01 %, the Dice score is 0.8099, the IoU score is 0.6806, and the VOE score is 0.3194. Secondly, The flow velocity of the segmented blood vessel is determined by constructing the spatial-temporal (ST) image. The blood flow velocity evaluated is consistent with the typical blood flow speed reported. This study proposes a novel two-stream network for blood vessel segmentation of nailfold capillary images. Combined with ST image and line detection method, it provides an effective workflow for measuring the blood flow velocity of nailfold capillaries.


Assuntos
Capilares , Fluxo Óptico , Humanos , Capilares/fisiologia , Rios , Microcirculação , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...