Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 768
Filtrar
1.
Braz. j. biol ; 84: e255055, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355865

RESUMO

Abstract This study was aimed to investigate Carbofuran (CF)-induced pathological changes in cattle egret. Two hundred cattle egrets were reared and equally divided into four groups and given different CF concentrations (0.03 mg/L, 0.02 mg/L, 0.01 mg/L and 0 mg/L (control group)). Hematology, serum biochemistry, histopathology, and immunological markers were studied. Our results confirm that CF induces anemic conditions, leukocytosis, elevated liver enzymatic activity, and alterations in renal biomarkers. Moreover, specific microscopic lesions such as multifocal necrosis, pyknotic nuclei, hemorrhages, congestion, and inflammatory cell proliferation were observed in the liver, kidney, spleen, and thymus. These findings suggest that CF can induce harmful effects, so the application of this pesticide in the field must be strictly monitored to mitigate the possibility of exposure to non-target species.


Resumo Este estudo teve como objetivo investigar as alterações patológicas induzidas por carbofurano (CF) em garças-vaqueiras. Duzentas dessas garças foram criadas e divididas igualmente em quatro grupos e receberam diferentes concentrações de CF: 0,03 mg/L; 0,02 mg/L; 0,01 mg/L; e 0 mg/L (grupo controle). Foram realizadas análises de hematologia, bioquímica sérica, histopatologia e marcadores imunológicos. Nossos resultados confirmaram que CF induz condições anêmicas, leucocitose, atividade enzimática hepática elevada e alterações nos biomarcadores renais. Além disso, lesões microscópicas específicas, como necrose multifocal, núcleos picnóticos, hemorragias, congestão e proliferação de células inflamatórias, foram observadas no fígado, rim, baço e timo. Esses achados sugerem que o CF pode causar efeitos nocivos, portanto a aplicação desse agrotóxico no campo deve ser rigorosamente monitorada para mitigar a possibilidade de exposição a espécies não alvo.


Assuntos
Animais , Carbofurano/toxicidade , Aves , Bovinos
2.
Biosensors (Basel) ; 12(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36140061

RESUMO

Fast and reliable determination of enzyme inhibitors are of great importance in environmental monitoring and biomedicine because of the high biological activity and toxicity of such species and the necessity of their reliable assessment in many media. In this work, a flow-through biosensor has been developed and produced by 3D printing from poly(lactic acid). Acetylcholinesterase from an electric eel was immobilized on the inner walls of the reactor cell. The concentration of thiocholine formed in enzymatic hydrolysis of the substrate was monitored amperometrically with a screen-printed carbon electrode modified with carbon black particles, pillar[5]arene, electropolymerized Methylene blue and thionine. In the presence of thiocholine, the cathodic current at -0.25 V decreased because of an alternative chemical reaction of the macrocycle. The conditions of enzyme immobilization and signal measurements were optimized and the performance of the biosensor was assessed in the determination of reversible (donepezil, berberine) and irreversible (carbofuran) inhibitors. In the optimal conditions, the flow-through biosensor made it possible to determine 1.0 nM-1.0 µM donepezil, 1.0 µM-1.0 mM berberine and 10 nM to 0.1 µM carbofuran. The AChE biosensor was tested on spiked samples of artificial urine for drugs and peanuts for carbofuran. Possible interference of the sample components was eliminated by dilution of the samples with phosphate buffer. Easy mounting, low cost of replaceable parts of the cell and satisfactory analytical and metrological characteristics made the biosensor a promising future application as a point-of-care or point-of-demand device outside of a chemical laboratory.


Assuntos
Berberina , Técnicas Biossensoriais , Carbofurano , Acetilcolinesterase , Carbofurano/análise , Carbono , Donepezila , Eletrodos , Enzimas Imobilizadas , Azul de Metileno , Fosfatos , Fuligem , Tiocolina
3.
Gene ; 842: 146794, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-35952841

RESUMO

Choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) are essential enzymes for synthesizing and transporting acetylcholine (ACh). But their functions in metamorphosis, reproduction, and the insecticide susceptibility were poorly understood in the insects. To address these issues, we identified the orthologues of chat and vacht in Tribolium castaneum. Spatiotemporal expression profiling showed Chat has the highest expression at the early adult stage, while vacht shows peak expression at the early larval stage. Both of them were highly expressed at the head of late adult. RNA interference (RNAi) of chat and vacht both led to a decrease in ACh content at the late larval stage. It is observed that chat knockdown severely affected larval development and pupal eclosion, but vacht RNAi only disrupted pupal eclosion. Further, parental RNAi of chat or vacht led to 35 % or 30 % reduction in fecundity, respectively, and knockdown of them completely inhibited egg hatchability. Further analysis has confirmed that both the reduction in fecundity and hatchability caused through the maternal specificity in T. castaneum. Moreover, the transcript levels of chat and vacht were elevated after carbofuran or dichlorvos treatment. Reduction of chat or vacht decreased the resistance to carbofuran and dichlorvos. This study provides the evidence for chat and vacht not only involved in development and reproduction of insects but also could as the potential targets of insecticides.


Assuntos
Carbofurano , Inseticidas , Tribolium , Acetilcolina/metabolismo , Animais , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Diclorvós , Inseticidas/farmacologia , Reprodução , Tribolium/genética , Proteínas Vesiculares de Transporte de Acetilcolina/genética
4.
Chemosphere ; 307(Pt 3): 136027, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35973507

RESUMO

Toxic residues of the insecticide carbofuran in farmland is an urgent problem, and high concentrations of carbofuran have been found in the rhizoshperic soil of maize treated with seed coating agents 120-180 days after planting. Using an enrichment co-culture method, we identify a bacterial strain obtained from these carbofuran-contaminated rhizosphere soils as Leclercia adecarboxylata MCH-1. This strain exhibited a significant ability to degrade both carbofuran and 3-keto carbofuran, with total degradation of 55.6 ± 4.6% and 75.7 ± 3.4%, respectively, 24 h following start of co-culture. Further activity screening revealed that the inoculation of maize roots with L. adecarboxylata MCH-1 promoted maize seedling growth. Quantitative analysis demonstrated that this bacterial strain had the ability to synthesize the phytohormone IAA. Simultaneously, the concentration of IAA in the rhizospheric soil increased following inoculation of maize roots with L. adecarboxylata MCH-1. Moreover, the concentrations of plant specialized metabolites, including phenolics, terpenoids, and alkaloids, decreased in maize seedlings and were elevated in the rhizospheric soil after maize roots had been inoculated with the MCH-1 strain. Interestingly, the growth of the strain MCH-1 was improved by co-culture with root exudates obtained from the rhizospheric soil, specifically 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, and zealexin A1 (ZA1). Taken together, our results suggest that the carbofuran-degrading rhizobacterium L. adecarboxylata MCH-1 is able to interact with maize plants through the regulation of maize root exudates. Moreover, inoculation with L. adecarboxylata MCH-1 promotes maize growth through the production of IAA and regulation of the release of plant specialized metabolites. Our results provide a new model organism for the remediation of farmland soils from pollution with carbofuran residues.


Assuntos
Carbofurano , Inseticidas , Reguladores de Crescimento de Plantas , Raízes de Plantas , Rizosfera , Plântula , Solo/química , Microbiologia do Solo , Terpenos , Zea mays
5.
J Hazard Mater ; 439: 129644, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35882171

RESUMO

The combined toxicity of heavy metals and pesticides to aquatic organisms is still largely unexplored. In this study, we investigated the combined impacts of cadmium (Cd) and carbofuran (CAR) on female zebrafish (F0 generation) and their following F1 generation. Results showed that mixtures of Cd and CAR induced acute synergistic effects on both zebrafish adults of the F0 generation and embryos of the F1 generation. Combined exposure to Cd and CAR could obviously alter the hepatic VTG level of females, and the individual exposures increased the relative mRNA levels of vtg1 and vtg2. Through maternal transmission, co-exposure of Cd and CAR caused toxicity to 4-day-old larvae of the F1 generation, evidenced by the significant changes in T4 and VTG levels, CYP450 activity, and the relative transcriptional levels of genes related to the hormone, oxidative stress, and apoptosis. These effects were also reflected by the global gene expression pattern to 7-day-old larvae of F1 generation using the transcriptomic analysis, and they could also affect energy metabolism. Our results provided a more comprehensive insight into the transgenerational toxic impacts of heavy metal and pesticide mixtures. These findings highlighted that it was highly necessary to consider transgenerational exposures in the ecological risk assessment of chemical mixtures.


Assuntos
Carbofurano , Metais Pesados , Praguicidas , Poluentes Químicos da Água , Animais , Cádmio/metabolismo , Carbofurano/metabolismo , Carbofurano/toxicidade , Feminino , Larva , Metais Pesados/metabolismo , Praguicidas/metabolismo , Transcriptoma , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Biosensors (Basel) ; 12(8)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35892457

RESUMO

To produce a sensitive monoclonal antibody (mAb) for the simultaneous detection of carbofuran, benfuracarb, carbosulfan and 3-hydroxy-carbofuran, 2,3-dihydro-2,2-dimethyl-7-benzofuranmethanamine (DDB) was conjugated to bovine serum albumin (BSA) to prepare the immunogen DDB-BSA and mice were immunized. Coating antigens were prepared by conjugating DDB and 5-methoxy-2,3-dihydrobenzofuran-3-acetic acid (MDA) to BSA and ovalbumin (OVA), respectively. Furthermore, the effect of different antibody-antigen pairs on the sensitivity of ELISA and LFIA methods for the detection of carbofuran was investigated. After the immunization, a high-affinity mAb 13C8 was obtained. The ability of the coating antigen to compete with carbofuran for binding antibodies was found to be significantly different between ELISA and LFIA methods. With the antibody-antigen pair 13C8-MDA-OVA, the IC50 values of the ELISA and QD-LFIA methods for carbofuran were 0.18 ng/mL and 0.67 ng/mL, respectively. The cross-reactivity (CR) values of the two methods for benfuracarb, carbosulfan and 3-hydroxy-carbofuran ranged from 72.0% to 83.7%, while, for other carbamate pesticides, the CR values were less than 1%. The spiked recoveries of carbofuran in vegetables by the QD-LFIA method were 83-111%, with a coefficient of variation below 10%, and the test results of the actual samples were consistent with the HPLC-MS method. Overall, this study provides key materials for the development of immunoassays for carbofuran and its analogues, and the antibody-antigen pair selection strategy established in this study provides useful insights for the development of sensitive immunoassays for other compounds.


Assuntos
Carbofurano , Praguicidas , Animais , Anticorpos Monoclonais , Antígenos/química , Carbofurano/análise , Ensaio de Imunoadsorção Enzimática/métodos , Imunoensaio/métodos , Camundongos , Praguicidas/análise
7.
Ecotoxicol Environ Saf ; 239: 113667, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35643028

RESUMO

The United Nations designated 2021 as the International Year of Fruits and Vegetables (IYFV), with the goal of educating populations regarding the role of such produce in nutrition, food safety, and overall health. Carbofuran is a highly toxic insecticide and nematocide, and its use to treat fruit trees, vegetables, tea, and medicinal herbs is thus prohibited. However, carbofuran residues are still detectable via LC-Q-TOF/MS in fruit and vegetable samples collected from 138 sites in 31 regions. In the present study, carbofuran levels were sampled at 1388 sampling sites in 31 regions (provinces, autonomous regions, and municipalities) not including Hong Kong, Macao, or Taiwan. In total, over 36,000 samples (including 12,547 samples of 41 kinds of fruits and 23,785 samples of 83 kinds of vegetables) were randomly collected from supermarkets and farmer's markets. These data were used to conduct a risk assessment pertaining to dietary carbofuran exposure through the consumption of fruits and vegetables. In total, carbofuran residues were detectable in 2.0% of fruits and 2.3% of vegetables. Risk assessments indicated that the intake of fruits and vegetables harboring carbofuran residues did not pose a chronic health risk. However, peaches, grapes, sweet peppers, celery, Chinese chives, leaf lettuce, spinach, small rape, mustard greens, cucumbers, watermelons, Chinese wolfberry leaves, wax gourds, snap beans, bitter melons, green Chinese vegetables, lettuce, shallot, cowpeas, eggplants, tomatoes, tangerines, summer squash, oranges, lemons, Chinese cabbage, peppers, and strawberries were associated with an unacceptable acute risk to both children and adults. Moreover, crown daisies, nectarines, citrus fruits, pitayas, melons, kale, cabbages, milk Chinese cabbage, carrots, and melons were associated with an unacceptable acute risk to children. Substantial acute risk to children and adults was observed for fruits and vegetables from surveyed regions other than Inner Mongolia, Yunnan, Liaoning, Fujian, Xinjiang, and Hubei. Together, these data provide a foundation for future research aimed at the management of carbofuran residues in fruits and vegetables in an effort to better protect consumer health.


Assuntos
Carbofurano , Citrus , Resíduos de Praguicidas , Carbofurano/análise , China , Frutas/química , Resíduos de Praguicidas/análise , Medição de Risco , Verduras/química
8.
Anal Methods ; 14(15): 1479-1489, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35343530

RESUMO

Analytical method development for the control of pesticide residues occurring in significant dietary foodstuffs is of utmost importance considering their potential impact on consumer health and food market sustainability. Depending on the purpose, either instrumental analysis, mainly chromatographic methods, or screening assays, mostly using biorecognition affinity, are commonly used, featuring different advantages and drawbacks. To practically compare these two different types of analytical strategies, we applied them for the detection of (i) 97 organophosphate (OP) and carbamate (CM) pesticide residues in wheat flour and (ii) carbofuran (a carbamate insecticide) in wheat, rye and maize flour samples. Regarding high-end analysis, an ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS) method was developed and validated achieving low limits of quantification (LOQs, from 0.002 to 0.040 mg kg-1) and a short chromatographic run (12 min). In terms of bioanalytical methods, a fast (17 min) and cost-efficient (∼0.01€ per sample) acetylcholinesterase (AChE) microplate assay for carbofuran screening was utilized. Importantly, carbofuran was the strongest of the 11 OP and CM tested pesticides achieving a half maximal inhibitory concentration (IC50) of 0.021 µM whilst the assay detectability was at the parts per billion level in all three cereal matrices. Based on the attained results, a critical discussion is presented providing the analytical merits and bottlenecks for each case and a wider outlook related to the application of analytical methods in the food safety control analytical scheme.


Assuntos
Carbofurano , Resíduos de Praguicidas , Praguicidas , Acetilcolinesterase/análise , Carbofurano/análise , Inibidores da Colinesterase/análise , Cromatografia Líquida de Alta Pressão/métodos , Grão Comestível/química , Ensaios Enzimáticos , Farinha/análise , Espectrometria de Massas/métodos , Resíduos de Praguicidas/análise , Praguicidas/análise , Triticum
9.
Braz J Biol ; 84: e255055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35019107

RESUMO

This study was aimed to investigate Carbofuran (CF)-induced pathological changes in cattle egret. Two hundred cattle egrets were reared and equally divided into four groups and given different CF concentrations (0.03 mg/L, 0.02 mg/L, 0.01 mg/L and 0 mg/L (control group)). Hematology, serum biochemistry, histopathology, and immunological markers were studied. Our results confirm that CF induces anemic conditions, leukocytosis, elevated liver enzymatic activity, and alterations in renal biomarkers. Moreover, specific microscopic lesions such as multifocal necrosis, pyknotic nuclei, hemorrhages, congestion, and inflammatory cell proliferation were observed in the liver, kidney, spleen, and thymus. These findings suggest that CF can induce harmful effects, so the application of this pesticide in the field must be strictly monitored to mitigate the possibility of exposure to non-target species.


Assuntos
Carbofurano , Animais , Aves , Carbofurano/toxicidade , Bovinos
10.
J Cell Mol Med ; 26(1): 35-47, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34240810

RESUMO

Carbofuran is a broad-spectrum synthetic pesticide. Its exposure to non-target mammals affects the biological system through the induction of oxidative stress. Since oxidative stress is a major contributing factor to cellular autophagy and senescence, our present investigation determined the impacts of carbofuran-induced oxidative stress on cellular autophagy and senescence. A transmembrane protein, Spinster homolog 1 (Spns1), is involved in autophagic lysosomal metabolism. Its mutation accelerates the cellular senescence and shortens the lifespan. Using a transgenic zebrafish line, expressing fluorescent microtubules-associated protein 1 light chain 3 (EGFP-LC3) at the membrane of the autophagosome, we found that carbofuran affects autophagic lysosomal biogenesis in wild-type zebrafish and exacerbates autophagic defect in spns1-mutant zebrafish. In real-time mortality study, carbofuran has shortened the lifespan of wild-type fish. Nrf2 is a stress-responsive transcription factor that regulates the expression of antioxidant genes (such as gstp1) in the prevention of oxidative stress-mediated cellular damage. To assess the effect of carbofuran on Nrf2 signalling, we established a dual-monitoring transgenic zebrafish line, expressing gstp1 promoter-driven EGFP and mCherry-tagged Neh2 domain of Nrf2. Our results suggested that the exposure of carbofuran has down-regulated both Nrf2 and Gstp1 expressions. Overall, carbofuran affects cellular autophagy and accelerates senescence by enervating the Nrf2 signalling.


Assuntos
Carbofurano , Fator 2 Relacionado a NF-E2 , Animais , Autofagia/genética , Carbofurano/farmacologia , Senescência Celular , Mamíferos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Environ Sci Pollut Res Int ; 29(11): 15896-15904, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34633618

RESUMO

This study's hypothesis is that carbofuran and copper sulfate have a synergistic harmful impact on the fertility of male Nile tilapia. Hence, this study was designed to assess the toxic reproductive outcome of carbofuran, copper sulfate, and their mixture in male Nile tilapia. Sixty male Nile tilapia fishes were separated into four groups (15 fish/group). The control group; carbofuran group, was given dechlorinated tap water containing 0.02 mg/L (1/10 dose of LC50) carbofuran; copper group was given dechlorinated tap water containing 4.0 mg/L (1/10 dose of LC50) copper sulfate; carbofuran + copper sulfate group received dechlorinated tap water containing 0.02 mg/L carbofuran plus 4.0 mg/L copper sulfate. After 6 weeks, results revealed a significant rise in testicular malondialdehyde levels and a significant decrease in testicular reduced glutathione contents among all experimental groups compared to the control group. Testicular testosterone levels were significantly declined in copper and combined groups compared to the control. The seminal evaluation using computer-assisted sperm analysis showed a significant decline in the progressive motility percentage, motile ratio percentage, sperm concentration, curvilinear velocity, straight-line velocity, average path velocity, and wobble in all intoxicated groups, particularly, the combined group. The histopathology of testes in all intoxicated groups revealed a detachment of the basal membrane of some seminiferous tubules, and others were free from spermatogonia and spermatozoa with interstitial eosinophilic granular cell infiltration. Testicular lesions were more severe in the combined group. Finally, it was concluded that carbofuran and copper sulfate exerted a negative effect on the reproductive function of male Nile tilapia, and they have a synergistic harmful impact on the fertility of male Nile tilapia.


Assuntos
Carbofurano , Ciclídeos , Animais , Carbofurano/toxicidade , Sulfato de Cobre/toxicidade , Masculino , Espermatozoides , Testículo
12.
Luminescence ; 37(2): 348-356, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34889024

RESUMO

A novel double-windows fluorescence sensor for carbofuran (CF) detection was successfully developed based on rare-earth Eu,Tb-doped Y2 O3 @SiO2 -based molecularly imprinted nanoparticles (MINs) with a multilayer core-shell structure. The recognition process of the MINs for CF was fairly fast and needed only ~8 min to reach a dynamic equilibrium. Interestingly, one fluorescence attenuation window was found with an increase in CF concentration (Q) from 0.1 to 10 µg ml-1 and with a limit of detection (LOD) of 0.04 µg ml-1 at 544 nm belonging to the Tb3+ emission, as well as another fluorescence enhanced window within the CF concentration range 10-100 µg ml-1 (LOD = 4 µg ml-1 ) at 617 nm of Eu3+ emission in the dispersed rare-earth-doped MIN colloidal aqueous solution. Luminescence resonance energy transfer from CF to Eu3+ and an inner filter effect of CF towards Tb3+ , as well from the two independent detection windows were clearly observed simultaneously. The competition experiment displayed hardly any marked interference during detection of CF following addition of its analogues (carbaryl, isoprocarb, aldicarb, methomyl, and etofenprox). Moreover, the MINs could also be applied to accurately detect CF in rhubarb and wolfberry samples with recoveries of 85.7-92.2%. This sensing system has high specific recognition and a wide detection range for CF and provides new opportunities for pesticide detection.


Assuntos
Carbofurano , Impressão Molecular , Nanopartículas , Limite de Detecção , Dióxido de Silício
13.
J Anal Toxicol ; 46(1): 37-46, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33258956

RESUMO

The presence and use of carbamate and organophosphate pesticides with agricultural and urban purposes in Colombia has been justified for pest control. However, these substances pose a national problem because of their toxic nature, which is associated with accidental poisoning or even with homicides or suicides related to acute fatal poisoning. This study aims to develop and to validate an analytical methodology for the determination of the aldicarb, carbofuran and methamidophos pesticides in blood through liquid chromatography--tandem mass spectrometry (LC-MS-MS). To this end, the method for extracting pesticides from the blood was developed, the conditions of LC were defined, the instrumental system MS-MS was optimized and the bioanalytical methodology was validated. This methodology proved to be selective, precise, accurate and linear in the concentration range from 0.10 to 5.0 µg/mL, with a limit of detection of 0.020 µg/mL for aldicarb and carbofuran and 0.050 µg/mL for methamidophos, recovery between 90% and 102%, and stability at room temperature and in the autosampler between 80% and 120%. The analytical methodology was applied to 34 forensic cases. Carbofuran was found at a concentration ranging from 0.020 to >5.0 µg/mL, aldicarb was found at a concentration ranging from 0.10 to 2.5 µg/mL and methamidophos was found at a concentration >5.0 µg/mL. In 62% of the cases, the pesticides under study were used to commit suicide. Necropsy findings of pesticide poisoning are non-specific. Therefore, toxicological blood analysis provides significant information at the forensic level, and the analytical method validated represents a sensitive, fast and reliable analysis with little solvent consumption of a small sample amount, so it is suitable for routine application in fatal pesticide poisonings.


Assuntos
Carbofurano , Suicídio , Aldicarb , Cromatografia Líquida , Humanos , Compostos Organotiofosforados , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
14.
Chemosphere ; 288(Pt 1): 132359, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34627048

RESUMO

Palaemon pandalirformis (shrimp) is a species widely distributed in the Brazilian coastal region and with an important economic role. In addition, this organism is considered an indicator of environmental pollution in estuaries; however, its physiological responses to toxic environmental pollutants, including pesticides and nanomaterials, are not well known, mainly, the effects of co-exposure. Thus, the purpose of this study was to evaluate the ecotoxicological effects of co-exposure between oxidized multiwalled carbon nanotubes (HNO3-MWCNT) and carbofuran pesticide on the routine metabolism of P. pandalirformis. The shrimps were exposed to different concentrations of HNO3-MWCNT (0; 10; 100; 500; 1000 µg L-1), carbofuran (0; 0.1; 1.0; 5.0; 10 µg L-1) and to co-exposure with 100 µg L-1 of HNO3-MWCNT + carbofuran (0; 0.1; 1.0; 5.0; 10 µg L-1), to evaluate the effects on metabolic rate (O2 consumption) and excretion of ammonia (NH4+NH3). Our results showed that the shrimps exposed to HNO3-MWCNT (10 µg L-1) increased the metabolic rate by 292% and the excretion of ammonia by 275%; those exposed to carbofuran (10 µg L-1) increased their metabolic rate by 162% and the excretion of ammonia by 425%; and with the co-exposure of HNO3-MWCNT + carbofuran there was also an increase in the metabolic rate by 317% and an excretion of ammonia by 433% when compared to control. These findings provides useful information toward better understanding the physiological responses of shrimps after combined exposure to nanomaterials and pesticides in aquatic environments.


Assuntos
Carbofurano , Nanotubos de Carbono , Palaemonidae , Praguicidas , Poluentes Químicos da Água , Animais , Carbofurano/toxicidade , Nanotubos de Carbono/toxicidade , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade
15.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361024

RESUMO

The use of chemicals to boost food production increases as human consumption also increases. The insectidal, nematicidal and acaricidal chemical carbofuran (CAF), is among the highly toxic carbamate pesticide used today. Alongside, copper oxide nanoparticles (CuO) are also used as pesticides due to their broad-spectrum antimicrobial activity. The overuse of these pesticides may lead to leaching into the aquatic environments and could potentially cause adverse effects to aquatic animals. The aim of this study is to assess the effects of carbofuran and copper oxide nanoparticles into the cardiovascular system of zebrafish and unveil the mechanism behind them. We found that a combination of copper oxide nanoparticle and carbofuran increases cardiac edema in zebrafish larvae and disturbs cardiac rhythm of zebrafish. Furthermore, molecular docking data show that carbofuran inhibits acetylcholinesterase (AChE) activity in silico, thus leading to impair cardiac rhythms. Overall, our data suggest that copper oxide nanoparticle and carbofuran combinations work synergistically to enhance toxicity on the cardiovascular performance of zebrafish larvae.


Assuntos
Carbofurano/toxicidade , Inibidores da Colinesterase/toxicidade , Cobre/toxicidade , Coração/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Praguicidas/toxicidade , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Sítios de Ligação , Carbofurano/farmacologia , Cardiotoxicidade , Sinergismo Farmacológico , Praguicidas/farmacologia , Ligação Proteica , Peixe-Zebra
16.
Chem Res Toxicol ; 34(8): 1890-1902, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34264070

RESUMO

Citrus medica L. is rich in numerous vital bioactive constituents, though it is an underutilized among the citrus genus. Therefore, the aim of the present investigation was to evaluate the protective role of the C. medica fruit (CMF) methanol extract against carbofuran (CF)-induced toxicity in experimental rats. In addition, this work aims at detecting and measuring polyphenolic compounds by means of high-performance liquid chromatography (HPLC) and evaluation of the antioxidant activity of this extract. For this, studies dealing with serum hematological and biochemical parameters, liver endogenous antioxidants, as well as hepatic histo-architectural features have been carried out to assess the protective ability of CMF against CF-induced toxicity. Additionally, total phenol, flavonoid, and antioxidant capability were measured and the antioxidant action was investigated using DPPH and nitric oxide radical scavenging assays as well as reducing power assessments. HPLC results revealed the presence of benzoic acid, cinnamic acid, gallic acid, quercetin, and salicylic acid in CMF extract. Furthermore, results showed that CMF has considerable total phenol, flavonoid, and antioxidant capability and exhibits significant free radical scavenging and reducing potentialities. On the other hand, CF intoxication of rats significantly altered the hematological and serum biochemical parameters with hepatocytes disruption. Carbofuran also caused an upsurge in malondialdehyde (MDA) level and a decline in hepatic cellular antioxidant enzymes levels in rats compared to the control group. Co-administration of CMF amended the anomalies and improved the histo-architectural arrangement of hepatocytes in treated groups. CMF also inhibited the alteration of endogenous antioxidant enzymes and MDA levels as compared to the carbofuran treated group and returned them to their normal state. Taken all together, results from this investigation highlight the protective role of CMF against CF-induced toxicity which might be attributed to the polyphenolic constituents of the extract.


Assuntos
Antioxidantes/uso terapêutico , Carbofurano/toxicidade , Citrus , Inseticidas/toxicidade , Extratos Vegetais/uso terapêutico , Polifenóis/uso terapêutico , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Citrus/química , Feminino , Frutas/química , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Ratos , Ratos Sprague-Dawley
17.
Chemosphere ; 285: 131395, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34252806

RESUMO

Herein, Fe3O4-SnO2 nanoheterojunction has been synthesized and successfully encapsulated in gC3N4 matrix using a novel hydrothermal technique. The synthesized material was characterized using sophisticated analytical methods like XRD, TEM, BET, UV-Vis, VSM and XPS to evaluate structural, morphological, optical, magnetic and surface chemical properties. The hybrid nanostructure Fe3O4-SnO2-gC3N4 has been utilized for the LED light-induced photocatalytic degradation of carbofuran. The catalyst exhibited notable photocatalytic performance under visible light with an efficiency of ~89% and pseudo first order rate constant of 0.015 min-1. The result of change in variables like catalyst dose, pollutant concentration, pH and contact time on the photodegradation efficiency and degradation kinetics was studied. The incorporation of Fe3O4 improved the magnetic separation of the catalyst after several cycles of operation, thereby improving the practical utility of the catalyst system to tackle organic pollutants.


Assuntos
Carbofurano , Nanocompostos , Catálise , Luz , Fotólise
18.
Ann Agric Environ Med ; 28(2): 358-360, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34184524

RESUMO

INTRODUCTION: Carbamate insecticides are methyl carbamic acid esters and reversible cholinesterase inhibitors. In contrast to the long-term action of organophosphate insecticides, this complex undergoes rapid hydrolysis. CASE REPORT: A suicidal poisoning by exposure to carbofuran in a 43-year-old farmer is reported. The patient had a sudden respiratory and cardiac arrest in the mechanism of bradycardia asystole. He was additionally diagnosed with metabolic acidosis and massive aspiration pneumonia. After applied treatment, the patient's general condition improved - alignment of efficiency of both respiratory and circulatory efficiency were reached. CONCLUSION: Carbofuran is one of the most toxic carbamate insecticides. It is therefore important to react quickly and choose the right treatment. Differentiation between organophosphate and carbamate intoxication is essential.


Assuntos
Carbofurano/toxicidade , Inseticidas/toxicidade , Intoxicação/etiologia , Adulto , Fazendeiros , Humanos , Masculino , Intoxicação/psicologia , Suicídio
19.
Environ Sci Pollut Res Int ; 28(43): 61128-61136, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34169417

RESUMO

One of the major causes of aquatic biodiversity loss is the contamination of the environment by pesticides. Even though there is a considerable amount of studies on the subject, there are still few that deal with the effects of carbofuran on native species in Brazil. Although carbofuran is widely used in Brazil, its action on native organisms, such as the Atlantic Forest lambari Deuterodon iguape, has not yet been studied. This work aimed to evaluate the effects of exposure to carbofuran on the fish D. iguape, considering the behavior and specific oxygen consumption as end points. Opercular movements, dorsal fin movements, and swimming speed were analyzed as behavioral parameters. To assess specific oxygen consumption, fish were subjected to concentrations of 0.0, 0.05, 0.1, 0.25, and 0.5 mg/L, for 24 h. For behavior analysis, fish remained exposed to carbofuran at concentrations of 0.0, 0.01, 0.05, 0.1, and 0.5 mg/L, in periods of 0, 2, 24, and 48 h. The behavior was studied through filming, analyzed with the free software, Tracker 4.92 (Open Source Physics). The results demonstrate an increase in opercular movements (18% ± 2.65) and a decrease in dorsal fin movements (- 21.2% ± 2.97), as well as in swimming speed (- 58.3% ± 1.83) of the experimental groups compared to the control group. There was an increase in oxygen consumption of 58.4% in fish exposed to the highest concentration of carbofuran. Thus, it is concluded that carbofuran altered D. iguape's behavior and oxygen consumption. The species was sensitive to carbofuran concentrations and can be used as a bioindicator.


Assuntos
Carbofurano , Praguicidas , Poluentes Químicos da Água , Animais , Brasil , Florestas
20.
J Agric Food Chem ; 69(9): 2679-2688, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33645978

RESUMO

Nowadays, a lot of pesticides have been used in the agriculture field due to the global demand for food production. Carbofuran (CF) is the most commonly used carbamate compound that is responsible for the highest toxicity to humans compared to any other pesticide used in agricultural settings. Thus, rapid, portable, and low-cost sensors are needed for the detection of CF in the environment and food samples. Herein, we have successfully developed an electrochemical sensor using a glassy carbon electrode (GCE) modified with gadolinium sulfide (Gd2S3) and reduced graphene oxide (RGO) composite for the detection of carbofuran (CF). A novel Gd2S3/RGO composite was prepared by the facile hydrothermal route and confirmed by morphological and structural analyses such as field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX), powder X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), and also the formation mechanism of Gd2S3/RGO composite was discussed. The desired electrical conductivity of Gd2S3 was enhanced by the RGO, which was estimated from the electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Electrochemical studies demonstrated that the developed Gd2S3/RGO sensor was highly sensitive and selective to CF. In addition, the Gd2S3/RGO sensor exhibits a low detection limit (LOD) and the linear ranges were 0.0128 and 0.001-1381 µM, respectively, for CF detection under optimized experimental conditions. Moreover, we also investigated the practical applicability of the sensor for CF detection in the environment and food samples.


Assuntos
Carbofurano , Grafite , Técnicas Eletroquímicas , Gadolínio , Humanos , Sulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...