Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Anal Chim Acta ; 1191: 339330, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35033236

RESUMO

Capripoxvirus (CaPV) is one of the common skin diseases infecting cattle and sheep which can cause serious economic losses. Establishing ultra-sensitive, rapid, and point-of-care detection of CaPV is particularly important for hindering its spread. Here, we use the principle that CRISPR/Cpf1 can specifically recognize the target DNA and activate its trans-cleavage activity to identify the CaPV product amplified by loop-mediated amplification (LAMP). Under the designed specific primers, a set of LAMP which can amplify CaPV specifically was established and optimized firstly. Then, the CRISPR/Cpf1 was introduced to identify LAMP products. LAMP can be completed at a constant temperature, thus avoiding the use of temperature-variable instruments, making it possible to detect viruses outside the laboratory. To further satisfy the point-of-care detection of CaPV, we introduced a portable fluorometer and CRISPR-based lateral flow test. Due to the introduction of CRISPR/Cpf1, the sensitivity of the method is greatly increased, which is of great significance for the early detection of viruses. Through CRISPR/Cpf1-mediated fluorescence detection, we can detect CaPV as low as 1.47 × 10-3 TCID50 in 50 min, 1000 times more sensitive than quantitative real-time PCR. Through CRISPR-based lateral flow test, we can visually detect CaPV as low as 1.47 × 10-2 TCID50. Besides, this strategy can be used for the primary samples obtained from the cell culture of CaPV after simple ultrasonic disruption, which eliminates the complicated nucleic acid extraction steps required by traditional methods.


Assuntos
Capripoxvirus , Animais , Capripoxvirus/genética , Bovinos , Primers do DNA , Técnicas de Amplificação de Ácido Nucleico , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade , Ovinos
2.
Arch Razi Inst ; 76(3): 471-485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34824741

RESUMO

As notifiable diseases, lumpy skin disease (LSD), sheep pox (SPP), and goat pox (GTP) are associated with a profound effect on cattle, sheep, and goat farming industries. Development of the ELISA method could effectively facilitate serodiagnosis of the infected animals. This study aimed to develop an ELISA system based on the recombinant full-length and truncated P32 protein (Tr.P32) of goat pox virus. The P32 protein was expressed in Rosetta strain of E. coli using pET24a+ vector and evaluated by SDS-PAGE and Western blotting. Then, Tr.P32 was purified by Ni-NTA affinity chromatography under denaturing conditions and used to develop a capripoxvirus-specific ELISA. Checkerboard titration and receiver-operating characteristic (ROC) analysis were used to optimize the ELISA system and determine diagnostic specificity and sensitivity, respectively. The diagnostic potential of the developed ELISA was evaluated using positive and negative control sera collected from goat, sheep, and cattle. Results showed that the expression level of full-length P32 recombinant protein was negligible, while Tr.P32, a ~ 31 kDa recombinant protein, was expressed up to 0.270-0.300 mg/200 mL of culture media. The results of checkerboard titration revealed that 675 ng/well of Tr.P32 antigen and 1:10 dilution of control sera (anti GTPV HIS and healthy goat sera) caused maximum difference in absorbance between positive and negative goat sera. The recombinant Tr.P32 showed good reactions with antibodies against GTP virus (GTPV), SPP virus (SPPV), and LSD virus (LSDV), whereas no cross-reactions with anti-Orf virus antibodies were detected. By comparing with the neutralization index (NI), cut off, diagnostic sensitivity and specificity of the developed indirect-ELISA were estimated, 0.397, 94% and 96.6%, respectively. These findings indicate that the ELISA system based on Tr.P32 protein could potentially be used in sero-surveillance of all capripoxviruses; however, further investigations are required.


Assuntos
Capripoxvirus , Doenças dos Bovinos , Doenças das Cabras , Infecções por Poxviridae , Animais , Capripoxvirus/genética , Bovinos , Doenças dos Bovinos/diagnóstico , Ensaio de Imunoadsorção Enzimática/veterinária , Escherichia coli/genética , Doenças das Cabras/diagnóstico , Cabras , Infecções por Poxviridae/veterinária , Ovinos
3.
Prev Vet Med ; 196: 105473, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34479042

RESUMO

Sheeppox and goatpox (SGP) are transboundary, highly contagious diseases affecting sheep and goats with characteristic clinical signs. SGP affect populations of small ruminants in Africa, Asia and the Middle East and, as a result, threaten farmers' livelihoods. Despite their importance, studies looking at factors that increase the risk of sheeppox-virus (SPPV) and goatpox-virus (GTPV) exposure and infection are limited. A cross-sectional study was conducted in three states of Northern Nigeria (Bauchi, Kaduna and Plateau) to determine the sero-prevalence and spatial patterns of SGP, and identify risk factors for SPPV/GTPV exposure at animal and household level. Sera samples were collected from 1,800 small ruminants from 300 households. Data on putative risk factors were collected using a standardised questionnaire. Twenty-nine small ruminants were sero-positive to SGP - apparent weighted sero-prevalence 2.0 %; 95 % C.I. 1.1-.3.0 %. Sero-positive animals came from 19 (6.3 %) households. Analysis of the questionnaire showed that a fifth (20.3 %) of farmers claimed to have experienced SGP outbreaks previously in their flocks, with 33 (1.8 %) of the individual animals sampled in this study reported to have had clinical signs. At animal level, the odds of being sero-positive were higher in older animals (>24months; OR = 8.0, p = 0.008 vs ≤24 months) and small ruminants with a history of clinical SGP (OR = 16.9, p = 0.01). Bringing new small ruminants into the household and having a history of SGP in the flock were the main factors identified at household level. Households were less likely to be sero-positive if the time between bringing animals into the household and sampling was over a year (PR = 0.31, p = 0.05), while households with a history of SGP were more likely to be sero-positive regardless of the timeframe. Important spatial heterogeneity was found. The Bayes smooth rate ranged from 0.06 to 4.10 % across local government areas (LGA), with LGA in the north-east or north-west of the study area identified as hot-spots for SGP exposure. Results from this study shed new light on the understanding of SGP epidemiology and provide key inputs to design risk-based surveillance and intervention programmes in the area.


Assuntos
Doenças das Cabras , Infecções por Poxviridae/epidemiologia , Doenças dos Ovinos , Animais , Teorema de Bayes , Capripoxvirus , Estudos Transversais , Doenças das Cabras/epidemiologia , Doenças das Cabras/virologia , Cabras , Nigéria/epidemiologia , Prevalência , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/virologia
4.
Gene ; 801: 145850, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34274484

RESUMO

This study explored the transcriptome of lamb testis cells infected with sheeppox virus (SPPV) wild strain (WS) and vaccine strain (VS) at an immediate-early time. Most of the differentially expressed genes (DEGs) and differentially expressed highly connected (DEHC) gene network were found to be involved in SPPV-VS infection compared to SPPV-WS. Further, the signaling pathways were mostly involved in SPPV-VS infection than SPPV-WS. SPPV modulates the expression of several important host proteins such as CD40, FAS, ITGß1, ITGα1, Pak1, Pak2, CD14, ILK leading to viral attachment and entry; immune-related DEGs such as MAPK, JNK, ERK, NFKB, IKB, PI3K, STAT which provide optimal cellular condition for early viral protein expression; and FOXO3, ATF, CDKNA1, TCF, SRF, BDNF which help in inducing apoptosis and MPTP, BAD and Tp53 inhibits apoptosis or cell death at the immediate-early time. The results captured the specific genes and enabled to understand distinct pathogenic mechanisms employed by VS and WS of SPPV.


Assuntos
Capripoxvirus , Genes Precoces , Interações Hospedeiro-Patógeno/genética , Infecções por Poxviridae/genética , Doenças dos Ovinos/genética , Animais , Capripoxvirus/patogenicidade , Células Cultivadas , Expressão Gênica , Masculino , Infecções por Poxviridae/veterinária , Mapas de Interação de Proteínas/genética , Ovinos , Doenças dos Ovinos/virologia
5.
Front Immunol ; 12: 666543, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211465

RESUMO

Sheeppox (SPP) is a highly contagious disease of small ruminants caused by sheeppox virus (SPPV) and predominantly occurs in Asia and Africa with significant economic losses. SPPV is genetically and immunologically closely related to goatpox virus (GTPV) and lumpy skin disease virus (LSDV), which infect goats and cattle respectively. SPPV live attenuated vaccines (LAVs) are used for vaccination against SPP and goatpox (GTP). Mechanisms related to innate immunity elicited by SPPV are unknown. Although adaptive immunity is responsible for long-term immunity, it is the innate responses that prevent viral invasion and replication before LAVs generate specific long-term protection. We analyzed the relative expression of thirteen selected genes that included pattern recognition receptors (PRRs), Nuclear factor-κß p65 (NF-κß), and cytokines to understand better the interaction between SPPV and its host. The transcripts of targeted genes in sheep PBMC incubated with either wild type (WT) or LAV SPPV were analyzed using quantitative PCR. Among PRRs, we observed a significantly higher expression of RIG-1 in PBMC incubated with both WT and LAV, with the former producing the highest expression level. However, there was high inter-individual variability in cytokine transcripts levels among different donors, with the expression of TNFα, IL-15, and IL-10 all significantly higher in both PBMC infected with either WT or LAV compared to control PBMC. Correlation studies revealed a strong significant correlation between RIG-1 and IL-10, between TLR4, TNFα, and NF-κß, between IL-18 and IL-15, and between NF-κß and IL-10. There was also a significant negative correlation between RIG-1 and IFNγ, between TLR3 and IL-1 ß, and between TLR4 and IL-15 (P< 0.05). This study identified RIG-1 as an important PRR in the signaling pathway of innate immune activation during SPPV infection, possibly through intermediate viral dsRNA. The role of immunomodulatory molecules produced by SPPV capable of inhibiting downstream signaling activation following RIG-1 upregulation is discussed. These findings advance our knowledge of the induction of immune responses by SPPV and will help develop safer and more potent vaccines against SPP and GTP.


Assuntos
Capripoxvirus/imunologia , Imunidade Inata , Infecções por Poxviridae/veterinária , Doenças dos Ovinos/prevenção & controle , Vacinas Virais/imunologia , Animais , Capripoxvirus/genética , Capripoxvirus/isolamento & purificação , Leucócitos Mononucleares/imunologia , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular , Ovinos , Vacinas Atenuadas/imunologia
6.
Sci Rep ; 11(1): 12395, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117312

RESUMO

Viral interference is a common occurrence that has been reported in cell culture in many cases. In the present study, viral interference between two capripox viruses (sheeppox SPPV and lumpy skin disease virus LSDV in cattle) with Rift Valley fever virus (RVFV) was investigated in vitro and in their natural hosts, sheep and cattle. A combination of SPPV/RVFV and LSDV/RVFV was used to co-infect susceptible cells and animals to detect potential competition. In-vitro interference was evaluated by estimating viral infectivity and copies of viral RNA by a qPCR during three serial passages in cell cultures, whereas in-vivo interference was assessed through antibody responses to vaccination. When lamb testis primary cells were infected with the mixture of capripox and RVFV, the replication of both SPPV and LSDV was inhibited by RVFV. In animals, SPPV/RVFV or LSDV/RVFV combinations inhibited the replication SPPV and LSDV and the antibody response following vaccination. The combined SPPV/RVFV did not protect sheep after challenging with the virulent strain of SPPV and the LSDV/RVFV did not induce interferon Gamma to LSDV, while immunological response to RVFV remain unaffected. Our goal was to assess this interference response to RVFV/capripoxviruses' coinfection in order to develop effective combined live-attenuated vaccines as a control strategy for RVF and SPP/LSD diseases. Our findings indicated that this approach was not suitable for developing a combined SPPV/LSDV/RVFV vaccine candidate because of interference of replication and the immune response among these viruses.


Assuntos
Capripoxvirus/genética , Vírus da Febre do Vale do Rift/genética , Animais , Anticorpos Antivirais/biossíntese , Capripoxvirus/imunologia , Capripoxvirus/fisiologia , Bovinos , Células Cultivadas , Chlorocebus aethiops , Genes Virais , Técnicas In Vitro , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/fisiologia , Ovinos , Células Vero , Vacinas Virais/imunologia , Replicação Viral
7.
J Wildl Dis ; 57(2): 439-442, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33822163

RESUMO

Examination of carcasses of Himalayan goral (Naemorhedus goral) revealed nodular, pox-like eruptions in the skin. Similar disease was also seen in domestic goats (Capra aegagrus hircus) in the same area. Goatpox virus was identified as the etiology of the disease in both cases, with probable transmission between the species.


Assuntos
Capripoxvirus/genética , Doenças das Cabras/virologia , Cabras/virologia , Infecções por Poxviridae/veterinária , Ruminantes/virologia , Animais , Animais Selvagens , Surtos de Doenças/veterinária , Índia/epidemiologia , Filogenia , Infecções por Poxviridae/virologia
8.
J Virol Methods ; 293: 114164, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864853

RESUMO

Lumpy skin disease virus (LSDV), sheeppox virus (SPPV) and goatpox (GTPV) virus have been usually grown on primary cells for diagnosis, production and titration purposes. The use of primary cells present several inconvenient, heavy preparation, heterogeneous cell population, non-reproducible viral titration and presence of potential endogenous contaminants. Therefore investigating sensitivity of candidate continuous cell lines is needed. In this study, we compared the above Capripox viruses (CaPVs) sensitivity of primary cells of four origin (heart, skin, testis and kidney), with three cell lines (Vero, OA3.Ts and ESH-L). We tested sensitivity for virus isolation, replication cycle and titration, revealed by cytopathic effect (CPE), immunoenzymatic staining and immunofluorescence. Our results show that ESH-L cells and primary fetal heart cells present the highest sensitivity for CaPVs growth and detection. Vero cells can replicate those viruses but without showing any CPE while the titer obtained on OA3.Ts is lower than primary and ESH-L cells. ESH-L cells are an effective alternative to primary cells use for growing Capripoxviruses and their diagnosis.


Assuntos
Capripoxvirus , Doenças das Cabras , Doença Nodular Cutânea , Doenças dos Ovinos , Animais , Bovinos , Chlorocebus aethiops , Cabras , Células L , Masculino , Camundongos , Filogenia , Ovinos , Células Vero
9.
J AOAC Int ; 104(5): 1389-1393, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-33769495

RESUMO

BACKGROUND: The diseases caused by the Capripoxvirus species have very similar symptoms and are difficult to distinguish clinically. According to a recent report, Capripoxvirus are not strictly host specific. OBJECTIVE: This study aimed to identify the viruses from ovine (include sheep and goat) or bovine, which will assist in selecting the appropriate vaccine and correct measures to control diseases. METHOD: Universal primers for all Capripoxvirus and specific probes for lumpy skin disease virus, sheeppox virus, and goatpox virus were designed and analyzed to identify the viruses from ovine (including sheep and goats) or bovine species. The parameters of the system, such as the annealing temperatures and the quantities of primers and probes used, were optimized. The sensitivity, specificity, and reproducibility were tested. RESULTS: Each probe showed a specific fluorescent signal, with no cross reaction with other pathogens that cause symptoms similar to those of the poxviruses. The LOD was 102 copies of the target genome DNA. The 557 local clinical samples and samples from Ethiopia were successfully detected and the results were consistent with a restriction fragment length polymorphism PCR analysis of the P32 and RPO30 genes and gene sequencing. CONCLUSIONS: This optimized real-time PCR detection system has good diagnostic sensitivity and specificity and can be used for the rapid and effective differential diagnosis of these diseases in goats, sheep, and cattle. HIGHLIGHTS: It is a rapid detection method to distinguish the viruses from ovine (include sheep and goat) or bovine.


Assuntos
Capripoxvirus , Doenças das Cabras , Vírus da Doença Nodular Cutânea , Infecções por Poxviridae , Doenças dos Ovinos , Animais , Capripoxvirus/genética , Bovinos , Doenças das Cabras/diagnóstico , Cabras , Vírus da Doença Nodular Cutânea/genética , Infecções por Poxviridae/diagnóstico , Infecções por Poxviridae/veterinária , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Ovinos , Doenças dos Ovinos/diagnóstico
10.
Acta Vet Scand ; 63(1): 9, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663573

RESUMO

BACKGROUND: Goatpox is a viral disease caused by infection with goatpox virus (GTPV) of the genus Capripoxvirus, Poxviridae family. Capripoxviruses cause serious disease to livestock and contribute to huge economic losses. Goatpox and sheeppox are endemic to Africa, particularly north of the Equator, the Middle East and many parts of Asia. GTPV and sheeppox virus are considered host-specific; however, both strains can cause clinical disease in either goats or sheep with more severe disease in the homologous species and mild or sub-clinical infection in the other. Goatpox has never been reported in Morocco, Algeria or Tunisia despite the huge population of goats living in proximity with sheep in those countries. To evaluate the susceptibility and pathogenicity of indigenous North African goats to GTPV infection, we experimentally inoculated eight locally bred goats with a virulent Vietnamese isolate of GTPV. Two uninfected goats were kept as controls. Clinical examination was carried out daily and blood was sampled for virology and for investigating the antibody response. After necropsy, tissues were collected and assessed for viral DNA using real-time PCR. RESULTS: Following the experimental infection, all inoculated goats displayed clinical signs characteristic of goatpox including varying degrees of hyperthermia, loss of appetite, inactivity and cutaneous lesions. The infection severely affected three of the infected animals while moderate to mild disease was noticed in the remaining goats. A high antibody response was developed. High viral DNA loads were detected in skin crusts and nodules, and subcutaneous tissue at the injection site with cycle threshold (Ct) values ranging from 14.6 to 22.9, while lower viral loads were found in liver and lung (Ct = 35.7 and 35.1). The results confirmed subcutaneous tropism of the virus. CONCLUSION: Clinical signs of goatpox were reproduced in indigenous North African goats and confirmed a high susceptibility of the North African goat breed to GTPV infection. A clinical scoring system is proposed that can be applied in GTPV vaccine efficacy studies.


Assuntos
Capripoxvirus/patogenicidade , Doenças das Cabras/virologia , Infecções por Poxviridae/veterinária , África do Norte , Animais , Cabras , Masculino , Infecções por Poxviridae/virologia
11.
BMC Vet Res ; 17(1): 115, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33685458

RESUMO

BACKGROUND: After a decade of silence, an outbreak of the contagious and Asian endemic disease, goat pox re-emerged in North Vietnam affecting more than 1800 heads with a mortality rate of 6.5%. The inevitable impact of goat pox on hide quality, breeding, chevon and milk production has resulted in a significant economic losses to the developing goat industry of Vietnam. In the act of establishing an effective control of this devastating disease, tracing the source of re-emergence via a phylogenetic study was carried out to reveal their genetic relatedness. Either skin scab or papule from the six affected provinces were collected, cultured into Vero cells followed by restricted enzyme digestion of targeted P32 gene DNA encoding. The P32 gene was then cloned and transformed into E.coli competent cells for further sequencing. RESULTS: The isolated sequence is deposited into GenBank under Accession No. MN317561/VNUAGTP1. The phylogenetic tree revealed high similarity of nucleotide and amino acid sequences to references goat pox strains accounting for 99.6 and 99.3, respectively. The Vietnamese strain is clustered together with currently circulating goat pox virus in China, India and Pakistan which suggested the origin of South China. CONCLUSIONS: This Vietnam isolate is clustered together with other Asian goat pox strains indicating the dissemination of a common goat pox virus within this continent.


Assuntos
Capripoxvirus/classificação , Doenças das Cabras/epidemiologia , Infecções por Poxviridae/veterinária , Sequência de Aminoácidos , Animais , Capripoxvirus/genética , Capripoxvirus/isolamento & purificação , Chlorocebus aethiops , Surtos de Doenças/veterinária , Doenças das Cabras/virologia , Cabras , Filogenia , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/virologia , Análise de Sequência de DNA , Células Vero , Vietnã/epidemiologia , Proteínas Virais/genética
12.
Viruses ; 12(10)2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998423

RESUMO

Capripox viruses, with their members "lumpy skin disease virus (LSDV)", "goatpox virus (GTPV)" and "sheeppox virus (SPPV)", are described as the most serious pox diseases of production animals. A GTPV isolate and a SPPV isolate were sequenced in a combined approach using nanopore MinION sequencing to obtain long reads and Illumina high throughput sequencing for short precise reads to gain full-length high-quality genome sequences. Concomitantly, sheep and goats were inoculated with SPPV and GTPV strains, respectively. During the animal trial, varying infection routes were compared: a combined intravenous and subcutaneous infection, an only intranasal infection, and the contact infection between naïve and inoculated animals. Sheep inoculated with SPPV showed no clinical signs, only a very small number of genome-positive samples and a low-level antibody reaction. In contrast, all GTPV inoculated or in-contact goats developed severe clinical signs with high viral genome loads observed in all tested matrices. Furthermore, seroconversion was detected in nearly all goats and no differences concerning the severity of the disease depending on the inoculation route were observed. Conclusively, the employed SPPV strain has the properties of an attenuated vaccine strain, consistent with the genetic data, whereas the GTPV strain represents a highly virulent field strain.


Assuntos
Capripoxvirus/genética , Infecções por Poxviridae/veterinária , Infecções por Poxviridae/virologia , Ruminantes/virologia , Animais , Capripoxvirus/classificação , DNA Viral , Feminino , Genoma Viral , Doenças das Cabras/imunologia , Doenças das Cabras/virologia , Cabras/virologia , Masculino , Filogenia , Infecções por Poxviridae/imunologia , Ovinos/virologia , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/virologia , Vacinas Atenuadas
13.
Virol J ; 17(1): 133, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859219

RESUMO

BACKGROUND: Sheeppox and goatpox are both economically important animal diseases in which pathogens are goatpox virus (GTPV) and sheeppox virus (SPPV). They can't cause cross-species infection between sheep and goats in general. But in recent decades, the infection of sheep by goatpox or goats by sheeppox has been reported. The literature has indicated that the occurrence of these cases has a significant and direct relationship with mutations of ankyrin genes families (ANK genes 010,138,140,141.2,145) located in two-terminal regions of capripoxvirus genomes. So it is very important to decipher these nucleotides and their coding amino acid sequences of the five genes regarded as host range and virulence factors for effective prevention and control of capripoxvirus diseases. METHODS: In this study, all the ankyrin genes of three goatpox virus, two sheeppox virus, and one GTPV vaccine strains from Nanjiang areas of Xinjiang province of China during 2010-2011 were collected, amplified, cloned and sequenced. The sequence of every ankyrin genes has been compared with not only sequences from six viruses but also all sequences from three species of capripoxvirus genus from Gene bank, and every ANK gene's mutated nucleotides and amino acids have been screened, and the relationship of genetic evolution among different virus strains has been analyzed, as well as the domain architecture of these genes was forecasted and analyzed. RESULTS: The six capripoxvirus strains can be well-distinguished GTPV and SPPV based on five ANK genes' sequence identicalness except for GTPV-SS strain, which showed higher identicalness with SPPV. The ANK gene sequence of the GTPV-SS strain was 100% identical with SPPV-M1 (ANK138,140,145) and SPPV-M2 (ANK138,145), respectively. Phylogenetically, these six capripoxvirus strains were also grouped into the same cluster of India reference strains in lineages and showed extreme identical conservative or variable regions with India capripoxvirus isolates by sequence alignment. Moreover, for the functional domains, these ANK genes of capripoxvirus except for ANK gene 145, are identical in size, and ANK genes 145 of SPPV are usually 100 bp (approximately 30 aa) longer than those of GTPV and eventually form a PRANC domain at C-terminus. CONCLUSIONS: The isolated strain of GTPV-SS may be a cross-species infection or the collected material was contaminated, and the inferred Capripox outbreak in Xinjiang in 2010 can be introduced from India. ANK genes 138,140,141.2 and 145 of capripoxvirus can be used as the target genes to identify GTPV and SPPV. Moreover, the four ANK genes determining the host range are more significant than the ANK gene 010. These ANK genes play combining roles for their function.


Assuntos
Anquirinas/genética , Capripoxvirus/genética , Capripoxvirus/isolamento & purificação , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Capripoxvirus/classificação , China , DNA Viral/genética , Variação Genética , Doenças das Cabras/virologia , Cabras , Especificidade de Hospedeiro , Filogenia , Infecções por Poxviridae/veterinária , Infecções por Poxviridae/virologia , Domínios Proteicos , Análise de Sequência de DNA , Ovinos , Doenças dos Ovinos/virologia
14.
Infect Genet Evol ; 85: 104472, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32711078

RESUMO

Sheeppox and goatpox are highly contagious viral diseases of small ruminants causing severe economic losses to the livestock farmers. The disease is enzootic in Asia including India, Middle East and African countries. In the present study, a total of 28 isolates from twenty five sheeppox and goatpox disease outbreaks were phylogenetically analyzed based on P32 gene/protein along with homology modeling and docking using heparan sulfate and UDP-glucose. Three distinct lineage-specific clusters as per their host origin were recorded. Multiple sequence analysis of P32 gene revealed that genetically similar sheeppox virus (SPPV) and goatpox virus (GTPV) strains are circulating in India. Phylogenetically, Lumpy skin disease (LSDV) and SPPV had a closer genetic relationship than GTPV. Comparative sequence alignment indicated conservation of various motifs such as glycosaminoglycan (GAG), chemokine like motif (CX3C) and Asp-Glu-any other residue-Asp (D/ExD), as well as viral specific signature residues in SPPV and GTPV isolates. Structurally, P32 protein of SPPV and GTPV with mixed α helices and ß sheets resembled with crystal structure of homologue vaccinia virus H3L protein. Docking studies in P32 protein of SPPV and GTPV revealed conserved binding pattern with heparan sulfate which is involved in the virus attachment and varied glycosyltransferase fold with UDP-glucose. These findings may help in development of suitable vaccines/diagnostics and therapeutics against capripoxviruses.


Assuntos
Capripoxvirus/classificação , Capripoxvirus/genética , Doenças das Cabras/virologia , Infecções por Poxviridae/genética , Doenças dos Ovinos/virologia , Proteínas do Envelope Viral/genética , Animais , Cabras/virologia , Índia , Filogenia , Mapeamento de Interação de Proteínas , Análise de Sequência de DNA , Ovinos/virologia
15.
Sci Rep ; 10(1): 8888, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483247

RESUMO

The Capripoxvirus genus includes three agents: Sheeppox virus, Goatpox virus and Lumpy skin disease virus. Related diseases are of economic importance and present a major constraint to animals and animal products trade in addition to mortality and morbidity. Attenuated vaccines against these diseases are available, but afforded cross-protection is controversial in each specie. In this study, groups of sheep, goats and cattle were vaccinated with Romania SPPV vaccine and challenged with corresponding virulent strains. Sheep and cattle were also vaccinated with Neethling LSDV vaccine and challenged with both virulent SPPV and LSDV strains. Animals were monitored by clinical observation, rectal temperature as well as serological response. The study showed that sheep and goats vaccinated with Romania SPPV vaccine were fully protected against challenge with virulent SPPV and GTPV strains, respectively. However, small ruminants vaccinated with LSDV Neethling vaccine showed only partial protection against challenge with virulent SPPV strain. Cattle showed also only partial protection when vaccinated with Romania SPPV and were fully protected with Neethling LSDV vaccine. This study showed that SPPV and GTPV vaccines are closely related with cross-protection, while LSDV protects only cattle against the corresponding disease, which suggests that vaccination against LSDV should be carried out with homologous strain.


Assuntos
Capripoxvirus/fisiologia , Doenças dos Bovinos/prevenção & controle , Doenças das Cabras/prevenção & controle , Doenças dos Ovinos/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Animais , Anticorpos Antivirais/metabolismo , Capripoxvirus/classificação , Capripoxvirus/imunologia , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Proteção Cruzada , Doenças das Cabras/imunologia , Doenças das Cabras/virologia , Cabras , Romênia , Ovinos , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/virologia , Vacinação/veterinária , Vacinas Atenuadas/classificação , Vacinas Atenuadas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/classificação , Vacinas Virais/imunologia
16.
FEBS Lett ; 594(12): 2016-2026, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32390192

RESUMO

Programmed death of infected cells is used by multicellular organisms to counter viral infections. Sheeppox virus encodes for SPPV14, a potent inhibitor of Bcl-2-mediated apoptosis. We reveal the structural basis of apoptosis inhibition by determining crystal structures of SPPV14 bound to BH3 motifs of proapoptotic Bax and Hrk. The structures show that SPPV14 engages BH3 peptides using the canonical ligand-binding groove. Unexpectedly, Arg84 from SPPV14 forms an ionic interaction with the conserved Asp in the BH3 motif in a manner that replaces the canonical ionic interaction seen in almost all host Bcl-2:BH3 motif complexes. These results reveal the flexibility of virus-encoded Bcl-2 proteins to mimic key interactions from endogenous host signalling pathways to retain BH3 binding and prosurvival functionality.


Assuntos
Proteínas Reguladoras de Apoptose/química , Capripoxvirus/química , Proteínas Virais/química , Proteína X Associada a bcl-2/química , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Interações Hospedeiro-Patógeno , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Proteínas Virais/metabolismo , Proteína X Associada a bcl-2/metabolismo
17.
BMC Vet Res ; 16(1): 128, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375821

RESUMO

BACKGROUND: In view of the current swine fever outbreak and the government aspiration to increase the goat population, a need arises to control and prevent outbreaks of goat pox. Despite North Vietnam facing sporadic cases of goat pox, this most recent outbreak had the highest recorded morbidity, mortality and case fatality rate. Thus, owing to the likelihood of a widespread recurrence of goat pox infection, an analysis of that outbreak was done based on selected signalment, management and disease pattern (signs and pathology) parameters. This includes examination of animals, inspection of facilities, tissue sampling and analysis for confirmation of goatpox along with questionaires. RESULTS: It was found that the susceptible age group were between 3 and 6 months old kids while higher infection rate occurred in those under the free-range rearing system. The clinical signs of pyrexia, anorexia, nasal discharge and lesions of pocks were not restricted to the skin but have extended into the lung and intestine. The pathogen had been confirmed in positive cases via PCR as goat pox with prevalence of 79.69%. CONCLUSIONS: The epidemiology of the current goat pox outbreak in North Vietnam denotes a significant prevalence which may affect the industry. This signals the importance of identifying the salient clinical signs and post mortem lesions of goat pox at the field level in order to achieve an effective control of the disease.


Assuntos
Capripoxvirus/isolamento & purificação , Doenças das Cabras/epidemiologia , Infecções por Poxviridae/veterinária , Animais , Surtos de Doenças/veterinária , Doenças das Cabras/patologia , Doenças das Cabras/virologia , Cabras , Reação em Cadeia da Polimerase/veterinária , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/patologia , Prevalência , Vietnã/epidemiologia
18.
Vet Pathol ; 57(4): 550-553, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452273

RESUMO

Infection of small ruminants with peste des petits ruminants virus (PPRV) and goatpox virus (GTPV) are endemic and can have devastating economic consequences in Asia and Africa. Co-infection with these viruses have recently been reported in goats and sheep in Nigeria. In this study, we evaluated samples from the lips of a red Sokoto goat, and describe co-infection of keratinocytes with PPRV and GTPV using histopathology and transmission electron microscopy. Eosinophilic cytoplasmic inclusion bodies were identified histologically, and ultrastructural analysis revealed numerous large cytoplasmic viral factories containing poxvirus particles and varying sizes of smaller cytoplasmic inclusions composed of PPRV nucleocapsids. These histopathological and ultrastructural findings show concurrent infection with the 2 viruses for the first time as well as the detection of PPRV particles in epithelial cells of the mucocutaneous junction of the lip.


Assuntos
Capripoxvirus/isolamento & purificação , Coinfecção/veterinária , Doenças das Cabras/virologia , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Animais , Cabras/virologia , Histocitoquímica/veterinária , Queratinócitos/virologia , Lábio/virologia , Microscopia Eletrônica de Transmissão/veterinária , Nigéria , Dermatopatias/virologia
19.
Vet Microbiol ; 245: 108695, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32456811

RESUMO

In this comparative study, we examine the safety of the sheeppox (SPP) and goatpox (GTP) vaccines and the protective response of these vaccines in cattle against a virulent lumpy skin disease (LSD) field strain. The vaccine safety was tested in rabbits, mice and cattle using ten times recommended dose. In the safety trial, none of the vaccinated animals showed any deviation from physiological norms or fever, inappetence or local/ generalized skin reactions. In the challenge trial, both SPP and GTP vaccine groups developed virus-neutralizing antibodies with an average titre of 2.1 log2 at 21 days post-vaccination. No significant difference in seroconversion was found in cattle vaccinated with SPP and GTP vaccines (P ≥ 0.05). When challenged with a virulent LSD field strain, one animal vaccinated with the SPP Niskhi vaccine strain showed typical LSD skin lesions at the injection sites of different dilutions of the challenge virus. All animals vaccinated with GTP G20-LKV vaccine strain showed full protection. After infection with the challenge virus, unvaccinated fully susceptible control cattle showed characteristic clinical signs of LSD. The average protective index for SPP and GTP vaccine groups was 5.3 ± 1.42 and 5.9 ± 0.00, respectively.


Assuntos
Capripoxvirus/imunologia , Doenças dos Bovinos/prevenção & controle , Imunogenicidade da Vacina , Doença Nodular Cutânea/prevenção & controle , Vírus da Doença Nodular Cutânea/patogenicidade , Vacinas Virais/imunologia , Animais , Capripoxvirus/classificação , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Feminino , Vírus da Doença Nodular Cutânea/imunologia , Camundongos , Coelhos , Vacinação , Vacinas Virais/administração & dosagem
20.
Arch Virol ; 165(6): 1419-1431, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32307603

RESUMO

Sheeppox and goatpox are important transboundary animal viral diseases of sheep and goats caused by sheeppox virus (SPPV) and goatpox virus (GTPV), respectively, of the genus Capripoxvirus, family Poxviridae. Among the proteins encoded by the capripoxvirus (CaPV) genome, ORF095 (vaccinia virus A4L homolog) is an immunodominant virion core protein that plays a pivotal role in virus assembly and morphogenesis. In the present study, sequence analysis of the ORF095 genes of 27 SPPV and GTPV isolates or field samples from different geographical regions of India was performed, and structure was prediction was done by homology modeling. A multiple sequence alignment of different CaPV isolates revealed that CaPV-A4L is highly conserved, with several species-specific signature residues, namely A93, A216, A315, G136 and G146 in GTPV, G47, A63, A168 and A276 in SPPV, and G48 and C98 in lumpy skin disease virus (LSDV). Phylogenetically, the CaPV isolates were separated into three major clusters, GTPV, SPPV and LSDV, based on the complete coding sequence of the CaPV-A4L gene. Genus-specific clustering of poxviruses was observed in phylogenetic analysis based on A4L protein homologs of chordopoxviruses. A secondary structure prediction showed the presence of six α-helices and one ß-sheet as well as some coils. The signature residues identified here are potentially useful for genotyping, and the predicted characteristics of the CaPV-A4L protein make it an ideal candidate for use as an immunogenic or diagnostic antigen for the development of immunoassays in  the sero-evaluation of CaPV in target hosts.


Assuntos
Capripoxvirus/genética , DNA Viral/genética , Genes Virais , Infecções por Poxviridae/veterinária , Animais , Doenças das Cabras/virologia , Cabras/virologia , Índia , Fases de Leitura Aberta , Filogenia , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Análise de Sequência de DNA , Ovinos/virologia , Doenças dos Ovinos/virologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...